Commit Graph

13 Commits

Author SHA1 Message Date
Will Constable
4f34cd6d1e Replace all CHECK_ and DCHECK_ with TORCH_* macros (#82032)
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases.

All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed.
c10/util/logging_is_not_google_glog.h
c10/util/logging_is_google_glog.h

Fixes https://github.com/pytorch/pytorch/issues/81415

cc @miladm @malfet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032
Approved by: https://github.com/soumith, https://github.com/miladm
2022-07-26 01:20:44 +00:00
Edward Yang
1e6acc676f Replace caffe2::DeviceGuard with c10::cuda::CUDAGuard (#17623)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17623

Despite it's generic sounding name, caffe2::DeviceGuard actually
only worked on CUDA devices.  Rename it to something that more
clearly spells out its applicability.

I'm not sure if it's the right call, but in this patch I added
'using CUDAGuard = c10::cuda::CUDAGuard', as this seems to be more
in-line with how the Caffe2 codebase is currently written.  More
idiomatic c10 namespace style would be to say cuda::CUDAGuard.
Willing to change this if people shout.

This is a respin of D13156470 (#14284)

Reviewed By: dzhulgakov

Differential Revision: D14285504

fbshipit-source-id: 93b8ab938b064572b3b010c307e1261fde0fff3d
2019-03-06 10:48:15 -08:00
Edward Yang
8b5894491c Comment about CuDNNWrapper (#15496)
Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15496

Differential Revision: D13544130

Pulled By: ezyang

fbshipit-source-id: 51bdd8312b482925b30a478774cdfa629c57ee4e
2019-01-15 18:01:12 -08:00
Dmytro Dzhulgakov
96ea2594d8 Don't call cudaStreamDestroy at destruction time (#15692)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15692

It was leading to ocassional crashes with dynamically linked CUDA because runtime was already destroyed.

Also, unique_ptr<T[]> is more suitable than deque<T> for the purpose.

Reviewed By: Yangqing

Differential Revision: D13571988

fbshipit-source-id: 37eb26dfbe361c49160367b53f87bd037c6c0e46
2019-01-11 12:36:41 -08:00
Junjie Bai
f54ab540af Rename cuda_gpu_id to device_id in DeviceOption (#12456)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12456

codemod with 'Yes to all'
codemod -d . --extensions h,cc,cpp,cu,py,proto,pbtxt,pb.txt,config cuda_gpu_id device_id

Overload TextFormat::ParseFromString to do string replace when parsing from protobuf format

Reviewed By: Yangqing

Differential Revision: D10240535

fbshipit-source-id: 5e6992bec961214be8dbe26f16f5794154a22b25
2018-10-09 15:54:04 -07:00
Jerry Zhang
74dc4460eb New in StaticContext returns at::DataPtr (#12029)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12029

In order to remove New() function in StaticContext(to remove StaticContext) and converge to the Allocator design, we'll first change the return type of New to at::DataPtr.

Reviewed By: ezyang

Differential Revision: D9889990

fbshipit-source-id: 3257c763530b987025f428741bdd2e089d11bad4
2018-10-03 19:10:07 -07:00
Junjie Bai
ff608a9ff3 Back out "Revert D10123245: Back out "codemod cuda_gpu_id to device_id"" (#12232)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12232

Original commit changeset: fca91fea58b7

This adds proper modifications to the DeviceType <->DeviceOption conversion code added in D10033396

Reviewed By: jerryzh168

Differential Revision: D10132473

fbshipit-source-id: 801ef777e2950982cb47b48051b1471a0a91e64b
2018-10-01 21:54:52 -07:00
Rick Ratmansky
3010dc4208 Revert D10123245: Back out "codemod cuda_gpu_id to device_id"
Differential Revision:
D10123245

Original commit changeset: d83da8e00a12

fbshipit-source-id: fca91fea58b7df208edc2e218a1d514f9821ec7b
2018-10-01 12:22:36 -07:00
Yang Liu
7d7d336c45 Back out "codemod cuda_gpu_id to device_id"
Summary:
Original commit changeset: f5614a5d2607

D9986213 is causing Multifeed Aggregator a [huge performance different](https://our.intern.facebook.com/intern/ads/analyze_canary/412951953278781781/) and is blocking aggregator push since last Friday night: https://fburl.com/feedtools/b6izvwjz
We need to land this revert ASAP to unblock aggregator push.

Reviewed By: orionr

Differential Revision: D10123245

fbshipit-source-id: d83da8e00a1250f5d09811a0a587c127e377aab2
2018-10-01 11:31:14 -07:00
Junjie Bai
3eb5940cf5 codemod cuda_gpu_id to device_id (#12022)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12022

codemod -d . --extensions h,cc,cpp,cu,py,proto,pbtxt,pb.txt,config cuda_gpu_id device_id

codemod with 'Yes to all'

Reviewed By: orionr

Differential Revision: D9986213

fbshipit-source-id: f5614a5d26078817aee8caf79a494abfd6a95ff1
2018-09-27 20:24:53 -07:00
Yangqing Jia
28dba2f928 Unify all *_EXPORT and *_IMPORT macros across c++ backend (#12019)
Summary:
TSIA. Right now we should basically use C10_EXPORT and C10_IMPORT for explicitly marking dllexport and dllimport, as a continued effort of the C10 unification.

This is a codemod by mechanically doing the following change:

CAFFE2_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
AT_CORE_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12019

Reviewed By: ezyang, teng-li

Differential Revision: D10016276

Pulled By: Yangqing

fbshipit-source-id: a420d62c43d1110105fc88f9e9076e28a3203164
2018-09-25 17:41:05 -07:00
Edward Yang
ad76fc8807 s/DISABLE_COPY_AND_ASSIGN/AT_DISABLE_COPY_AND_ASSIGN/ (#10275)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10275

Remove forwarding declaration in caffe2/core/common.h

```
codemod -d caffe2 --extensions cc,cpp,cu,cuh,h \\bDISABLE_COPY_AND_ASSIGN AT_DISABLE_COPY_AND_ASSIGN
```

Reviewed By: mingzhe09088

Differential Revision: D9184809

fbshipit-source-id: 958cf5162b0d92b83ea9c2597abb77320ca57ce8
2018-08-07 08:54:26 -07:00
Simon Layton
f3078dec64 Add cuDNN handles to CUDAContext
Summary:
Add CUDAContext::cudnn_handle() for easier integration of single
cudnn routines into operators without requiring the weight
of CuDNNWrapper or similar, or needing to spin out a separate CuDNN*Op
version of an operator.

It was necessary to split out the cuDNN wrapper code from the base cuDNN helpers in order to resolve a circular dependency between context_gpu.h and common_cudnn.h when handles and cuDNN `#define` were added.
Closes https://github.com/caffe2/caffe2/pull/1376

Reviewed By: pietern

Differential Revision: D6162034

Pulled By: akyrola

fbshipit-source-id: 95687e55b3e1e921e1f5e0f016f43b586f5f3350
2017-10-27 12:03:11 -07:00