- BatchLinearAlgebraLib.cpp is now split into one additional file
- BatchLinearAlgebraLib.cpp uses only cusolver APIs
- BatchLinearAlgebraLibBlas.cpp uses only cublas APIs
- hipify operates at the file level and cannot mix cusolver and cublas APIs within the same file
- cmake changes to link against hipblas instead of rocblas
- hipify mappings changes to map cublas -> hipblas instead of rocblas
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105881
Approved by: https://github.com/albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65610
- Replace HIP_PLATFORM_HCC with USE_ROCM
- Dont rely on CUDA_VERSION or HIP_VERSION and use USE_ROCM and ROCM_VERSION.
- In the next PR
- Will be removing the mapping from CUDA_VERSION to HIP_VERSION and CUDA to HIP in hipify.
- HIP_PLATFORM_HCC is deprecated, so will add HIP_PLATFORM_AMD to support HIP host code compilation on gcc.
cc jeffdaily sunway513 jithunnair-amd ROCmSupport amathews-amd
Reviewed By: jbschlosser
Differential Revision: D30909053
Pulled By: ezyang
fbshipit-source-id: 224a966ebf1aaec79beccbbd686fdf3d49267e06
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42249
Main change is to bring Caffe2's superior error messages for cuda initialization into c10 and use them in all code paths.
Basic logic:
| Case | Call to device_count() | init_cuda, e.g. allocating tensor |
| -- | -- | -- |
| all good | non-zero | just works |
| no gpus | 0, no warning | throw exception with good message |
| driver issues | 0, produce warning | throw exception with good message |
| out of memory with ASAN | 0, produce warning| throw exception with ASAN message |
Previously, the error thrown from init_cuda was very generic and the ASAN warning (if any) was buried in the logs.
Other clean up changes:
* cache device_count() always in a static variable
* move all asan macros in c10
Test Plan:
Hard to unittest because of build modes. Verified manually that the behavior from the table above holds by running the following script in different modes (ASAN/no-ASAN, CUDA_VISIBLE_DEVICES=):
```
print('before import')
import torch
print('after import')
print('devices: ', torch.cuda.device_count())
x = torch.tensor([1,2,3])
print('tensor creation')
x = x.cuda()
print('moved to cuda')
```
Reviewed By: ngimel
Differential Revision: D22824329
fbshipit-source-id: 5314007313a3897fc955b02f8b21b661ae35fdf5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25620
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25602
Enable rocThrust with hipCUB and rocPRIM for ROCm. They are the ROCm implementations of the thrust and cub APIs and replace the older hip-thrust and cub-hip packages going forward. ROCm 2.5 is the first release to contain the new packages as an option, as of 2.6 they will be the only available option.
Add hipification rules to correctly hipify thrust::cuda to thrust::hip and cub:: to hipcub:: going forward. Add hipification rules to hipify specific cub headers to the general hipcub header.
Infrastructure work to correctly find, include and link against the new packages. Add the macro definition to choose the HIP backend to Thrust.
Since include chains are now a little different from CUDA's Thrust, add includes for functionality used where applicable.
Skip four tests that fail with the new rocThrust for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21864
Reviewed By: xw285cornell
Differential Revision: D16940768
Pulled By: bddppq
fbshipit-source-id: 3dba8a8f1763dd23d89eb0dd26d1db109973dbe5
Summary:
Saying `I` in an err msg is too subjective to be used in a framework.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22369
Differential Revision: D16067712
Pulled By: soumith
fbshipit-source-id: 2a390646bd5b15674c99f65e3c460a7272f508b6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14283
According to Yangqing, this code was only used by us to do some end-to-end
performance experiments on the impact of cudaSetDevice and cudaGetDevice. Now
that the frameworks are merged, there are a lot of bare calls to those functions
which are not covered by this flag. It doesn't seem like a priority to restore
this functionality, so I am going to delete it for now. If you want to bring
it back, you'll have to make all get/set calls go through this particular
interfaces.
Reviewed By: dzhulgakov
Differential Revision: D13156472
fbshipit-source-id: 4c6d2cc89ab5ae13f7c816f43729b577e1bd985c
Summary:
xw285cornell
- To make hip files to have unique filename extension we change hip files from _hip.cc to .hip (it's the only blessing option other than .cu in hipcc 3d51a1fb01/bin/hipcc (L552)).
- Change to use host compiler to compile .cc|.cpp files. Previously we use hcc to compile them which is unnecessary
- Change the hipify script to not replace "gpu" with "hip" in the filename of the generated hipified files. Previously we do this because hcc has a bug when linking files that have same filename. We have now changed to use host linker to do linking so this is unnecessary anymore.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14036
Reviewed By: xw285cornell
Differential Revision: D13091813
Pulled By: bddppq
fbshipit-source-id: ea3d887751d8abb39d75f5d5104aa66ce66b9ee0
Summary:
Small edits to caffe2/core hipify to make it compile in fbcode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13457
Reviewed By: bddppq
Differential Revision: D12883472
Pulled By: xw285cornell
fbshipit-source-id: 1da231d721311d105892db13ed726240398ba49e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12714
This is a short change to enable c10 namespace in caffe2. We did not enable
it before due to gflags global variable confusion, but it should have been
mostly cleaned now. Right now, the plan on record is that namespace caffe2 and
namespace aten will fully be supersets of namespace c10.
Most of the diff is codemod, and only two places of non-codemod is in caffe2/core/common.h, where
```
using namespace c10;
```
is added, and in Flags.h, where instead of creating aliasing variables in c10 namespace, we directly put it in the global namespace to match gflags (and same behavior if gflags is not being built with).
Reviewed By: dzhulgakov
Differential Revision: D10390486
fbshipit-source-id: 5e2df730e28e29a052f513bddc558d9f78a23b9b
Summary:
This does 6 things:
- add c10/util/Registry.h as the unified registry util
- cleaned up some APIs such as export condition
- fully remove aten/core/registry.h
- fully remove caffe2/core/registry.h
- remove a bogus aten/registry.h
- unifying all macros
- set up registry testing in c10
Also, an important note that we used to mark the templated Registry class as EXPORT - this should not happen, because one should almost never export a template class. This PR fixes that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12077
Reviewed By: ezyang
Differential Revision: D10050771
Pulled By: Yangqing
fbshipit-source-id: 417b249b49fed6a67956e7c6b6d22374bcee24cf
Summary:
Last fix was uncommitted due to a bug in internal build (CAFFE2_API causing error). This one re-applies it as well as a few more, especially enabling gtest.
Earlier commit message: Basically, this should make windows {static_lib, shared_lib} * {static_runtime, shared_runtime} * {cpu, gpu} work other than gpu shared_lib, which willyd kindly pointed out a symbol limit problem. A few highlights:
(1) Updated newest protobuf.
(2) use protoc dllexport command to ensure proper symbol export for windows.
(3) various code updates to make sure that C2 symbols are properly shown
(4) cmake file changes to make build proper
(5) option to choose static runtime and shared runtime similar to protobuf
(6) revert to visual studio 2015 as current cuda and msvc 2017 do not play well together.
(7) enabled gtest and fixed testing bugs.
Earlier PR is #1793
Closes https://github.com/caffe2/caffe2/pull/1827
Differential Revision: D6832086
Pulled By: Yangqing
fbshipit-source-id: 85f86e9a992ee5c53c70b484b761c9d6aed721df
Summary:
These are wrapper functions so that if we run in a Caffe2-only mode, we can
turn the flag on and get some small speedup on cuda device switches.
The purpose of the diff is to allow us to quickly assess the overhead of cuda
device switch functions. Ideally, the caching behavior shall live in the cuda
driver, which is the only safe place to ensure correctness.
If other code is running aside Caffe2 and does not properly do device guard,
this functionality will fail as separate cudaSetDevice() calls will not update
Caffe2's thread local device id. As a result, the functionality is only enabled
when/if one explicitly sets the flag.
This might not be safe, so use with caution.
- cudaGetDevice can go from 90ns to 2ns
- when setting the same device, we can go from 100ns to 2 ns
- when setting a different device, things are the same (1ns overhead on top of 143ns)
Reviewed By: azzolini
Differential Revision: D5709398
fbshipit-source-id: 6255f17a3d41f59a30327436383f306a2287896e
Summary:
Add support for TensorCore convolution and gemm on Volta hardware.
Currently built on top of #1055
Closes https://github.com/caffe2/caffe2/pull/1056
Differential Revision: D5604068
Pulled By: Yangqing
fbshipit-source-id: 100f67e26ed5fabb1dbb31dcd77f7ecb84de4ee7
Summary:
This is a real implementation (not GPUFallbackOp) of the TopKOp for GPU.
There are two algorithm implementations:
-for k <= 512, it maps to a warp-wide min-heap implementation, which requires only a single scan of the input data.
-for k > 512, it maps to a multi-pass radix selection algorithm that I originally wrote in cutorch. I took the recent cutorch code and removed some cutorch-specific things as it made sense.
Also added several utility files that one or the other implementations use, some from the Faiss library and some from the cutorch library.
Reviewed By: jamesr66a
Differential Revision: D5248206
fbshipit-source-id: ae5fa3451473264293516c2838f1f40688781cf3
Summary:
In the past we have moved most of the CHECKs to CAFFE_ENFORCE (exceptions).
However, we kept the name "*_CHECK" for cuda calls, and that caused some
confusion especially in the destructor calls: while our destructors are not
written to handle exceptions, these CUDA_CHECKs could actually throw some
exceptions.
As a result, this diff
(1) Renames all cuda related "*_CHECK" to "*_ENFORCE"
(2) Explicitly marked the destructor of core Caffe2 classes as noexcept
(3) Added proper, really-CHECK cuda check macros, and used those in the
corresponding destructors.
This should not change any of existing functionality.
Reviewed By: dzhulgakov
Differential Revision: D4656368
fbshipit-source-id: 32e3056e66c0400156c5ca0187b6151cf3d52404
Summary:
This makes sure that we have useful CUDA error message in asan mode. Also
made a fb specific task pass by explicitly marking it not asan-able.
Reviewed By: dzhulgakov
Differential Revision: D4243471
fbshipit-source-id: 2ce303b97b3b4728c05575a8e7e21eb5960ecbc7
(1) various bugfixes.
(2) Tensor is now a class independent from its data type. This allows us
to write easier type-independent operators.
(3) code convention changes a bit: dtype -> T, Tensor<*Context> -> Tensor* alias.
(4) ParallelNet -> DAGNet to be more consistent with what it does.
(5) Caffe's own flags library instead of gflags.
(6) Caffe's own logging library instead of glog, but glog can be chosen with
compile-time definition -DCAFFE2_USE_GOOGLE_GLOG. As a result, glog macros
like CHECK, DCHECK now have prefix CAFFE_, and LOG(*) now becomes
CAFFE_LOG_*.
(7) an optional protobuf inclusion, which can be chosen with USE_SYSTEM_PROTOBUF
in build_env.py.