Commit Graph

15 Commits

Author SHA1 Message Date
Edward Z. Yang
dd3a77bc96 Apply UFMT to all files in benchmarks/ (#105928)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105928
Approved by: https://github.com/albanD
2023-07-26 01:18:48 +00:00
Justin Chu
5ef023b05a [BE] Enable ruff's UP rules and autoformat benchmarks/ (#105429)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105429
Approved by: https://github.com/malfet
2023-07-19 04:46:37 +00:00
Aleksandar Samardžić
fc2f87b281 Add semi-structured sparse conversions (#103830)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103830
Approved by: https://github.com/amjames, https://github.com/jcaip, https://github.com/cpuhrsch
2023-07-13 21:09:09 +00:00
Jesse Cai
2da6cae43c [core][pruning][sparse][feature] SparseSemiStructured tensor subclass (#102135)
This PR adds in support for semi-structured sparsity via a tensor
subclass. It currently uses the CUTLASS kernels merged in PR #100881.

In the future we plan to add in cuSPARSELt support (see the other PRs in
the stack), which will give us larger performance gains.

This PR adds in 2 things:
- a Tensor subclass, `SparseSemiStructuredTensor` to store the
  sparse tensor in copmressed form and override `__torch_dispatch__`.
- a conversion function that takes in a dense tensor and a
  semi-structured sparse bool mask and creates an instance of the
  subclass.

**SparseSemiStructuredTensor**

The subclass stores the dense tensor in a contiguous flattened tensor
for future compatability with cuSPARSELt, which expects this format.
Note that the CUTLASS kernels do not have this limitation, as the
specified values and the metadata are passed separately in
`_structured_sparse_linear`. In the future we can use the cuSPARSELT bindings
[here](https://github.com/pytorch/pytorch/pull/103700) for faster matmul, better dtype converage, and relaxed shape
constraints.

Since we currently don't have a way to go back from the sparse
representation to the dense representation, and we store the weights in
compressed form, we don't have a great way to handle .t().

Instead, we keep track of how often we've called transpose on our
tensor, and if it's an unexpected number we throw an error. When the first
argument is sparse, we expect an even number of calls to transpose,
while when the second argument is sparse, we expect an odd number of
calls. This is because we support second argument sparse matrix
multiplications by using transpose properties.

**to_sparse_semi_structured**

This is a conversion function to convert a dense tensor and a
semi-structured sparse bool mask into a subclass. Currently, we must
pass in a bool mask, since we can't infer it becuase there may be
additional zero elements in the dense tensor, so `tensor !=0` is not 2:4
sparse.

Once we add either a method to derive the mask from the dense tensor or
cuSPARSELt, we no longer need to pass in the mask. cuSPARSELt has it's
own helper functions to create the metadata mask.

**User Details**

We have implemented support for the following ops for `torch.float16`
and `torch.int8`:
```
torch.addmm(bias, dense, sparse.t())
torch.mm(dense, sparse)
torch.mm(sparse, dense)
aten.linear.default
aten.t.default
aten.t.detach
```

The end user interface to accelerate a nn.Linaer module with the
subclass would look like this:

```
from torch.sparse import to_sparse_semi_structured

mask = torch.Tensor([0, 0, 1, 1]).tile(128, 32).cuda().bool()
linear = Model(128, 128).half().cuda()

linear.weight = nn.Parameter(to_sparse_semi_structured(linear.weight,
                                                       mask=linear.weight.bool())

```

This also updates tests and the `torch.sparse` module docstring to
reflect these changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102135
Approved by: https://github.com/albanD
2023-06-27 19:21:06 +00:00
PyTorch MergeBot
b76a040b18 Revert "[core][pruning][sparse][feature] SparseSemiStructured tensor subclass (#102135)"
This reverts commit aea771de30.

Reverted https://github.com/pytorch/pytorch/pull/102135 on behalf of https://github.com/huydhn due to test_sparse_semi_structured.py::TestSparseSemiStructuredCUDA::test_mm_sparse_first_NT_cuda_int8 is still failing CUDA trunk jobs aea771de30 ([comment](https://github.com/pytorch/pytorch/pull/102135#issuecomment-1608744110))
2023-06-27 03:49:31 +00:00
Jesse Cai
aea771de30 [core][pruning][sparse][feature] SparseSemiStructured tensor subclass (#102135)
This PR adds in support for semi-structured sparsity via a tensor
subclass. It currently uses the CUTLASS kernels merged in PR #100881.

In the future we plan to add in cuSPARSELt support (see the other PRs in
the stack), which will give us larger performance gains.

This PR adds in 2 things:
- a Tensor subclass, `SparseSemiStructuredTensor` to store the
  sparse tensor in copmressed form and override `__torch_dispatch__`.
- a conversion function that takes in a dense tensor and a
  semi-structured sparse bool mask and creates an instance of the
  subclass.

**SparseSemiStructuredTensor**

The subclass stores the dense tensor in a contiguous flattened tensor
for future compatability with cuSPARSELt, which expects this format.
Note that the CUTLASS kernels do not have this limitation, as the
specified values and the metadata are passed separately in
`_structured_sparse_linear`. In the future we can use the cuSPARSELT bindings
[here](https://github.com/pytorch/pytorch/pull/103700) for faster matmul, better dtype converage, and relaxed shape
constraints.

Since we currently don't have a way to go back from the sparse
representation to the dense representation, and we store the weights in
compressed form, we don't have a great way to handle .t().

Instead, we keep track of how often we've called transpose on our
tensor, and if it's an unexpected number we throw an error. When the first
argument is sparse, we expect an even number of calls to transpose,
while when the second argument is sparse, we expect an odd number of
calls. This is because we support second argument sparse matrix
multiplications by using transpose properties.

**to_sparse_semi_structured**

This is a conversion function to convert a dense tensor and a
semi-structured sparse bool mask into a subclass. Currently, we must
pass in a bool mask, since we can't infer it becuase there may be
additional zero elements in the dense tensor, so `tensor !=0` is not 2:4
sparse.

Once we add either a method to derive the mask from the dense tensor or
cuSPARSELt, we no longer need to pass in the mask. cuSPARSELt has it's
own helper functions to create the metadata mask.

**User Details**

We have implemented support for the following ops for `torch.float16`
and `torch.int8`:
```
torch.addmm(bias, dense, sparse.t())
torch.mm(dense, sparse)
torch.mm(sparse, dense)
aten.linear.default
aten.t.default
aten.t.detach
```

The end user interface to accelerate a nn.Linaer module with the
subclass would look like this:

```
from torch.sparse import to_sparse_semi_structured

mask = torch.Tensor([0, 0, 1, 1]).tile(128, 32).cuda().bool()
linear = Model(128, 128).half().cuda()

linear.weight = nn.Parameter(to_sparse_semi_structured(linear.weight,
                                                       mask=linear.weight.bool())

```

This also updates tests and the `torch.sparse` module docstring to
reflect these changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102135
Approved by: https://github.com/albanD
2023-06-27 02:37:00 +00:00
PyTorch MergeBot
bfa08a1c67 Revert "[core][pruning][sparse][feature] SparseSemiStructured tensor subclass (#102135)"
This reverts commit cf5262a84f.

Reverted https://github.com/pytorch/pytorch/pull/102135 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but test_sparse_semi_structured.py::TestSparseSemiStructuredCUDA::test_mm_sparse_first_NT_cuda_int8 is failing CUDA trunk jobs cf5262a84f. This looks like a landrace ([comment](https://github.com/pytorch/pytorch/pull/102135#issuecomment-1608423849))
2023-06-26 22:54:16 +00:00
Jesse Cai
cf5262a84f [core][pruning][sparse][feature] SparseSemiStructured tensor subclass (#102135)
This PR adds in support for semi-structured sparsity via a tensor
subclass. It currently uses the CUTLASS kernels merged in PR #100881.

In the future we plan to add in cuSPARSELt support (see the other PRs in
the stack), which will give us larger performance gains.

This PR adds in 2 things:
- a Tensor subclass, `SparseSemiStructuredTensor` to store the
  sparse tensor in copmressed form and override `__torch_dispatch__`.
- a conversion function that takes in a dense tensor and a
  semi-structured sparse bool mask and creates an instance of the
  subclass.

**SparseSemiStructuredTensor**

The subclass stores the dense tensor in a contiguous flattened tensor
for future compatability with cuSPARSELt, which expects this format.
Note that the CUTLASS kernels do not have this limitation, as the
specified values and the metadata are passed separately in
`_structured_sparse_linear`. In the future we can use the cuSPARSELT bindings
[here](https://github.com/pytorch/pytorch/pull/103700) for faster matmul, better dtype converage, and relaxed shape
constraints.

Since we currently don't have a way to go back from the sparse
representation to the dense representation, and we store the weights in
compressed form, we don't have a great way to handle .t().

Instead, we keep track of how often we've called transpose on our
tensor, and if it's an unexpected number we throw an error. When the first
argument is sparse, we expect an even number of calls to transpose,
while when the second argument is sparse, we expect an odd number of
calls. This is because we support second argument sparse matrix
multiplications by using transpose properties.

**to_sparse_semi_structured**

This is a conversion function to convert a dense tensor and a
semi-structured sparse bool mask into a subclass. Currently, we must
pass in a bool mask, since we can't infer it becuase there may be
additional zero elements in the dense tensor, so `tensor !=0` is not 2:4
sparse.

Once we add either a method to derive the mask from the dense tensor or
cuSPARSELt, we no longer need to pass in the mask. cuSPARSELt has it's
own helper functions to create the metadata mask.

**User Details**

We have implemented support for the following ops for `torch.float16`
and `torch.int8`:
```
torch.addmm(bias, dense, sparse.t())
torch.mm(dense, sparse)
torch.mm(sparse, dense)
aten.linear.default
aten.t.default
aten.t.detach
```

The end user interface to accelerate a nn.Linaer module with the
subclass would look like this:

```
from torch.sparse import to_sparse_semi_structured

mask = torch.Tensor([0, 0, 1, 1]).tile(128, 32).cuda().bool()
linear = Model(128, 128).half().cuda()

linear.weight = nn.Parameter(to_sparse_semi_structured(linear.weight,
                                                       mask=linear.weight.bool())

```

This also updates tests and the `torch.sparse` module docstring to
reflect these changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102135
Approved by: https://github.com/albanD
2023-06-26 21:30:43 +00:00
Aaron Gokaslan
47dca20d80 [BE] Enable flake8-comprehension rule C417 (#97880)
Enables flake8-comprehension rule C417. Ruff autogenerated these fixes to the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97880
Approved by: https://github.com/ezyang, https://github.com/kit1980, https://github.com/albanD
2023-03-30 14:34:24 +00:00
Xuehai Pan
a229b4526f [BE] Prefer dash over underscore in command-line options (#94505)
Preferring dash over underscore in command-line options. Add `--command-arg-name` to the argument parser. The old arguments with underscores `--command_arg_name` are kept for backward compatibility.

Both dashes and underscores are used in the PyTorch codebase. Some argument parsers only have dashes or only have underscores in arguments. For example, the `torchrun` utility for distributed training only accepts underscore arguments (e.g., `--master_port`). The dashes are more common in other command-line tools. And it looks to be the default choice in the Python standard library:

`argparse.BooleanOptionalAction`: 4a9dff0e5a/Lib/argparse.py (L893-L895)

```python
class BooleanOptionalAction(Action):
    def __init__(...):
            if option_string.startswith('--'):
                option_string = '--no-' + option_string[2:]
                _option_strings.append(option_string)
```

It adds `--no-argname`, not `--no_argname`. Also typing `_` need to press the shift or the caps-lock key than `-`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94505
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-09 20:16:49 +00:00
Aaron Gokaslan
8fce9a09cd [BE]: pyupgrade Python to 3.8 - imports and object inheritance only (#94308)
Apply parts of pyupgrade to torch (starting with the safest changes).
This PR only does two things: removes the need to inherit from object and removes unused future imports.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94308
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-07 21:10:56 +00:00
Sameer Deshmukh
5fb1142702 Add CSR (compressed sparse row) layout for sparse tensors (#50937)
Summary:
Implement compressed sparse row format. Derived from the GCS implementation at https://github.com/pytorch/pytorch/pull/44190

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50937

Reviewed By: mrshenli

Differential Revision: D27439865

Pulled By: ezyang

fbshipit-source-id: 3ba3dcb9679505b980ff6a5f513e913bbae2fb1d
2021-04-12 10:09:12 -07:00
Alexander
39f50f468d matmul performance benchmarks (#51647)
Summary:
Minor PR following up the previous PR about sparse benchmarking utils https://github.com/pytorch/pytorch/pull/48397

Fixes https://github.com/pytorch/pytorch/issues/44634:  Performance benchmarks for matrix-matrix and matrix-vector ops (dense-sparse, sparse-sparse, and compare to dense-dense)

I ran  all benchmarks on an 2xRTX8000 machine with AMD 2970WX 24-cores for `DLMC/magnitude_pruning` dataset with different sparsity levels.

 ---
<details><summary> forward tests (expand for details).
</summary>

- `sparse@sparse`
```
[------------------------------- cpu:matmul-forward -------------------------------]
                           |   0.5   |   0.7   |   0.8   |   0.9   |  0.95  |   0.98
1 threads: -------------------------------------------------------------------------
      torch:dense@dense    |  108.1  |  100.5  |  101.3  |  108.4  |  98.4  |  187.4
      torch:sparse@sparse  |  659.1  |  368.8  |  156.5  |   53.3  |  26.8  |   14.9
      scipy:sparse@sparse  |  565.1  |  233.9  |  130.2  |   23.1  |  21.6  |   15.2

Times are in milliseconds (ms).

[----------------------------------- cuda:matmul-forward -----------------------------------]
                           |    0.5    |    0.7    |   0.8    |   0.9    |   0.95   |   0.98
1 threads: ----------------------------------------------------------------------------------
      torch:dense@dense    |   2243.5  |   4392.5  |  4419.8  |  2272.3  |  4433.9  |  8920.1
      torch:sparse@sparse  |  21369.2  |  11877.6  |  7339.2  |  1787.2  |  1335.1  |   845.7

Times are in microseconds (us).

```
- `sparse@dense`
```
[------------------------------- cpu:matmul-forward -------------------------------]
                          |   0.5   |   0.7   |   0.8   |   0.9   |   0.95  |   0.98
1 threads: -------------------------------------------------------------------------
      torch:dense@dense   |  105.8  |  103.8  |  103.0  |  104.4  |  104.4  |  197.0
      torch:sparse@dense  |  119.9  |  102.4  |   84.0  |   19.7  |   16.8  |   11.6
      scipy:sparse@dense  |  906.5  |  799.6  |  697.8  |  182.2  |  165.5  |  135.4

Times are in milliseconds (ms).

[------------------------- cuda:matmul-forward --------------------------]
                          |  0.5  |  0.7  |  0.8  |  0.9  |  0.95  |  0.98
1 threads: ---------------------------------------------------------------
      torch:dense@dense   |  2.2  |  4.4  |  4.4  |  2.3  |  4.5   |  2.3
      torch:sparse@dense  |  5.7  |  6.6  |  4.5  |  1.4  |  1.4   |  1.3

Times are in milliseconds (ms).

```
- `sparse@vector`
```
[----------------------------------- cpu:matmul-forward ----------------------------------]
                           |    0.5    |   0.7    |   0.8    |   0.9    |   0.95   |   0.98
1 threads: --------------------------------------------------------------------------------
      torch:dense@vector   |    510.6  |   505.8  |   759.6  |   782.1  |   682.4  |  764.6
      torch:sparse@vector  |  10122.8  |  6241.1  |  7935.6  |  2076.3  |  1049.5  |  826.3
      scipy:sparse@vector  |   1756.7  |  1033.9  |   678.2  |   343.5  |   168.5  |   65.4

Times are in microseconds (us).

[-------------------------------- cuda:matmul-forward --------------------------------]
                           |   0.5    |   0.7    |   0.8   |   0.9   |   0.95  |   0.98
1 threads: ----------------------------------------------------------------------------
      torch:dense@vector   |    36.1  |    21.5  |   21.6  |   21.5  |   21.6  |   21.5
      torch:sparse@vector  |  1099.2  |  1289.4  |  775.7  |  327.1  |  285.4  |  274.0

Times are in microseconds (us).

```
</details>

 ---
<details><summary> backward tests (expand for details).
</summary>

- `sparse@sparse`
```
[--------------------------------- cpu:matmul-backward ---------------------------------]
                           |   0.5    |   0.7    |   0.8    |   0.9    |   0.95  |   0.98
1 threads: ------------------------------------------------------------------------------
      torch:dense@dense    |   246.1  |   315.0  |   306.9  |   168.6  |  290.6  |  146.9
      torch:sparse@sparse  |  6417.5  |  4393.7  |  3012.7  |  1029.4  |  908.0  |  650.7

Times are in microseconds (us).

[----------------------------- cuda:matmul-backward -----------------------------]
                           |   0.5   |   0.7   |   0.8   |  0.9   |  0.95  |  0.98
1 threads: -----------------------------------------------------------------------
      torch:dense@dense    |    6.7  |   13.3  |   13.3  |   6.9  |  13.5  |   6.9
      torch:sparse@sparse  |  143.7  |  143.4  |  119.6  |  29.5  |  29.1  |  10.9

Times are in microseconds (us).

```
- `sparse@dense`
```
 [------------------------------ cpu:matmul-backward -------------------------------]
                          |   0.5   |   0.7   |   0.8   |   0.9   |   0.95  |   0.98
1 threads: -------------------------------------------------------------------------
      torch:dense@dense   |  185.9  |  304.8  |  305.8  |  169.9  |  308.7  |  168.4
      torch:sparse@dense  |  407.9  |  345.8  |  274.6  |  114.2  |  163.6  |  230.5

Times are in milliseconds (ms).

[--------------------------- cuda:matmul-backward --------------------------]
                          |  0.5   |  0.7   |  0.8   |  0.9  |  0.95  |  0.98
1 threads: ------------------------------------------------------------------
      torch:dense@dense   |   6.7  |  13.3  |  13.3  |  6.9  |  13.4  |   6.9
      torch:sparse@dense  |  16.7  |  19.0  |  15.1  |  6.3  |   8.2  |  12.7

Times are in milliseconds (ms).

```
</details>

Kindly review this  PR. cc mruberry, ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51647

Reviewed By: albanD

Differential Revision: D27007809

Pulled By: mruberry

fbshipit-source-id: 8c1922cb3280027ca5e3eef31bfa20500c548cfd
2021-03-14 00:25:45 -08:00
Sam Estep
8c798e0622 Forbid trailing whitespace (#53406)
Summary:
Context: https://github.com/pytorch/pytorch/pull/53299#discussion_r587882857

These are the only hand-written parts of this diff:
- the addition to `.github/workflows/lint.yml`
- the file endings changed in these four files (to appease FB-internal land-blocking lints):
  - `GLOSSARY.md`
  - `aten/src/ATen/core/op_registration/README.md`
  - `scripts/README.md`
  - `torch/csrc/jit/codegen/fuser/README.md`

The rest was generated by running this command (on macOS):
```
git grep -I -l ' $' -- . ':(exclude)**/contrib/**' ':(exclude)third_party' | xargs gsed -i 's/ *$//'
```

I looked over the auto-generated changes and didn't see anything that looked problematic.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53406

Test Plan:
This run (after adding the lint but before removing existing trailing spaces) failed:
- https://github.com/pytorch/pytorch/runs/2043032377

This run (on the tip of this PR) succeeded:
- https://github.com/pytorch/pytorch/runs/2043296348

Reviewed By: walterddr, seemethere

Differential Revision: D26856620

Pulled By: samestep

fbshipit-source-id: 3f0de7f7c2e4b0f1c089eac9b5085a58dd7e0d97
2021-03-05 17:22:55 -08:00
Alexander
44ce0b8883 Sparse-sparse matrix multiplication (CPU/CUDA) (#39526)
Summary:
This PR implements matrix multiplication support for 2-d sparse tensors using the COO sparse format.

The current implementation of `torch.sparse.mm` support this configuration,
`torch.sparse.mm(sparse_matrix1, sparse_matrix2.to_dense())`, but this could spend a lot of memory when sparse_matrix2's shape is large.

This implementation extends `torch.sparse.mm` function to support  `torch.sparse.mm(sparse_matrix1, sparse_matrix2)`

Resolves  #[20988](https://github.com/pytorch/pytorch/issues/20988) for CPU/CUDA.

- [x] sparse matmul
  - [x] CPU/CUDA C++ implementation
  - [x] unittests
  - [x] update torch.sparse.mm documentation
  - [x] autograd support

The CPU sparse-sparse matmul was implemented taking as a reference this work "Sparse Matrix Multiplication Package (SMMP)". The GPU sparse-sparse matmul is based on cuSparse, there is specific code for CUSPARSE when CUSPARSE_VERSION >= 11 and old version of CUSPARSE. Both CPU/CUDA  rely on the sparse-sparse matmul algorithm using the CSR indices format as it is one of the fastest algorithm.

Here it is the latest benchmark (script is here) results for torch.sparse.mm (CUDA) and torch.sparse.mm (CPU) and scipy, values are float32 scalars:

size | density | sparse.mm(CUDA) | sparse.mm(CPU) | scipy_coo_matmul
-- | -- | -- | -- | --
(32, 10000) | 0.01 | 822.7 | 79.4 | 704.1
(32, 10000) | 0.05 | 1741.1 | 402.6 | 1155.3
(32, 10000) | 0.1 | 2956.8 | 840.8 | 1885.4
(32, 10000) | 0.25 | 6417.7 | 2832.3 | 4665.2
(512, 10000) | 0.01 | 1010.2 | 3941.3 | 26937.7
(512, 10000) | 0.05 | 2216.2 | 26903.8 | 57343.7
(512, 10000) | 0.1 | 4868.4 | 87773.7 | 117477.0
(512, 10000) | 0.25 | 16639.3 | 608105.0 | 624290.4
(1024, 10000) | 0.01 | 1224.8 | 13088.1 | 110379.2
(1024, 10000) | 0.05 | 3897.5 | 94783.9 | 236541.8
(1024, 10000) | 0.1 | 10559.1 | 405312.5 | 525483.4
(1024, 10000) | 0.25 | 57456.3 | 2424337.5 | 2729318.7

A new backward algorithm was implemented using only `sparse @ sparse` and `sparse_mask` operations. Here is some benchmarking:

```
[------------------------- sparse.mm-backward -------------------------]
                            |   sparse.backward   |  dense.backward
 -----------------------------------------------------------------------
      (32, 10000) | 0.01    |            13.5          |         2.4
      (32, 10000) | 0.05    |            52.3          |         2.4
      (512, 10000) | 0.01   |          1016.8          |       491.5
      (512, 10000) | 0.05   |          1604.3          |       492.3
      (1024, 10000) | 0.01  |          2384.1          |      1963.7
      (1024, 10000) | 0.05  |          3965.8          |      1951.9
```

I added new benchmark tests. Now I am using a real dataset used in recent studies [1, 2] with different sparsity levels.

```
[---------------------------------- matmul ---------------------------------]
                        |   0.5   |  0.7   |  0.8   |  0.9   |  0.95  |  0.98
1 threads: ------------------------------------------------------------------
  (cpu)   torch         |    5.4  |   5.4  |   5.2  |   5.3  |   5.3  |   5.4
          torch.sparse  |  122.2  |  51.9  |  27.5  |  11.4  |   4.9  |   1.8
          scipy         |  150.1  |  87.4  |  69.2  |  56.8  |  38.4  |  17.1
  (cuda)  torch         |    1.3  |   1.1  |   1.1  |   1.1  |   1.1  |   1.1
          torch.sparse  |   20.0  |   8.4  |   5.1  |   2.5  |   1.5  |   1.1

[----------------------------------- backward -----------------------------------]
                        |   0.5   |   0.7   |   0.8   |   0.9   |   0.95  |   0.98
1 threads: -----------------------------------------------------------------------
  (cpu)   torch         |   17.7  |   17.9  |   17.7  |   17.7  |   17.6  |   17.9
          torch.sparse  |  672.9  |  432.6  |  327.5  |  230.8  |  176.7  |  116.7
  (cuda)  torch         |    3.8  |    3.6  |    3.5  |    3.5  |    3.6  |    3.5
          torch.sparse  |   68.8  |   46.2  |   35.6  |   24.2  |   17.8  |   11.9

Times are in milliseconds (ms).
```

In summary, I can say that the new `sparse @ sparse` backward algorithm is better as it is more about saving space than performance. Moreover, it is better than other options tested before.

## **References**

1. Trevor Gale, Matei Zaharia, Cliff Young, Erich Elsen. **Sparse GPU Kernels for Deep Learning.**  Proceedings of the International Conference for High Performance Computing, 2020. [https://github.com/google-research/google-research/tree/master/sgk](https://github.com/google-research/google-research/tree/master/sgk)
2. Trevor Gale, Erich Elsen, Sara Hooker. **The State of Sparsity in Deep Neural Networks.** [https://github.com/google-research/google-research/tree/master/state_of_sparsity](https://github.com/google-research/google-research/tree/master/state_of_sparsity)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/39526

Reviewed By: mruberry

Differential Revision: D25661239

Pulled By: ngimel

fbshipit-source-id: b515ecd66d25f347d637e159d51aa45fb43b6938
2020-12-21 11:53:55 -08:00