Commit Graph

65 Commits

Author SHA1 Message Date
Xuehai Pan
30293319a8 [BE][Easy][19/19] enforce style for empty lines in import segments in torch/[o-z]*/ (#129771)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129771
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2024-08-01 17:07:14 +00:00
Jane Xu
3816f6420a [BE] remove unnecessary _dispatch_sqrt by using ** 0.5 (#131358)
Based on the discussion here where ** 0.5 is not slower than math.sqrt. https://github.com/pytorch/pytorch/pull/129905#discussion_r1675605075

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131358
Approved by: https://github.com/albanD
2024-07-30 18:08:17 +00:00
PyTorch MergeBot
e4db5dc1c4 Revert "[BE] remove unnecessary _dispatch_sqrt by using ** 0.5 (#131358)"
This reverts commit 4c7f22dee2.

Reverted https://github.com/pytorch/pytorch/pull/131358 on behalf of https://github.com/janeyx99 due to Internal uses this private API and landing that has been a pain so we're reverting this first ([comment](https://github.com/pytorch/pytorch/pull/131358#issuecomment-2253190654))
2024-07-26 17:35:27 +00:00
PyTorch MergeBot
c9888c2739 Revert "[BE] typing for decorators - optim/optimizer (#131583)"
This reverts commit a1dad77dfa.

Reverted https://github.com/pytorch/pytorch/pull/131583 on behalf of https://github.com/atalman due to Breaks CI: [GH job link](https://github.com/pytorch/pytorch/actions/runs/10105959146/job/27947741162) [HUD commit link](a1dad77dfa) ([comment](https://github.com/pytorch/pytorch/pull/131583#issuecomment-2252784280))
2024-07-26 13:41:22 +00:00
Aaron Orenstein
a1dad77dfa [BE] typing for decorators - optim/optimizer (#131583)
See #131429
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131583
Approved by: https://github.com/janeyx99
ghstack dependencies: #131568, #131569, #131570, #131571, #131572, #131573, #131574, #131575, #131576, #131577, #131578, #131579, #131580, #131581, #131582
2024-07-26 05:00:07 +00:00
Jane Xu
4c7f22dee2 [BE] remove unnecessary _dispatch_sqrt by using ** 0.5 (#131358)
Based on the discussion here where ** 0.5 is not slower than math.sqrt. https://github.com/pytorch/pytorch/pull/129905#discussion_r1675605075

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131358
Approved by: https://github.com/albanD
2024-07-24 14:58:57 +00:00
hxwang
276b5238ef [bug] Add is_compiling check for optimizers to avoid untracked tensor during graph tracing (#130909)
Hey folks, I was using the `stateless_func` [here](7c45476d38/torch/distributed/_spmd/api.py (L435)), which worked well before [this commit](https://github.com/pytorch/pytorch/pull/111084) but then introduced a `_tensor_constant0` and made this func non-stateless. Since there is no way to retrieve this constant tensor before compilation and performance is not an issue when tracing a graph, I think it might be good to fall back to the other branch.
![image](https://github.com/user-attachments/assets/6ee4487d-456b-47e0-8c1d-66cb5a641d47)

![image](https://github.com/user-attachments/assets/1ed46502-e50e-45c4-9751-49aa5a4590ae)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130909
Approved by: https://github.com/mlazos
2024-07-24 08:29:27 +00:00
Aaron Orenstein
5a0068cc69 [BE] mypy: disallow untyped decorators (#131428)
Untyped decorators strip the types from their decorated function so even if the underlying function is fully typed then callers to it don't get any benefit from type annotations.

Step 1 - Enable the error and override in all the offending files.

#131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131428
Approved by: https://github.com/justinchuby, https://github.com/oulgen
2024-07-23 21:50:55 +00:00
Li-Huai (Allan) Lin
99d9b369f4 [Optim] Support tensor lr for all optimizers and check it is 1-element (#131065)
Fixes: #130980
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131065
Approved by: https://github.com/janeyx99
2024-07-23 04:27:05 +00:00
Sahdev Zala
9795dba1e0 Optim package docstring fix (#129086)
Fix docstrings in various files in optim package. This is a last remaining fix for the issue #112593

The fix can be verified by running pydocstyle path-to-file --count

Fixes #112593

Related #128248

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129086
Approved by: https://github.com/janeyx99
2024-06-21 14:30:53 +00:00
PyTorch MergeBot
90bb510ece Revert "Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)"
This reverts commit 348b181a97.

Reverted https://github.com/pytorch/pytorch/pull/127690 on behalf of https://github.com/clee2000 due to sorry I think https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456 is still relevant, I will reach out to them to see what needs to be done in internal to get this remerged ([comment](https://github.com/pytorch/pytorch/pull/127690#issuecomment-2159248859))
2024-06-10 20:44:42 +00:00
Aaron Orenstein
27f9d3b0a1 Flip default value for mypy disallow_untyped_defs [8/11] (#127845)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127845
Approved by: https://github.com/oulgen
ghstack dependencies: #127842, #127843, #127844
2024-06-08 18:49:56 +00:00
Xuehai Pan
348b181a97 Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)
This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127690
Approved by: https://github.com/Skylion007
2024-06-08 15:25:03 +00:00
PyTorch MergeBot
033e733021 Revert "[BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)"
This reverts commit 749a132fb0.

Reverted https://github.com/pytorch/pytorch/pull/126898 on behalf of https://github.com/fbgheith due to switching typing-extensions=4.3.0 to 4.9.0 causes internal failure ([comment](https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456))
2024-05-31 19:47:24 +00:00
Xuehai Pan
749a132fb0 [BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.

Resolves #126888

- #126888

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
2024-05-29 12:09:27 +00:00
feifan
22712ba5c5 Radam support the flag for "maximize" (#126765)
Fixes #[126642](https://github.com/pytorch/pytorch/issues/126642)

I reference the maximize in `Adam` and add `Radam's` maximize flag. If this pr is OK, I will add another pr for `Nadam`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126765
Approved by: https://github.com/janeyx99
2024-05-27 06:34:50 +00:00
David Chiu
1a28f731dc [optim] Merge the pyi files into py files of optimizer (#125452)
Continue the work of pytorch/pytorch#125153
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125452
Approved by: https://github.com/janeyx99
2024-05-14 18:24:50 +00:00
daitian1995
b805d3cbcb Modify device check in capturable optimizer to support more devices (#124919)
Fixes #124830

Modify device check in capturable optimizer to support more device

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124919
Approved by: https://github.com/janeyx99
2024-05-14 05:56:00 +00:00
Michael Lazos
0f02e0aa39 Disable dynamo on functional optims if capturable=False (#123619)
This resolves a bug in eager where if an old state dict is loaded (without the capturable flag) but the original dict had the capturable flag, then state_steps would be on cuda but we would take the non-capturable path. We now fallback to eager if capturable=False.

Current design doc and discussion: https://docs.google.com/document/d/1DmmbiaSp16CDZtGw1qzXKHFTY_0gqc0xpnBdviXq0vk/edit#heading=h.871u7bvwz7ze

Note on the actual fallback logic - there was an issue with torchscript originally not handling *args, **kwargs properly, after rectifying that by using `functools.wraps`, there was an additional bug with scoping which required the single tensor implementation to be in the global scope at the time of the fallback closure being created. I pass in the single tensor function to the `_disable_dynamo_if_unsupported` decorator to workaround this bug.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123619
Approved by: https://github.com/janeyx99
2024-05-07 22:17:01 +00:00
FFFrog
791e5db705 Part 3: UFMT fix the rest files in torch/optim due to the pr-sanity-checks (#124055)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124055
Approved by: https://github.com/ezyang
ghstack dependencies: #124048, #124053, #124054
2024-04-16 03:22:39 +00:00
Jane Xu
24821fec26 Add RAdam capturable API for forloop (#121260)
Implementation thanks to @MarouaneMaatouk in https://github.com/pytorch/pytorch/pull/118697, though I've since cleaned it up a lot to save perf on the rect < 5 eager case. It also just looks better now :) Added tests and the cudagraph health check.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121260
Approved by: https://github.com/mlazos
2024-03-08 00:00:30 +00:00
Jane Xu
b5ba80828f [optim] Rectify capturable testing and fix bugs! (#118326)
This PR fixes several bugs, listed in priority:
1. `load_state_dict` with a nontensor step was incorrect for capturable and fused implementations since we don't create the tensors on the right device in `__setstate__`. This has been fixed.
2. The most recently added capturable implementations forgot the check that all tensors should be on CUDA for eager. We've now added those checks
3. The most recent change in Adamax only adds capturable for foreach but will silently be incorrect for forloop/single-tensor. I've added erroring and modified testing with many many many skips for that. Honestly my preference after this PR has only been further cemented  that we should just do the single tensor and multi tensor capturable implementations together in the future. @mlazos
4. The conditional for adding cuda-supported configs for the optimizer infos was incorrect! So we hadn't been testing capturable! This also stands rectified and was the trigger for this PR in the first place.
5. In a similar way, the conditional for `_get_optim_inputs_including_global_cliquey_kwargs` was incorrect sometimes as well. This has also been corrected.

The following is not a bug, but is just something to make life simpler by not needing to handle Nones: `optim_input_funcs` must now mandatorily take in a `device`, which could be a string or a torch.device.

Details for posterity:
4. Running the test_foreach_matches_forloop test and printing the configs that get printed yields capturable getting included, which is correct.
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5d50138f)]$ python test/test_optim.py -k test_foreach_matches_forloop_AdamW_cuda
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={}, desc=default
params=None, kwargs={'lr': 0.01}, desc=non-default lr
params=None, kwargs={'weight_decay': 0.1}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'maximize': True}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True}, desc=amsgrad
params=None, kwargs={'capturable': True}, desc=capturable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True}, desc=capturable, amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True}, desc=Tensor lr with capturable and amsgrad
.
----------------------------------------------------------------------
Ran 1 test in 19.229s

OK
```
5. Running the test_optimizer_can_be_printed test (which calls `_get_optim_inputs_including_global_cliquey_kwargs`) and printing what gets run is also now correct.
```
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={'differentiable': False}, desc=default
params=None, kwargs={'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.1, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': True}, desc=amsgrad & differentiable
.params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable
params=None, kwargs={'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable & foreach
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable & differentiable
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable, amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable, amsgrad & fused
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad & foreach
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=Tensor lr with capturable and amsgrad & differentiable
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=Tensor lr with capturable and amsgrad & fused
.
----------------------------------------------------------------------
Ran 2 tests in 11.112s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118326
Approved by: https://github.com/mlazos
2024-02-02 19:13:00 +00:00
PyTorch MergeBot
2964170f3a Revert "[optim] Rectify capturable testing and fix bugs! (#118326)"
This reverts commit d947b9d500.

Reverted https://github.com/pytorch/pytorch/pull/118326 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it looks like there are some relevant failures in trunk d947b9d500, may be a land race ([comment](https://github.com/pytorch/pytorch/pull/118326#issuecomment-1923125676))
2024-02-02 07:08:14 +00:00
Jane Xu
d947b9d500 [optim] Rectify capturable testing and fix bugs! (#118326)
This PR fixes several bugs, listed in priority:
1. `load_state_dict` with a nontensor step was incorrect for capturable and fused implementations since we don't create the tensors on the right device in `__setstate__`. This has been fixed.
2. The most recently added capturable implementations forgot the check that all tensors should be on CUDA for eager. We've now added those checks
3. The most recent change in Adamax only adds capturable for foreach but will silently be incorrect for forloop/single-tensor. I've added erroring and modified testing with many many many skips for that. Honestly my preference after this PR has only been further cemented  that we should just do the single tensor and multi tensor capturable implementations together in the future. @mlazos
4. The conditional for adding cuda-supported configs for the optimizer infos was incorrect! So we hadn't been testing capturable! This also stands rectified and was the trigger for this PR in the first place.
5. In a similar way, the conditional for `_get_optim_inputs_including_global_cliquey_kwargs` was incorrect sometimes as well. This has also been corrected.

The following is not a bug, but is just something to make life simpler by not needing to handle Nones: `optim_input_funcs` must now mandatorily take in a `device`, which could be a string or a torch.device.

Details for posterity:
4. Running the test_foreach_matches_forloop test and printing the configs that get printed yields capturable getting included, which is correct.
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5d50138f)]$ python test/test_optim.py -k test_foreach_matches_forloop_AdamW_cuda
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={}, desc=default
params=None, kwargs={'lr': 0.01}, desc=non-default lr
params=None, kwargs={'weight_decay': 0.1}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'maximize': True}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True}, desc=amsgrad
params=None, kwargs={'capturable': True}, desc=capturable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True}, desc=capturable, amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True}, desc=Tensor lr with capturable and amsgrad
.
----------------------------------------------------------------------
Ran 1 test in 19.229s

OK
```
5. Running the test_optimizer_can_be_printed test (which calls `_get_optim_inputs_including_global_cliquey_kwargs`) and printing what gets run is also now correct.
```
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={'differentiable': False}, desc=default
params=None, kwargs={'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.1, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': True}, desc=amsgrad & differentiable
.params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable
params=None, kwargs={'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable & foreach
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable & differentiable
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable, amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable, amsgrad & fused
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad & foreach
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=Tensor lr with capturable and amsgrad & differentiable
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=Tensor lr with capturable and amsgrad & fused
.
----------------------------------------------------------------------
Ran 2 tests in 11.112s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118326
Approved by: https://github.com/mlazos
2024-02-02 02:02:58 +00:00
Michael Lazos
800e2e823f Add compilable foreach RAdam support (#117912)
Fixes https://github.com/pytorch/pytorch/issues/117807

This brings the number of supported optimizers with `torch.compile` to 11/13 (!)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117912
Approved by: https://github.com/janeyx99
2024-01-27 04:32:27 +00:00
Jane Xu
924f1b841a [optim] Allow torch.float64 scalars for forloop + foreach implementations (#115841)
Should allow for uses cases mentioned in #110940

This would allow scalars to also be float64s in the foreach implementation. The fused implementation would still create a float32 step on Adam and AdamW. This PR also does NOT worry about performance and is mainly for enablement.

Next steps:
- Relax the constraint on fused adam(w) and allow torch.float64 scalars there
- Allow _performant_ mixed dtypes in foreach (a bigger project in itself).

This PR will conflict with my other PRs, I will figure out a landing order

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115841
Approved by: https://github.com/albanD
2023-12-27 09:13:49 +00:00
Jon Chuang
62de29d06f [optim] be explicit about CPU scalar tensor dtypes (#111008)
Fixes https://github.com/pytorch/pytorch/issues/110940

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111008
Approved by: https://github.com/janeyx99
2023-11-21 22:44:50 +00:00
Jon Chuang
f74d766632 feat(optim): use has_complex shortcut flag for all applicable optimizers, use _view_as_real auxiliary function (#110706)
Follow up to: https://github.com/pytorch/pytorch/pull/110607

CC: @lezcano @janeyx99
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110706
Approved by: https://github.com/lezcano
2023-10-31 20:33:03 +00:00
Jane Xu
93a9b1314b Make step() faster by passing in a tensor vs scalar 1 (#111084)
This is the culminated result of https://github.com/pytorch/pytorch/pull/110954#issuecomment-1758520411.

We are making the code slightly more complicated to gain some perf in minimizing calls to `.copy_()` and `.to()`.

### Code
```
import torch
with torch.cuda.device(0):
    steps = [torch.zeros((), device="cpu", dtype=torch.float32) for i in range(1000)]

    with torch.profiler.profile(
        activities=[
            torch.profiler.ProfilerActivity.CPU,
            torch.profiler.ProfilerActivity.CUDA,
        ]
    ) as p:
        # New code:
        # step_device = steps[0].device
        # one = torch.tensor(1.0, device=step_device) if str(step_device) == "cpu" else 1
        # torch._foreach_add_(steps, one, 1.0)

        # Old code:
        torch._foreach_add_(steps, 1)

    print(p.key_averages().table(sort_by="cpu_time_total"))
```

### Profiles
**with old code**
```
-------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                     Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-------------------------  ------------  ------------  ------------  ------------  ------------  ------------
      aten::_foreach_add_        35.31%      52.089ms        99.99%     147.495ms     147.495ms             1
               aten::add_        25.05%      36.949ms        64.68%      95.406ms      95.406us          1000
                 aten::to         3.97%       5.852ms        39.63%      58.457ms      58.457us          1000
           aten::_to_copy        10.11%      14.917ms        35.66%      52.605ms      52.605us          1000
              aten::copy_        21.65%      31.939ms        21.65%      31.939ms      31.939us          1000
      aten::empty_strided         3.90%       5.749ms         3.90%       5.749ms       5.749us          1000
    cudaDeviceSynchronize         0.01%      18.000us         0.01%      18.000us      18.000us             1
-------------------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 147.513ms
```

**with new code**
```
-------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                     Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-------------------------  ------------  ------------  ------------  ------------  ------------  ------------
      aten::_foreach_add_        55.06%      49.963ms        99.86%      90.625ms      90.625ms             1
               aten::add_        44.81%      40.662ms        44.81%      40.662ms      40.662us          1000
            aten::detach_         0.01%       8.000us         0.05%      45.000us      45.000us             1
                  detach_         0.04%      37.000us         0.04%      37.000us      37.000us             1
              aten::empty         0.03%      30.000us         0.03%      30.000us      30.000us             1
                 aten::to         0.03%      23.000us         0.03%      23.000us      23.000us             1
    cudaDeviceSynchronize         0.02%      22.000us         0.02%      22.000us      22.000us             1
         aten::lift_fresh         0.01%       6.000us         0.01%       6.000us       6.000us             1
-------------------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 90.751ms
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111084
Approved by: https://github.com/albanD
ghstack dependencies: #111079
2023-10-20 01:34:08 +00:00
Jon Chuang
347ea3fe0d feat(optim): Add RAdam support for complex, with has_complex shortcut (#110635)
Partial fix: https://github.com/pytorch/pytorch/issues/110606

More on `has_complex` shortcut: https://github.com/pytorch/pytorch/pull/110613#issuecomment-1749314805

CC: @janeyx99 @mlazos @lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110635
Approved by: https://github.com/lezcano
2023-10-06 03:29:26 +00:00
bilzard
18a58f0bd6 Implement "RAdamW" optimizer (#107507)
Fixes #107282

## Overview

- basic design decision was followed as they made on #103881 (tensor operation, test cases, order & position of argument etc.)
- for the algorithm for decoupled weight decay, I referred to [1, 2]

## backwards-incompatible changes

- positional argument `decoupled_weight_decay` is added to:
    -  `torch.optim.radam`

The existing code which refers to these APIs can be affected.

Note: Positional argument `decoupled_weight_decay` is added to `torch.optim.RAdam`. However, since it was added to the last position and with default value, it is not affected.

## Reference

- [1] [Decoupled Weight Decay Regularization](https://arxiv.org/abs/1711.05101)
- [2] https://github.com/LiyuanLucasLiu/RAdam/blob/master/radam/radam.py#L5-L94

## TODO

- [x] implement tensor operation
- [x] implement test cases
- [x] modify doc-string
- [x] pass unit test code locally `python test/test_optim.py -k test_radam`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107507
Approved by: https://github.com/janeyx99
2023-08-28 20:50:25 +00:00
Aaron Gokaslan
6d43c89f37 [BE]: Update Ruff to 0.0.280 (#105724)
Removes unusued loop values in python dictionary iteration. Automated fix from Ruff master

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105724
Approved by: https://github.com/ezyang, https://github.com/janeyx99
2023-07-22 23:03:34 +00:00
Justin Chu
3721fa5612 [BE] Enable ruff's UP rules and autoformat optim/ (#105426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105426
Approved by: https://github.com/malfet, https://github.com/albanD, https://github.com/aaronenyeshi, https://github.com/janeyx99
2023-07-18 21:07:43 +00:00
Jane Xu
6878d3a157 [foreach][RAdam] Minimize use of intermediates to decrease peak memory (#104904)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104904
Approved by: https://github.com/albanD, https://github.com/Skylion007
2023-07-11 17:08:07 +00:00
Jane Xu
231364fd06 [optim] use lerp whenever possible (#104796)
This is a better copy (with fixes) of #104781.

Test plan:
CI will pass once https://github.com/pytorch/pytorch/pull/104784 is landed

Internal CI (and the newly enabled compiled optim tests) will pass after https://github.com/pytorch/pytorch/pull/104866 is landed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104796
Approved by: https://github.com/albanD
2023-07-11 14:32:59 +00:00
PyTorch MergeBot
e7fe2a797c Revert "[optim] use lerp whenever possible (#104796)"
This reverts commit fbe2a7e50a.

Reverted https://github.com/pytorch/pytorch/pull/104796 on behalf of https://github.com/DanilBaibak due to Break internal build ([comment](https://github.com/pytorch/pytorch/pull/104796#issuecomment-1628591105))
2023-07-10 09:36:41 +00:00
Jane Xu
fbe2a7e50a [optim] use lerp whenever possible (#104796)
This is a better copy (with fixes) of #104781.

Test plan:
CI will pass once https://github.com/pytorch/pytorch/pull/104784 is landed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104796
Approved by: https://github.com/albanD
2023-07-08 07:13:38 +00:00
Nikita Shulga
6d2887cc06 Reland "Move tensor grouping to ATen" (#103912)
This is a reland of https://github.com/pytorch/pytorch/pull/100007 with a build fix for Windows debug builds.
`at::native::ParamsHash` only works on structs with standard layout, but `std::string` isn't one in Visual C++ debug builds, which one can easily verified by running something like:
```cpp
#define _DEBUG
#include <type_traits>
#include <string>
static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
```
If above conditon is not met, instead of printing a static_assert output, VC++ raises a very cryptic compilation errors,  see https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for more detail.

Also, using `std::hash` for string should result in a faster hash function.

(cherry picked from commit 74b7a6c75e)

<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 5914771</samp>

This pull request introduces a new function `_group_tensors_by_device_and_dtype` that can group tensors by their device and dtype, and updates the `foreach` utilities and several optimizers to use this function. The goal is to improve the performance, readability, and compatibility of the code that handles tensors with different properties. The pull request also adds a test case and type annotations for the new function, and some error checks for the `fused` argument in Adam and AdamW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103912
Approved by: https://github.com/janeyx99
2023-06-21 09:26:33 +00:00
PyTorch MergeBot
0cb5bc3b04 Revert "Move tensor grouping to ATen (#100007)"
This reverts commit 74b7a6c75e.

Reverted https://github.com/pytorch/pytorch/pull/100007 on behalf of https://github.com/izaitsevfb due to Breaks internal builds, see D46629727 ([comment](https://github.com/pytorch/pytorch/pull/100007#issuecomment-1587861598))
2023-06-12 18:30:33 +00:00
Masaki Kozuki
74b7a6c75e Move tensor grouping to ATen (#100007)
rel: #94344
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100007
Approved by: https://github.com/janeyx99
2023-06-09 15:44:46 +00:00
Michael Lazos
4da88447ea Disable grouping by dtype and device if compiling (#102771)
Disable grouping if we are compiling, this happens during lowering
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102771
Approved by: https://github.com/janeyx99
2023-06-02 21:04:49 +00:00
Jane Xu
75cb99e549 [optim] Widen the cases for defaulting to foreach (#95820)
Big OOP correction continued. Also added a test this time to verify the defaulting was as expected.

The key here is realizing that the grouping for foreach already assumes that the non-param tensorlists follow suit in dtype and device, so it is too narrow to check that _all_ tensors were on CUDA. The main leeway this allowed was state_steps, which are sometimes cpu tensors. Since foreach _can_ handle cpu tensors, this should not introduce breakage.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95820
Approved by: https://github.com/albanD
2023-03-02 04:15:33 +00:00
Jane Xu
097679478e [optim] Set defaults to foreach, NOT fused (#95241)
Rolling back the default change for Adam and rectifying the docs to reflect that AdamW never defaulted to fused.

Since our fused implementations are relatively newer, let's give them a longer bake-in time before flipping the switch for every user.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95241
Approved by: https://github.com/ngimel
2023-02-22 04:47:32 +00:00
Xuehai Pan
5b1cedacde [BE] [2/3] Rewrite super() calls in functorch and torch (#94588)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94588
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-10 21:16:33 +00:00
Jane Xu
4fc19e1a71 [optim][adam] use fastest impl whenever possible, add util (#93184)
This allows it so that ONLY when the users don't set anything for foreach or fused do we switch the default and cascades adam so that we default to fused, then foreach, then single-tensor.

To clarify:
* if the user puts True in foreach _only_, it will run the foreach implementation.
* if the user puts True in fused _only_, it will run the fused implementation.
* if the user puts True in foreach AND for fused, it will run the fused implementation.

And:
* if the user puts False in foreach _only_, it will run the single tensor implementation.
* if the user puts False in fused _only_, it will still run the single tensor implementation.
* if the user puts False in foreach AND for fused, it will run the single tensor implementation.

I also didn't trust myself that much with the helper function, so I ran some local asserts on _default_to_fused_or_foreach. The only point left to really test is the type(p) -- torch.Tensor but I think the distributed tests will catch that in CI.
```
cuda_only_fp_list = [
    torch.rand((1, 2), device="cuda", dtype=torch.float32),
    torch.rand((1, 2), device="cuda", dtype=torch.float64),
    torch.rand((1, 2), device="cuda", dtype=torch.float16),
    torch.rand((1, 2), device="cuda", dtype=torch.bfloat16),
]

cuda_only_int_list = [
    torch.randint(1024, (1, 2), device="cuda", dtype=torch.int64),
]

cpu_list = [
    torch.rand((1, 2), device="cpu", dtype=torch.float32),
    torch.rand((1, 2), device="cpu", dtype=torch.float64),
    torch.rand((1, 2), device="cpu", dtype=torch.float16),
]

none_list = [None]

# differentiable should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], True, False) == (False, False)

# cpu lists should always make it return false for both
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, True) == (False, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cpu_list], False, False) == (False, False)
assert _default_to_fused_or_foreach([cpu_list], False, False) == (False, False)

# has fused triggers correctly
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list], False, False) == (False, True)

# ints always goes to foreach
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list], False, False) == (False, True)

# Nones don't error
assert _default_to_fused_or_foreach([cuda_only_fp_list, none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([cuda_only_fp_list, cuda_only_int_list, none_list], False, True) == (False, True)
assert _default_to_fused_or_foreach([none_list], False, True) == (True, False)
assert _default_to_fused_or_foreach([none_list], False, False) == (False, True)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93184
Approved by: https://github.com/albanD
2023-01-30 19:58:55 +00:00
Jane Xu
7277247a8c [optim][radam] default to foreach when CUDA + differentiable=False (#92726)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92726
Approved by: https://github.com/albanD
2023-01-21 05:31:22 +00:00
Jane Xu
de0375e79d [optim][foreach] Do NOT inplace modify gradients (#92706)
SGD and ASGD already had out-of-place grads.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92706
Approved by: https://github.com/ngimel, https://github.com/albanD
2023-01-21 00:12:28 +00:00
Jane (Yuan) Xu
3ba5eae72a [optim][radam] fix eps discrepancy for foreach (#92551)
Will likely race with https://github.com/pytorch/pytorch/pull/92365

eps was not being used at all in the mta/foreach impl. There was also a discrepancy between the docs vs the implementation: the implementation was doing sqrt(x) + eps and the docs were doing sqrt(x+eps)).

I've fixed the docs + extended the current multi_tensor test case to capture this issue.

![image](https://user-images.githubusercontent.com/31798555/213300617-61cbb763-da2d-48e0-b3b6-0190594dd049.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92551
Approved by: https://github.com/albanD
2023-01-19 14:38:59 +00:00
Jane Xu
fbafcecf8d [optim][radam] group tensors in foreach to maximize perf (#92365)
Also noticed that eps is not being used nor tested at all for the mta impl of RAdam.

Will fix in a followup PR before turning foreach to default!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92365
Approved by: https://github.com/albanD
2023-01-18 22:32:27 +00:00
Jane Xu
0070c546b5 [BE][optim] abstract out docstrings, add differentiable docs (#92336)
1. abstract out common doc strings --> I'm sure there are more, but let this be a first step.
2. Add differentiable docs to those who are actually differentiable
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92336
Approved by: https://github.com/albanD
2023-01-18 15:09:28 +00:00