Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63357
Adds the ability to set CONTINUE_THROUGH_ERROR as an environment
variable so that we can easily set it without having to add the flag
directly
Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Test Plan: Imported from OSS
Reviewed By: astaff
Differential Revision: D30351108
Pulled By: seemethere
fbshipit-source-id: 767fa9bd24e1399f359eb24d16f6cc985a2d7173
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63054
1) Ensure these tests are skipped in environments without any GPUs.
2) Add the test to run_test.py
ghstack-source-id: 135595698
Test Plan: waitforbuildbot
Reviewed By: wanchaol
Differential Revision: D30239159
fbshipit-source-id: 21b543ba72e8d10182bc77e7ae1fd34fd4096509
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62937
reland due to windows + cuda failure, fix by running it on gloo on windows even with cuda.
ghstack-source-id: 135306176
Test Plan: ci
Reviewed By: mrshenli
Differential Revision: D30177734
fbshipit-source-id: 7625746984c8f858648c1b3632394b98bd4518d2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62774
Gates DistributedOptimizer which relies on RRef based on if RPC is available. This should enable ZeRo to work with Windows as Windows should not try to import the DIstributedOptimizer. If this works as expected we can enable the windows tests for functional/local sgd optimizers as well.
ghstack-source-id: 135216642
Test Plan: CI
Reviewed By: pbelevich
Differential Revision: D30117838
fbshipit-source-id: e6365a910a3d1ca40d95fa6777a7019c561957db
Summary:
This PR contains the initial version of `ModuleInfo` for use in testing modules. The design philosophy taken here is to start small and simple and build out / refactor as needed when more test coverage or `ModuleInfo` entries are added. As such, it's not intended for general usage yet. The PR contains the following:
* (new file) `torch/testing/_internal/common_modules.py`
* `ModuleInfo` definition - metadata for each module to use in testing
* `module_db` - the actual `ModuleInfo` database; currently contains entries for two modules
* `ModuleInput` - analogous to `SampleInput` from OpInfo; contains `FunctionInput`s for both constructor and forward pass inputs
* Constructor and forward pass inputs are tied together within a `ModuleInput` because they are likely correlated
* `FunctionInput` - just contains args and kwargs to pass to a function (is there a nicer way to do this?)
* `modules` decorator - analogous to `ops`; specifies a set of modules to run a test over
* Some constants used to keep track of all modules under torch.nn:
* `MODULE_NAMESPACES` - list of all namespaces containing modules
* `MODULE_CLASSES` - list of all module class objects
* `MODULE_CLASS_NAMES` - dict from module class object to nice name (e.g. torch.nn.Linear -> "nn.Linear")
* (new file) `test/test_modules.py`
* Uses the above to define tests over modules
* Currently, there is one test for demonstration, `test_forward`, which instantiates a module, runs its forward pass, and compares it to a reference, if one is defined
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61935
Reviewed By: mruberry
Differential Revision: D29881832
Pulled By: jbschlosser
fbshipit-source-id: cc05c7d85f190a3aa42d55d4c8b01847d1efd57f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61756
DDP will support running optimizer as communication hook with
optimizers that support a per-parameter/gradient step function `step_param`.
Add parity tests as we implement more optimizers that support step_param to
ensure parity with regular optimizers.
ghstack-source-id: 134330378
Test Plan: Ci
Reviewed By: SciPioneer
Differential Revision: D29727549
fbshipit-source-id: 18977c896f12b8e478298488b298fd107affcf5f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59077Fixes#58549
`from_buffer` constructs a tensor object from an already allocated buffer through
CPython's buffer protocol. Besides the standard `dtype`, `count`, and `offset` parameters,
this function also accepts:
- `device`: where the buffer lives
- `requires_grad`: should autograd record operations on the new tensor
A new test file _test_buffer_protocol.py_ was created. Currently, only CPU tests were
implemented. That's because neither PyTorch nor Numba implements CPython's buffer
protocol. Therefore, there's no way to create a CUDA buffer with the existing
dependencies (could use PyCUDA for that, though).
At the moment, if `device` differs from the device the buffer actually lives, two things
may happen:
- `RuntimeError`, if `device='cuda'`
- Segmentation fault (not tested -- see above), if `device='cpu'`
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D29870914
Pulled By: mruberry
fbshipit-source-id: 9fa8611aeffedfe39c9af74558178157a11326bb
Summary:
and into tools/ folder
Currently run_tests.py invokes tools/test_selections.py
1. download and analyze what test_file to run
2. download and parse S3 stats and pass the info to local files.
3. common_utils.py uses download S3 stats to determine what test cases to run.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61479
Reviewed By: janeyx99
Differential Revision: D29661986
Pulled By: walterddr
fbshipit-source-id: bebd8c474bcc2444e135bfd2fa4bdd1eefafe595
Summary:
run_test.py currently does lots of downloading and test file/suite/case parsing. It doesn't work well outside of the CI environment
Restructured the run_test.py and created tools/test/test_selections.py and move all test selection logic (reordering, categorizing slow test, creating shards)
Follow up PRs should:
- refactor those file read/write logic entangled inside test_selections.py into stats/ folder
- restructure and add network independent test logics to test_test_selections.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61124
Test Plan:
- tools/test
- CI
Related PR:
This follows the refactoring example in: https://github.com/pytorch/pytorch/issues/60373
Reviewed By: malfet
Differential Revision: D29558981
Pulled By: walterddr
fbshipit-source-id: 7f0fd9b4720a918d82918766c002295e8df04169
Summary:
Changes including:
- introduced `linter/`, `testing/`, `stats/` folders in `tools/`
- move appropriate scripts into these folders
- change grepped references in the pytorch/pytorch repo
Next step
- introduce `build/` folder for build scripts
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60473
Test Plan:
- CI (this is important b/c pytorch/test-infra also rely on some script reference.
- tools/tests/
Reviewed By: albanD
Differential Revision: D29352716
Pulled By: walterddr
fbshipit-source-id: bad40b5ce130b35dfd9e59b8af34f9025f3285fd
Summary:
This PR is a first step in unifying our environment variables across CI (so that we don't have `CIRCLE_BLAH` in our GHA workflows, for example), though I'd like for this PR to be more for discussion about how best to consolidate these variables.
This small change only changes most CIRCLE_JOB references in our code to be JOB_BASE_NAME, as that seems the closest GHA (and ROCm) equivalent. Currently, JOB_BASE_NAME is defined as:
- in Circle: CIRCLE_JOB (name of the job, like `pytorch_linux_bionic_py3_8_gcc9_coverage_test1`)
- in GHA: the build_environment with a `-build` or `-test` tacked to the end , e.g., `pytorch-linux-xenial-cuda10.2-cudnn7-py3.6-gcc7-test`
- in ROCm: I don't actually know, but it's important for ROCm test sharding as shown in https://github.com/pytorch/pytorch/pull/60409
I am not sure if this is the intention for JOB_BASE_NAME so it is open to discussion what variable we should use if not JOB_BASE_NAME. I also don't know if it's worth the effort consolidating all these variables, so discussion is also highly encouraged there!
Next steps:
- Consolidate more CIRCLE_* references, maybe into CI_* equivalents?
- We use BUILD_ENVIRONMENT everywhere in Circle though the variable is inconsistent across binary vs CI jobs and across platforms. For example, for linux tests and builds, BUILD_ENVIRONMENT contains the `_test` and `_build` suffixes, but the windows jobs don't. In GHA, BUILD_ENVIRONMENT is similar to how it's defined in windows jobs on Circle. This inconsistency is confusing, and we can probably do something about it. I'm thinking of switching out BUILD_ENVIRONMENT for JOB_BASE_NAME in our test scripts where we actually mean JOB_BASE_NAME.
- We should probably document the meaning of the variables we consolidate somewhere, preferably in a README in some unified `ci/` folder. For example, it seems BUILD_ENVIRONMENT is supposed to capture the build environment, whereas JOB_BASE_NAME is supposed to capture the environment _and_ whether we're building or testing.
Notes:
- I did not replace CIRCLE_JOB references in third_party directories
- Previously, print_test_stats reported CIRCLE_JOB as only the build environment for GHA workflows, and I think tacking on the `build` or `test` will not harm anything, though I may be wrong.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60425
Reviewed By: seemethere, samestep
Differential Revision: D29333882
Pulled By: janeyx99
fbshipit-source-id: a82080e6205a03a1183035011ce59698eca06748
Summary:
Adding windows CUDA smoke tests on PRs (master should run the full suite).
Next step:
- Automate data update so we get a new smoke test list without manual effort
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59686
Test Plan: https://github.com/pytorch/pytorch/actions/runs/958296267 The sharded smoke tests take long still because of dependencies installation
Reviewed By: walterddr
Differential Revision: D29243533
Pulled By: janeyx99
fbshipit-source-id: dde7ba127fa15c95bda0e833cc5311598fb85e2b
Summary:
This is branch off of https://github.com/pytorch/pytorch/issues/59970 to only shard on linux so far (we're running in issues with windows gflags).
This would enable sharding of tests on a few Linux jobs on GHA, allowing tts to be essentially halved.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60124
Reviewed By: zou3519
Differential Revision: D29204211
Pulled By: janeyx99
fbshipit-source-id: 1cc31d1eccd564d96e2aef14c0acae96a3f0fcd0
Summary:
Currently S3 test stats doesn't support PR stats parisng.
Changes to s3_stats_parser:
1. they are uploaded to `test_times/{sha1}/{job}` and `pr_test_times/{pr}/{sha1}/{job}` separately. Thus we need parsing logics for both
2. need to attach time for PR stats parsing for ordering since PR commits can be force-pushed
Changes to run_test.py
1. Reordering based on previous PR stats if available
2. Falling back to file change option if not enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60026
Test Plan:
- CI.
- local repro: plz run:
```
CIRCLE_JOB="pytorch_linux_bionic_py3_6_clang9_noarch_test" CIRCLE_PR_NUMBER=60057 IN_CI=1 ENABLE_PR_HISTORY_REORDERING=1 python test/run_test.py
```
Reviewed By: samestep
Differential Revision: D29164754
Pulled By: walterddr
fbshipit-source-id: 206688e0fb0b78d1c9042c07243da1fbf88a924b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59840
moving these tests to their own standalone file. No meaningful code changes.
ghstack-source-id: 131359162
Test Plan: CI
Reviewed By: cbalioglu
Differential Revision: D29012664
fbshipit-source-id: 348870016509a6ed7e69240fa82bccef4a12d674
Summary:
instead of having specific logic to handle run-specific-test-case, we provide the flag to override include or bring-to-front with the SPECIFIED_TEST_CASES_FILE.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59704
Reviewed By: janeyx99
Differential Revision: D29038425
Pulled By: walterddr
fbshipit-source-id: 803d3555813437c7f287a22f7704106b0c609919
Summary:
Do not reorder tests unless they are in IN_CI, this causes local development test ordering indeterministic. most of use branch out from viable strict not head of master.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59565
Reviewed By: ejguan
Differential Revision: D28943906
Pulled By: walterddr
fbshipit-source-id: e742e7ce4b3fc017d7563b01e93c4cd774d0a537
Summary:
The run-specified-test-cases option would allow us to specify a list of test cases to run by having a CSV with minimally two columns: test_filename and test_case_name.
This PR also adds .json to some files we use for better clarity.
Usage:
`python test/run_test.py --run-specified-test-cases <csv_file>` where the csv file can look like:
```
test_filename,test_case_name,test_total_time,windows_only_failure_sha_count,total_sha_count,windows_failure_count,linux_failure_count,windows_total_count,linux_total_count
test_cuda,test_cudnn_multiple_threads_same_device,8068.8409659525,46,3768,53,0,2181,6750
test_utils,test_load_standalone,8308.8062920459,14,4630,65,0,2718,8729
test_ops,test_forward_mode_AD_acosh_cuda_complex128,91.652619369806,11,1971,26,1,1197,3825
test_ops,test_forward_mode_AD_acos_cuda_complex128,91.825633094915,11,1971,26,1,1197,3825
test_profiler,test_source,60.93786725749,9,4656,21,3,2742,8805
test_profiler,test_profiler_tracing,203.09352795241,9,4662,21,3,2737,8807
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59487
Test Plan:
Without specifying the option, everything should be as they were before.
Running `python test/run_test.py --run-specified-test-cases windows_smoke_tests.csv` resulted in this paste P420276949 (you can see internally). A snippet looks like:
```
(pytorch) janeyx@janeyx-mbp pytorch % python test/run_test.py --run-specified-test-cases windows_smoke_tests.csv
Loading specified test cases to run from windows_smoke_tests.csv.
Processed 28 test cases.
Running test_cpp_extensions_jit ... [2021-06-04 17:24:41.213644]
Executing ['/Users/janeyx/miniconda3/envs/pytorch/bin/python', 'test_cpp_extensions_jit.py', '-k', 'test_jit_cuda_archflags'] ... [2021-06-04 17:24:41.213781]
s
----------------------------------------------------------------------
Ran 1 test in 0.000s
OK (skipped=1)
...
```
With pytest, an example executable would be:
`Running test_dataloader ... [2021-06-04 17:37:57.643039]
Executing ['/Users/janeyx/miniconda3/envs/pytorch/bin/python', '-m', 'pytest', 'test_dataloader.py', '-v', '-k', 'test_segfault or test_timeout'] ... [2021-06-04 17:37:57.643327]`
Reviewed By: samestep
Differential Revision: D28913223
Pulled By: janeyx99
fbshipit-source-id: 0d1f9910973426b8756815c697b483160517b127
Summary:
It would be most accurate if sharding occurred after all other changes to selected_tests were complete.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59583
Reviewed By: ejguan
Differential Revision: D28944737
Pulled By: janeyx99
fbshipit-source-id: a851473948a5ec942ffeeedeefdc645536a3d9f7
Summary:
Partially addresses https://github.com/pytorch/pytorch/issues/55340
**Overview**
This factors out `FileStoreTest`, `HashStoreTest`, `PrefixFileStoreTest`, `TCPStoreTest`, `PrefixTCPStoreTest`, `PythonStoreTest`, `RendezvousTest`, `RendezvousEnvTest`, `RendezvousFileTest`, and `RendezvousTCPTest` from `test_c10d_common.py` to a new file `test_store.py`.
Additionally, unused import/initialization statements are removed from `test_c10d_common.py`, and the minimal set of import/initialization statements are used for `test_store.py`.
Also, this changes `.jenkins/pytorch/multigpu-test.sh`, `.jenkins/pytorch/win-test-helpers/test_distributed.bat`, and `test/run_test.py` to include the new `test_store.py`.
**Testing**
All commands shown are run on an AI AWS cluster.
I check the Store tests:
```
python test/distributed/test_store.py
```
I also check `test_c10d_common.py` since it is the source of the refactored code. In addition, I check `test_c10d_nccl.py` and `test_c10d_gloo.py` since they import from `test_c10d_common.py`; those two should be the only test files depending on `test_c10d_common.py`.
```
python test/distributed/test_c10d_common.py
python test/distributed/test_c10d_nccl.py
python test/distributed/test_c10d_gloo.py
```
`test_c10d_gloo.py` produces warnings about how using sparse tensors in TorchScript is experimental, but the warnings do not result from this PR's changes.
**Testing Issues** (To Be Revisited)
```
WORLD_SIZE=4 BACKEND=gloo gpurun pytest test/distributed/test_c10d_gloo.py
```
Running the above command fails three tests (written as `[Test]`: `[Error]`):
- `ProcessGroupGlooWrapperTest.test_collective_hang`: `RuntimeError: [../third_party/gloo/gloo/transport/tcp/pair.cc:598] Connection closed by peer [10.200.24.101]:15580`
- `CommTest.test_broadcast_coalesced_gloo_cuda`: `RuntimeError: cuda runtime error (3) : initialization error at ../aten/src/THC/THCGeneral.cpp:54`
- `CommTest.test_sequence_num_incremented_gloo_default`: `RuntimeError: cuda runtime error (3) : initialization error at ../aten/src/THC/THCGeneral.cpp:54`
However, running each of the following yields no errors:
```
WORLD_SIZE=4 BACKEND=gloo gpurun pytest test/distributed/test_c10d_gloo.py -k test_collective_hang
WORLD_SIZE=4 BACKEND=gloo gpurun pytest test/distributed/test_c10d_gloo.py -k test_broadcast_coalesced_gloo_cuda
WORLD_SIZE=4 BACKEND=gloo gpurun pytest test/distributed/test_c10d_gloo.py -k test_sequence_num_incremented_gloo_default
```
This suggests the existence of some inadvertent state dependency between tests (e.g. improper cleanup). I have not explored this further yet. In particular, I do not have a solid understanding of the tests to be able to explain why using `pytest` and `gpurun` induces the failure (since notably, running the `.py` directly shows no issue).
Similarly, running the following yields 47 errors:
```
WORLD_SIZE=4 BACKEND=nccl gpurun pytest test/distributed/test_c10d_nccl.py
```
The errors seem to all be simply complaining about the usage of `fork()` instead of `spawn()` for CUDA multiprocessing. Though, most of the tests in `test_c10d_nccl.py` ask for at least 2 CUDA devices, so I think that the `gpurun` is warranted (assuming that the test file does not need to be run partially on different machines).
Both `test_c10d_common.py` and `test_store.py` work fine with `pytest`.
**Other Notes**
I noticed that `torch.distributed` is imported both as `dist` and as `c10d` and that `c10d` is used throughout the Store tests. I was curious if this is intentional (as opposed to using `dist` to refer to `torch.distributed`). Also, the original [issue](https://github.com/pytorch/pytorch/issues/55340) suggests that the Store tests do not use multiprocessing, but I saw that `torch.multiprocessing` is still used in `TCPStoreTest`.
The links for the Store files in the `CONTRIBUTING.md` [file](https://github.com/pytorch/pytorch/blob/master/torch/distributed/CONTRIBUTING.md) are broken. This can fixed in a separate PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59271
Reviewed By: jbschlosser, mrshenli
Differential Revision: D28856920
Pulled By: andwgu
fbshipit-source-id: 630950cba18d34e6b5de661f5a748f2cddc1b446
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55728
Full design: https://github.com/pytorch/pytorch/issues/55207
This PR introduces ChunkShardingSpec (SingleShardingSpec in the design). Used
the name ChunkShardingSpec since it is very similar to `torch.chunk` in terms
of how a Tensor is split up and feels more clear compared to SingleShardingSpec.
ghstack-source-id: 129603318
Test Plan: waitforbuildbot
Reviewed By: SciPioneer
Differential Revision: D27694108
fbshipit-source-id: c8764abe6a4d5fc56d023fda29b74b5af2a73b49
Summary:
fixes https://github.com/pytorch/pytorch/issues/58632.
Added several skips that relates to test assert and MKL. Will address them in separate PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58666
Reviewed By: seemethere, janeyx99
Differential Revision: D28607966
Pulled By: walterddr
fbshipit-source-id: 066d4afce2672e4026334528233e69f68da04965
Summary:
Some machines don't have a versionless `python` on their PATH, which breaks these existing shebangs.
I'm assuming that all the existing versionless `python` shebangs are meant to be `python3` and not `python2`; please let me know if my assumption was incorrect for any of these.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58275
Test Plan: CI.
Reviewed By: zhouzhuojie
Differential Revision: D28428143
Pulled By: samestep
fbshipit-source-id: 6562be3d12924db72a92a0207b060ef740f61ebf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56868
See __init__.py for a summary of the tool.
The following sections are present in this initial version
- Model Size. Show the total model size, as well as a breakdown by
stored files, compressed files, and zip overhead. (I expect this
breakdown to be a bit more useful once data.pkl is compressed.)
- Model Structure. This is basically the output of
`show_pickle(data.pkl)`, but as a hierarchical structure.
Some structures cause this view to crash right now, but it can be
improved incrementally.
- Zip Contents. This is basically the output of `zipinfo -l`.
- Code. This is the TorchScript code. It's integrated with a blame
window at the bottom, so you can click "Blame Code", then click a bit
of code to see where it came from (based on the debug_pkl). This
currently doesn't render properly if debug_pkl is missing or
incomplete.
- Extra files (JSON). JSON dumps of each json file under /extra/, up to
a size limit.
- Extra Pickles. For each .pkl file in the model, we safely unpickle it
with `show_pickle`, then render it with `pprint` and include it here
if the size is not too large. We aren't able to install the pprint
hack that thw show_pickle CLI uses, so we get one-line rendering for
custom objects, which is not very useful. Built-in types look fine,
though. In particular, bytecode.pkl seems to look fine (and we
hard-code that file to ignore the size limit).
I'm checking in the JS dependencies to avoid a network dependency at
runtime. They were retrieved from the following URLS, then passed
through a JS minifier:
https://unpkg.com/htm@3.0.4/dist/htm.module.js?modulehttps://unpkg.com/preact@10.5.13/dist/preact.module.js?module
Test Plan:
Manually ran on a few models I had lying around.
Mostly tested in Chrome, but I also poked around in Firefox.
Reviewed By: dhruvbird
Differential Revision: D28020849
Pulled By: dreiss
fbshipit-source-id: 421c30ed7ca55244e9fda1a03b8aab830466536d