Commit Graph

2044 Commits

Author SHA1 Message Date
Yangqing Jia
28dba2f928 Unify all *_EXPORT and *_IMPORT macros across c++ backend (#12019)
Summary:
TSIA. Right now we should basically use C10_EXPORT and C10_IMPORT for explicitly marking dllexport and dllimport, as a continued effort of the C10 unification.

This is a codemod by mechanically doing the following change:

CAFFE2_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
AT_CORE_{EXPORT,IMPORT} -> C10_{EXPORT,IMPORT}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12019

Reviewed By: ezyang, teng-li

Differential Revision: D10016276

Pulled By: Yangqing

fbshipit-source-id: a420d62c43d1110105fc88f9e9076e28a3203164
2018-09-25 17:41:05 -07:00
Sebastian Messmer
8f0db9bbbb Removing some dependency edges from Blob to other caffe2 (#12043)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12043

Re-trying D9979976, this time with all call sites fixed.

D9979976 got reverted because there was a call site that wasn't covered by sandcastle it seems.
I fixed it and used 'grep' to ensure there aren't any more call sites in fbsource.

Reviewed By: ezyang

Differential Revision: D10026392

fbshipit-source-id: cd341514a8e53a40147ea0ee3e52f63bb6444157
2018-09-25 11:40:24 -07:00
Duc Ngo
364ae10bb8 nomnigraph - easy - add some python test helper methods (#12020)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12020

- make it less verbose to create random blobs in python unit test by adding some test helper methods
- move str_compare test helper method to test_util.py

Reviewed By: ZolotukhinM

Differential Revision: D10003637

fbshipit-source-id: cb79d2ad508341f750a1bb8f564e87d055c65652
2018-09-25 10:55:19 -07:00
Will Feng
7122f8b3bb Disable more flaky tests on CircleCI (#11399)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/11362.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11399

Differential Revision: D9736673

Pulled By: yf225

fbshipit-source-id: cad8c0e86a70a01b047e648975ca5b9926e4acb3
2018-09-25 10:25:30 -07:00
Edward Yang
d7e11e3aae Revert "Move CreateContext to global registry (#11688)" (#12049)
Summary:
This reverts commit 3ae6ee4ebd.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12049

Differential Revision: D10030954

Pulled By: ezyang

fbshipit-source-id: 6ca9de65b707c5b4c68280fc6f1b8e5ad7251efc
2018-09-25 10:13:43 -07:00
Maciej Bargiel
2cdf98a74d Back out "Removing some dependency edges from Blob to other caffe2"
Summary: The controller you requested could not be found. Original commit changeset: 2ea17724e223

Differential Revision:
D10026321
Ninja: stable broken

fbshipit-source-id: faf87cb7cc0f78c2c10d4aa6fceea279cd27acd6
2018-09-25 01:11:14 -07:00
Sebastian Messmer
17a65bf9b6 Removing some dependency edges from Blob to other caffe2 (#11923)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11923

This is pre-work to allow moving Blob to ATen/core, which cannot depend on caffe2 anymore.
(1) Removing the Blob -> Tensor dependency allows us to move Blob to ATen/core and use it inside IValue without having to wait for the Tensor merge to be complete.
(2) In the final Blob design, we want it to be a very small class that doesn't have any special treatment for Tensor (or to be more correct, doesn't allow storing Tensor anymore), so this is anyhow the direction we want to go.

This changes call sites that will have to be moved to IValue later, but they cannot be moved to IValue directly, because for that, IValue first needs to be able to store Blob, which in turn first needs this diff and some other changes coming up in future diffs.

Codemods:
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.IsTensorType\\(" "BlobIsTensorType(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->IsTensorType\\(" "BlobIsTensorType(*\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)\\.GetMutableTensor\\(" "BlobGetMutableTensor(\\1, "
$ codemod --extensions h,hpp,c,cpp,cc "([a-zA-Z0-9_]+)->GetMutableTensor\\(" "BlobGetMutableTensor(*\\1, "

It is, however, not only these codemods because regex based refactoring was only able to match a small amount of the call sites. To catch more, I wouldn've needed a AST aware tool like clangr, which I didn't figure out how to use.

Reviewed By: ezyang

Differential Revision: D9979976

fbshipit-source-id: 2ea17724e223b5b73b44f99362727759ca689e61
2018-09-24 22:57:05 -07:00
Jerry Zhang
3ae6ee4ebd Move CreateContext to global registry (#11688)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11688

As a first step to remove static context(merge with allocator), we'll create a
global registries for context constructors, and remove CreateContext function from tensor.

Reviewed By: ezyang, dzhulgakov

Differential Revision: D9779821

fbshipit-source-id: 8b239ea50af7a0556fde2382f58f79194f0e3dc1
2018-09-24 17:07:50 -07:00
Christian Puhrsch
a6630e25af Remove many caffe2::TIndex and replace them with int64_t (#11943)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11943

See title

Reviewed By: ezyang

Differential Revision: D9992645

fbshipit-source-id: e8f80d6ea762971513e5e8072975ceea53e1f11a
2018-09-22 18:11:04 -07:00
Junjie Bai
7517e53468 Update onnx submodule to onnx/onnx@c4734c6 (#11958)
Summary:
c4734c6200
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11958

Differential Revision: D10002779

Pulled By: bddppq

fbshipit-source-id: 8bd7dfc8fdaf0b699a61f5b228f7102a16b92258
2018-09-22 01:40:31 -07:00
Bram Wasti
d0db23e95a Add distributed annotations
Summary: Annotations for DAI

Reviewed By: duc0

Differential Revision: D9805867

fbshipit-source-id: 9ce2d9f3984817510ec8362a281f39878aad55e7
2018-09-21 19:09:59 -07:00
Sebastian Messmer
b2b05b7c20 Move blob serialization to free functions (#11817)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11817

Blob::Serialize() and Blob::Deserialize() are now free functions SerializeBlob(), DeserializeBlob() instead.
This takes away access to Blob internals from them and makes future refactorings easier.

Reviewed By: ezyang

Differential Revision: D9882726

fbshipit-source-id: 3251ebd4b53fc12f5e6924a6e4a8db3846ab3729
2018-09-20 23:27:34 -07:00
Roy Li
30521a37ad codemod: caffe::float16 -> at::Half (#11785)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11785

Replace each instead of float16 with Half.

Reviewed By: Yangqing

Differential Revision: D9892158

fbshipit-source-id: b9225ca7bd5c84fd1c04a9d24b026c8b6cbff120
2018-09-20 18:55:19 -07:00
Lu Fang
9c44c60794 Bump up the frontend version (#11873)
Summary:
To update the onnx model zoo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11873

Reviewed By: BIT-silence

Differential Revision: D9953369

Pulled By: houseroad

fbshipit-source-id: 5e96a982b8029dceeb08e3bea4094bae053e1865
2018-09-20 16:20:48 -07:00
Tommy Yu
c64331f48f Add test for verifying combine_spatial_bn values in DPM (#11710)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11710

Added a test to check that output and gradient values are correctly
calculated wehn combine_spatial_bn is true on data parallel model

Reviewed By: enosair

Differential Revision: D9833660

fbshipit-source-id: 14d29fbebefa9dc303ffae06f9899ea4bde23025
2018-09-19 20:17:51 -07:00
Ansha Yu
3b1a5a1b8a Refactor tests part 2 (#11811)
Summary:
Followup to the [first refactor](https://github.com/pytorch/pytorch/pull/11350). Increase coverage of tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11811

Reviewed By: houseroad

Differential Revision: D9923074

Pulled By: ajyu

fbshipit-source-id: 0f899bb9e9a75bf7ed939e06cc9b028daa7f6bd9
2018-09-19 10:09:28 -07:00
Lu Fang
32494c226e OperatorDef <==> NodeProto Conversion (#11621)
Summary:
Operator level proto conversion between (new) torch proto and (old) caffe2 proto.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11621

Reviewed By: BIT-silence

Differential Revision: D9892422

Pulled By: houseroad

fbshipit-source-id: 01a55ec0a09479876a27082d90fc970723f4d431
2018-09-19 08:41:33 -07:00
Bram Wasti
9eb72889b4 Add successor/predecessor functions
Summary: More functionality to prep nomnigraph for scheduler implementations

Reviewed By: duc0

Differential Revision: D9794686

fbshipit-source-id: b460859d8ff965d0049b2a696bd8d2f5c97f3f86
2018-09-18 12:27:06 -07:00
Ansha Yu
98aebed88e Refactor tests part 1 (#11350)
Summary:
Followup to [the serialized test framework](https://github.com/pytorch/pytorch/pull/10594)

Round 1 for refactoring tests, starting alphabetically. I added some functionality, so I wanted to send out some of these initial changes sooner.

I'm skipping all tests that don't explicitly call assertReferenceChecks. Some tests directly call np.allclose, and others are simply TestCase (rather than HypothesisTestCase).

1. Start alphabetically producing serialized outputs for test functions, annotating those we want to include with `serialized_test_util.given`. So far I've only added one test per operator, but this already does seem to add quite a few tests.
2. Add functionality to allow us to generate outputs using pytest by adding pytest argument options. This allows us to skip adding a `__main__` function to quite a few tests.
3. Catch any exceptions generating the gradient operator and skip serializing/reading it, since certain operators don't have gradients.
4. Add functionality to better handle jagged array inputs, which numpy doesn't handle very well. We simply explicitly do the conversion to dtype=object.
5. Make only one file per test function, rather than 4, to reduce the number of files in the github repo.

I also noticed that there is some hypothesis handling that makes `serialized_test_util.given` not compatible with adding more hypothesis decorators on top. For example, there are tests that do
```
settings(...)
given(...)
def test_my_stuff(...)
```
But there is a hypothesis handler that explicitly checks that `given` is called below `settings`, so we cannot refactor this to `serialized_test_util.given`. I've just avoided decorating these kinds of tests for now, I hope that's alright.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11350

Reviewed By: houseroad

Differential Revision: D9693857

Pulled By: ajyu

fbshipit-source-id: a9b4279afbe51c90cf2025c5ac6b2db2111f4af7
2018-09-18 10:42:10 -07:00
Tianshu Bao
63e384a381 SNNTest with Data Preproc Service (#11707)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11707

Trigger SNN offline training test with data preproc service.

Reviewed By: xsh6528

Differential Revision: D9826978

fbshipit-source-id: f98405ca1e61a7662bf0d9313aaba42436025a83
2018-09-17 21:25:49 -07:00
Bram Wasti
3819d25418 Clean up converter and accept less-valid networks
Summary: Cleaning up converter.cc and allowing networks that have "pass through" inputs (that are also outputs but aren't actually consumed by the network)

Reviewed By: duc0

Differential Revision: D9759435

fbshipit-source-id: 1ddfcc60a1b865a06682e4022230dfecc4b89ec3
2018-09-17 17:31:41 -07:00
Bram Wasti
ca5def1b8f Expose annotations (#11649)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11649

Putting annotations in python interface

Reviewed By: duc0

Differential Revision: D9784750

fbshipit-source-id: d877c886ac52559ca3f009a1fd848dd1779b7d04
2018-09-17 16:39:37 -07:00
Jongsoo Park
29610621ec 64B align for avx512 (#11748)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11748

For avx512, we need to align at a multiple of 64B not 32B
Regardless of avx512, it's in general a good idea to be cache line aligned.

Reviewed By: ilia-cher

Differential Revision: D9845056

fbshipit-source-id: b1d3ed67749c0c1a64acd5cc230a1279e8023512
2018-09-17 14:08:31 -07:00
Chenguang Xi
cdefc27795 Support lr adaption for SparseAdam and RowWiseSparseAdam (#11162)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11162

as title, fix pr test failure

Reviewed By: chocjy

Differential Revision: D9619308

fbshipit-source-id: 0a2228841ed8fadb15f07e94d3575aa701b10146
2018-09-17 10:29:03 -07:00
Jiyan Yang
c5f7da3f4a Support FP16 sparse lookup (#11674)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11674

Pull Request resolved: https://github.com/pytorch/pytorch/pull/11658

Reviewed By: hyuen

Differential Revision: D9676950

fbshipit-source-id: 89a115b9664b84e4e4436b7da033e5a428c2246d
2018-09-14 02:40:08 -07:00
Jeff Smith
05e06f7de2 migrating deprecated calls without abc module for containers (#11515)
Summary:
Implementing #10540.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11515

Reviewed By: apaszke

Differential Revision: D9771045

Pulled By: jeffreyksmithjr

fbshipit-source-id: 85ea39abaa9b465805a969f122b626b11fc85ef6
2018-09-13 15:09:22 -07:00
James Reed
0f1ca569ce End-to-end dynamic slicing with ONNX DynamicSlice experimental operator (#11255)
Summary:
Requires https://github.com/onnx/onnx/pull/1377

This PR makes it so that slices with dynamic boundary values can be exported from pytorch and run in caffe2 via ONNX.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11255

Differential Revision: D9790216

Pulled By: jamesr66a

fbshipit-source-id: 6adfcddc5788df4d34d7ca98341077140402a3e2
2018-09-13 12:39:52 -07:00
Guan Pang
17637f2b03 enable_mkl support for resnet18+lstm model
Summary:
* Many op in lstm part of the model don't have implementation in ideep/mkl, and it doesn't make sense to copy back and forth for the few available ops because majority of RNN will be on CPU
* Thus the strategy is to enable mkl only for the resnet18 part of the model, then switch to default cpu engine for the lstm part

* The net may contain some external_inputs falsely added during ONNX->Caffe2. Canary in service shows their existence could leads to service crash (presumably due to these blob somehow get shared between threads). They're now manually removed which seem to be enough to avoid the crash.

Reviewed By: viswanathgs

Differential Revision: D8888763

fbshipit-source-id: da7761bcb7d876ff7bbb6640ae4b24712c0b1de6
2018-09-12 18:56:46 -07:00
Xiaomeng Yang
7f7cda99cd Optimize order_swich_ops on GPU (#11404)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11404

Optimize order_swich_ops on GPU

Reviewed By: houseroad

Differential Revision: D9728642

fbshipit-source-id: 74ff62268856fb1613fa61eb214bed6ec6716632
2018-09-12 16:56:15 -07:00
Xiaodong Wang
eb7a298489 Add resnext model to OSS (#11468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11468

Add resnext model into OSS Caffe 2 repo.

Reviewed By: orionr, kuttas

Differential Revision: D9506000

fbshipit-source-id: 236005d5d7dbeb8c2864014b1eea03810618d8e8
2018-09-12 15:59:20 -07:00
Christian Puhrsch
12f4c46eea caffe2::StorageImpl use at::DataPtr (#11282)
Summary:
See title
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11282

Reviewed By: ezyang

Differential Revision: D9658503

Pulled By: cpuhrsch

fbshipit-source-id: 42fa73c979692cb1069c0345744a85d12150745c
2018-09-12 09:39:23 -07:00
Soumith Chintala
1a246c9c7e guard spurious cudnn.h include (#11562)
Summary:
This fixes the build when CuDNN was not found on the system.

From the `git blame`, it looks like the bug has been around for 2 years :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11562

Differential Revision: D9784589

Pulled By: soumith

fbshipit-source-id: b33153436dced0a503c9833cdf52f7093f3394b4
2018-09-11 21:09:54 -07:00
Lukasz Wesolowski
4db21a1d8e Optimize LengthsTileOp on GPU to run a kernel instead of a sequence of memcopies (#11413)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11413

LengthsTileOp was implemented using a sequence of device memcopies initiated on the CPU. This was very slow. I changed it to use a kernel. TUM benchmark QPS improved from 13k QPS to 20k QPS as a result.

Reviewed By: manojkris, xianjiec

Differential Revision: D9724988

fbshipit-source-id: 2f98c697730982734d7c6a26d0b6967310d49900
2018-09-11 13:25:35 -07:00
Duc Ngo
f84693efa9 nomnigraph - Improvements to subgraph matching APIs (#11418)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11418

Several improvements that aim to make the APIs more straightforward to use

- Get rid of helper methods subgraph and nonTerminal . Users now should create a NNMatchGraph directly via graph's createNode and createEdge API

- Get rid of operatorSubgraph helper method

- invertGraphTraversal flag applies to both the match graph and the scanned graph. This allows user to create match graph in the same direction as the scanned graph, thus reduce confusion.

- additional parameters of matchNode (count, includeInSubgraph, nonTerminal) are removed from the constructors and moved into setter methods. (We no longer enforce that MatchNode is immutable but this helps improve code clarity).

- Tests are updated to reflect the changes

Follow up changes:
- Possibly clean up the tests further. This change aims to minimally modify the unit tests.
- Help a validity check that enforce the current limitation of the match graph (single source node), and throws if the match graph does not satisfy the criteria.
- Have the single source node be detected automatically and callers just need to pass in the matchGraph instead of the source node reference.

Differential Revision: D9732565

fbshipit-source-id: ae8320e2bc89b867f6bb4b1c1aad635f4b219fa1
2018-09-11 04:39:27 -07:00
Mingda Li
f2f43ad2da Add new LengthsSplit operator (#10974)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10974

Pull Request resolved: https://github.com/pytorch/pytorch/pull/10291

This new operator will do the following:

Given a LENGTHS vector and n_splits, output a "split" LENGTHS vector where:

1. Each length in input vector is split into n_splits values (thus output vector should have LENGTHS.size(0) * n_splits elements)
2. The new lengths in output should be evenly split, and if the length is not divisible by n_splits, then order new values in descending order. (e.g. n_splits = 3, length = 5 -> 2 2 1)
3. If n_splits > some element in the array, its split elements will contain 0s. (e.g. n_splits = 3, length = 2 - > 1 1 0)

Reviewed By: bddppq, chocjy

Differential Revision: D9013119

fbshipit-source-id: 82bf3371ec08c41fc3379177f0007afc142e0d84
2018-09-10 15:40:28 -07:00
Yifei Teng
02114e877f fix #10838 incorrect bidirectional output format (#11368)
Summary:
Fixes the issue discussed in #10838. `hidden_size` should be the last dimension regardless if we're in ONNX or PyTorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11368

Differential Revision: D9734814

Pulled By: soumith

fbshipit-source-id: 7f69947a029964e092c7b88d1d79b188a417bf5f
2018-09-08 17:09:57 -07:00
Tongzhou Wang
e80f7e1f64 Fix more warnings (#11320)
Summary:
also a missing space in fft error message
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11320

Differential Revision: D9676012

Pulled By: SsnL

fbshipit-source-id: a636e5fce042198510c8e456fa51fde714da8348
2018-09-07 11:26:58 -07:00
Yan Zhu
c59c1a25b2 diagnose option: get_entry to print a whole row (#11308)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11308

Pull Request resolved: https://github.com/pytorch/pytorch/pull/11299

Reviewed By: xianjiec

Differential Revision: D9652844

fbshipit-source-id: 650d550317bfbed0c1f25ae7d74286cfc7c3ac70
2018-09-06 21:26:30 -07:00
Xiaomeng Yang
ec5404a449 Add cuda version of SpatialBNOp also optimize SpatialBN on CPU (#10888)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10888

Add cuda version of SpatialBNOp also optimize SpatialBN on CPU

Reviewed By: houseroad

Differential Revision: D9512435

fbshipit-source-id: 6f828c88d56d30dc9a2f98a297a161c35cc511b1
2018-09-06 18:26:13 -07:00
Chenguang Xi
1a01c75dde support gradClipping per blob in mtml (#10776)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10776

as title

Reviewed By: chocjy

Differential Revision: D9458099

fbshipit-source-id: f840d4f1542e8180f41cc0732c8468fa43805ab8
2018-09-06 18:10:52 -07:00
Lu Fang
c39216f8c4 Automatic update of fbcode/onnx to bff0b8835870c7df7762ef43498d000d2d8ffb52 (#11346)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11346

Previous import was 1b09eb14c2c781fae078fa6b1c0390ba6fc0898c

Included changes:
- **[bff0b88](https://github.com/onnx/onnx/commit/bff0b88)**: Add DynamicSlice experimental op (#1377) <James Reed>
- **[91a7b8e](https://github.com/onnx/onnx/commit/91a7b8e)**: statCoverage(model) (#1246) <Akshay Chalana>
- **[36643c6](https://github.com/onnx/onnx/commit/36643c6)**: fix the doc for softmax (#1374) <Lu Fang>
- **[8c64acd](https://github.com/onnx/onnx/commit/8c64acd)**: Silence usused result warning in ONNXIFI wrapper cleanup. Fix #1344 (#1371) <Marat Dukhan>
- **[53b20f6](https://github.com/onnx/onnx/commit/53b20f6)**: Add the ability to deprecate an OpSchema (#1317) <Ryan Hill>
- **[8aec4e2](https://github.com/onnx/onnx/commit/8aec4e2)**: [Anderspapitto patch] fix the shape inference for broadcasting (#1368) <Lu Fang>

Reviewed By: jamesr66a

Differential Revision: D9691533

fbshipit-source-id: 6aff6ce04ade37182e2ffe9bc83eb86846bc722d
2018-09-06 17:39:57 -07:00
Yangqing Jia
68613cf5a2 Windows DLL build with Caffe2 code (#11266)
Summary:
This is an experimental build on top of what orionr and mingzhe09088 built.

Essentially, the idea is that we will need separate *_API versions for different shared libraries. If this theory is right, I'll try to clean up the design a bit and document it properly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11266

Reviewed By: orionr

Differential Revision: D9682942

Pulled By: Yangqing

fbshipit-source-id: c79653199e67a1500c9174f39f8b0357324763f3
2018-09-06 15:12:20 -07:00
Tommy Yu
03ca7358af Add unit test for Parallel Spatial Batch Normalization (#11098)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11098

Added a test for testing CPU version across multiple devices.

Reviewed By: enosair, BIT-silence

Differential Revision: D9584520

fbshipit-source-id: 0d8c85e6d402bc7b34d5f8f16ef655ff9b61b49e
2018-09-06 14:26:56 -07:00
Yiming Wu
0ef2b318a2 fix empty net type (#11286)
Summary:
Turns out that '' net.type is not acceptable to CreateNet.

But empty net.type is acceptable.

Fix that in this diff. Also this is related to T33613083
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11286

Reviewed By: Maratyszcza, wat3rBro

Differential Revision: D9659920

Pulled By: harouwu

fbshipit-source-id: d68f24b754e18e1121f029656d885c48ab101946
2018-09-06 11:10:01 -07:00
Bram Wasti
fa147abda4 Add convertToCaffe2Proto to python API
Summary: Closing the gap a bit on API, allowing users to go NetDef -> nomnigraph -> NetDef in python now

Reviewed By: duc0

Differential Revision: D9670495

fbshipit-source-id: 6497518ffc05a186deb0d657e06317980d39ddd5
2018-09-05 18:40:48 -07:00
Will Feng
c9e66351a7 Port all PyTorch and Caffe2 jobs to CircleCI (#11264)
Summary:
This PR adds all PyTorch and Caffe2 job configs to CircleCI.

Steps for the CircleCI mini-trial:
- [ ] Make sure this PR passes Jenkins CI and fbcode internal tests
- [x] Approve this PR
- [ ] Ask CircleCI to turn up the number of build machines
- [ ] Land this PR so that the new `.circleci/config.yml` will take effect

Several Caffe2 tests are flaky on CircleCI machines and hence skipped when running on CircleCI. A proper fix for them will be worked on after a successful mini-trial.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11264

Differential Revision: D9656793

Pulled By: yf225

fbshipit-source-id: 7832e90018f3dff7651489c04a179d6742168fe1
2018-09-05 16:28:11 -07:00
Jerry Zhang
9f4bcdf075 caffe2::DeviceType -> at::DeviceType (#11254)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11254
Previously we use DeviceType in caffe2.proto directly, but it's an `enum` and have implicit conversion to int, which does not have type safety, e.g. we have to explicitly check for a device type is valid in event.h:
```
template <int d>
struct EventCreateFunctionRegisterer {
  explicit EventCreateFunctionRegisterer(EventCreateFunction f) {
    static_assert(d < MaxDeviceTypes, "");
    Event::event_creator_[d] = f;
  }
};
```
at::DeviceType is an `enum class`, and it does not have implicit conversion to int, and provides better type safety guarantees. In this diff we have done the following refactor(taking CPU as an example):

    1. caffe2::DeviceType → caffe2::DeviceTypeProto
    2. caffe2::CPU → caffe2::PROTO_CPU
    3. caffe2::DeviceType = at::DeviceType
    4. caffe2::CPU = at::DeviceType::CPU

codemod -d caffe2/caffe2 --extensions h,cc,cpp 'device_type\(\), ' 'device_type(), PROTO_'
+ some manual changes

In short, after this diff, in c++, caffe2::CPU refers to the at::DeviceType::CPU and the old proto caffe2::CPU will be caffe2::PROTO_CPU.
In python side, we have a temporary workaround that alias `caffe2_pb2.CPU = caffe2_pb2.PROOT_CPU` to make the change easier to review and this will be removed later.

Reviewed By: ezyang

Differential Revision: D9545704

fbshipit-source-id: 461a28a4ca74e616d3ee183a607078a717fd38a7
2018-09-05 16:28:09 -07:00
Yan Zhu
ac9f0a6884 refactor preproc, support dense in TumHistory layer
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11131

Reviewed By: xianjiec

Differential Revision: D9358415

fbshipit-source-id: 38bf0e597e22d540d9e985ac8da730f80971d745
2018-09-05 16:10:13 -07:00
Dmitrii Marin
8bd80a6b74 Fixed log message (#10874)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10874

Fixes the log message "WARNING:data_workers:Warning, data loading lagging behind: name=0" where instead of source name the size of a queue is reported

Reviewed By: panshen1, Novitial

Differential Revision: D9506606

fbshipit-source-id: 03717cfa9b991afb335ef877378afa3b52fd8f22
2018-09-05 09:55:52 -07:00
Yiming Wu
d1b920b44f keep net type info when generating model complete net (#11032)
Summary:
keep net type info when generating model complete net. This will keep the performance optimization option
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11032

Reviewed By: wat3rBro

Differential Revision: D9564125

Pulled By: harouwu

fbshipit-source-id: c6546af9b1d4ff5eddf6124e24a5da1b8baf47df
2018-09-04 21:10:06 -07:00