Commit Graph

581 Commits

Author SHA1 Message Date
Ilia Cherniavskii
6350dbddd1 Fix sequential MKL case (#22062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22062
ghimport-source-id: a30255d7453c4ffecf40215a785c1e06b7296368

Test Plan:
USE_CUDA=0 PARALLEL_BACKEND=OPENMP BLAS=MKL USE_MKLDNN=1 MKL_SEQ=1
MKLDNN_THREADING=SEQ BUILD_BINARY=1 python setup.py develop --cmake

./build/bin/parallel_info

Imported from OSS

Differential Revision: D15938079

Pulled By: ilia-cher

fbshipit-source-id: e7ef0c5bc75ebb845ebe66bf76a4070d45305b35
2019-06-24 12:56:43 -07:00
Hong Xu
0408697317 Followup cleanup in cmake.py and add a comment in setup.py (#21792)
Summary:
Following up b811b6d5c0

* Use property instead of __setattr__ in CMake.
* Add a comment clarifying when built_ext.run is called.

 ---

cc ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21792

Differential Revision: D15860606

Pulled By: umanwizard

fbshipit-source-id: ba1fa07f58d4eac81ac27fa9dc7115d1cdd3dec0
2019-06-17 13:46:25 -07:00
Hong Xu
b811b6d5c0 When building extensions, honor options set in CMake. (#21653)
Summary:
Currently when building extensions, variables such as USE_CUDA, USE_CUDNN are used to determine what libraries should be linked. But we should use what CMake has detected, because:

1. If CMake found them unavailable but the variables say some libraries should be linked, the build would fail.
2. If the first build is made using a set of non-default build options, rebuild must have these option passed to setup.py again, otherwise the extension build process is inconsistent with CMake. For example,

```bash
# First build
USE_CUDA=0 python setup.py install
# Subsequent builds like this would fail, unless "build/" is deleted
python setup.py install
```

This commit addresses the above issues by using variables from CMakeCache.txt when building the extensions.

 ---

The changes in `setup.py` may look lengthy, but the biggest changed block is mostly moving them into a function `configure_extension_build` (along with some variable names changed to `cmake_cache_vars['variable name']` and other minor changes), because it must be called after CMake has been called (and thus the options used and system environment detected by CMake become available).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21653

Differential Revision: D15824506

Pulled By: ezyang

fbshipit-source-id: 1e1eb7eec7debba30738f65472ccad966ee74028
2019-06-14 08:13:40 -07:00
Ilia Cherniavskii
5485f09f18 Native TBB parallel backend (#20480)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20480
ghimport-source-id: c710f897c4c9b9616fc3dd76d80b4845aea43a1f

Differential Revision: D15333692

Pulled By: ilia-cher

fbshipit-source-id: 61e476dd5c737fe144e3aec000d8ebb11fbc0547
2019-06-13 10:11:16 -07:00
Karl Ostmo
49481d576d Torch rename (#20774)
Summary:
This renames the CMake `caffe2` target to `torch`, as well as renaming `caffe2_gpu` to `torch_gpu` (and likewise for other gpu target variants).  Many intermediate variables that don't manifest as artifacts of the build remain for now with the "caffe2" name; a complete purge of `caffe2` from CMake variable names is beyond the scope of this PR.

The shell `libtorch` library that had been introduced as a stopgap in https://github.com/pytorch/pytorch/issues/17783 is again flattened in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20774

Differential Revision: D15769965

Pulled By: kostmo

fbshipit-source-id: b86e8c410099f90be0468e30176207d3ad40c821
2019-06-12 20:12:34 -07:00
Hong Xu
646a7f99bb Move management of calls of "cmake --build" to setup_helper/cmake.py and refactor as a CMake class
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21493

Differential Revision: D15759279

Pulled By: ezyang

fbshipit-source-id: 157e1de36f1c5a51caf2a25b363a94369c442012
2019-06-11 07:04:05 -07:00
Hong Xu
240d62fbaa Move redundant code that checks NumPy during build to a helper module and add an option to disable building with NumPy
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21417

Reviewed By: ezyang

Differential Revision: D15694357

Pulled By: fmassa

fbshipit-source-id: bc1bda23349ba4531f19619fa4adecb846225c20
2019-06-06 08:15:19 -07:00
Hong Xu
9a989ec469 Add an option to stop the build process once cmake terminates. (#21034)
Summary:
Add an option to setup.py to stop the build process once cmake terminates. This leaves users a chance to fine adjust build options. Also update README accordingly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21034

Differential Revision: D15530096

Pulled By: soumith

fbshipit-source-id: 71ac6ff8483c3ee77c38d88f0d059db53a7d3901
2019-05-28 17:11:00 -07:00
Ilia Cherniavskii
580eab6562 Restore TBB module (#20454)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20454
ghimport-source-id: 14aca1dedbe647d41e55e7538a6b7eeab0fc4384

Differential Revision: D15326062

Pulled By: ilia-cher

fbshipit-source-id: 02b005a679b10dc7a264978e87a8d2bb98ab972f
2019-05-28 02:49:36 -07:00
Ilia Cherniavskii
82aecfad6a Native ATen/Parallel backend (#20087)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20087
ghimport-source-id: bcfc8a86abe0893e4a380fe6f6123e2082ba4317

Differential Revision: D15248663

Pulled By: ilia-cher

fbshipit-source-id: fdb7a8860c85d8202026b629cb7fa344782bd2c4
2019-05-28 01:40:54 -07:00
Hong Xu
1e8f129a05 In setup.py, also check some submodules of submodules. (#20937)
Summary:
Sometimes users forget using the "--recursive" option when they update submodules. This added check should help expose this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20937

Differential Revision: D15502846

Pulled By: mrshenli

fbshipit-source-id: 34c28a2c71ee6442d16b8b741ea44a18733b1536
2019-05-26 18:43:24 -07:00
Gregory Chanan
47043220ee Update version strings to 1.2
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20812

Differential Revision: D15451892

Pulled By: gchanan

fbshipit-source-id: 07355dbd446053a69b5cf4e3be1842aa1075c71f
2019-05-24 11:07:29 -07:00
Ilia Cherniavskii
c3d05e86cc Resend "Split ATen/Parallel into interface and backend" (#20825)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20825
ghimport-source-id: 0371fbd37cb37635647d473d5ac9f2859e787061

Differential Revision: D15458073

Pulled By: ilia-cher

fbshipit-source-id: cd27d0da1691f6be1183cd152348ac0d93a53996
2019-05-24 02:03:06 -07:00
Hong Xu
795a1a6ffa When detecting numpy, assign relavant variables outside the try block (#20739)
Summary:
When detecting the presence of NumPy using import, move numpy-related variable assignments outside the try block (i.e., to an else block) to improve readability.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20739

Differential Revision: D15453916

Pulled By: ezyang

fbshipit-source-id: d3c37f2b290846be3c6a1462251cbb3e95d493be
2019-05-22 11:27:36 -07:00
Edward Yang
fd95947e68 Revert D15248618: Split ATen/Parallel into interface and backend
Differential Revision:
D15248618

Original commit changeset: 060879266bc8

fbshipit-source-id: fc5cbb030b87613c9e15100118c3d4a064097c20
2019-05-22 09:55:51 -07:00
Ilia Cherniavskii
c4a3b4d528 Split ATen/Parallel into interface and backend (#20057)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20057
ghimport-source-id: c583f61bf661c994eb4d0625748a299e892a7246

Differential Revision: D15248618

Pulled By: ilia-cher

fbshipit-source-id: 060879266bc8616916fe220adef6ae6c0b076fbd
2019-05-21 19:15:47 -07:00
Ilia Cherniavskii
481b6d0268 Allow a non-OpenMP based build (#19749)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19749
ghimport-source-id: a6636c0acddbdc5fd5b0dcb20b9f80cbdb9159b9

Differential Revision: D15141993

Pulled By: ilia-cher

fbshipit-source-id: 96085608398b2a4c97c68b2948f5184d07f9ad3d
2019-05-06 19:34:48 -07:00
Bram Wasti
035966d538 Add options to Operator to enable registration of alias analysis passes (#19382)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19382
ghimport-source-id: aeaad3b84ea20dd95b38635ca28c5ff657187909

Differential Revision: D14990873

Pulled By: bwasti

fbshipit-source-id: e1292ac8358ca8ff5bad8d8aeaddf06c23e66067
2019-05-06 15:40:13 -07:00
Jon Malmaud
0565141728 Type annotations for util.data. (#18963)
Summary:
I haven't had a chance to rigorously try these out yet so don't merge yet.
Closes #18725.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18963

Differential Revision: D14832897

Pulled By: ezyang

fbshipit-source-id: 4780e7a34126bc66ddbfd9d808dfc9e0edd77e68
2019-04-08 09:52:53 -07:00
Jon Malmaud
1b25fdbcd0 More type stubs (#18511)
Summary:
Added stubs for:

* The `device` module
* The `cuda` module
* Parts of the `optim` module
* Began adding stubs for the `autograd` module. I'll annotate more later but `no_grad` and friends are probably the most used exports from it so it seemed like a good place to start.

This would close #16996, although comments on that issue reference other missing stubs so maybe it's worth keeping open as an umbrella issue.

The big remaining missing package is `nn`.

Also added a `py.typed` file so mypy will pick up on the type stubs. That closes #17639.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18511

Differential Revision: D14715053

Pulled By: ezyang

fbshipit-source-id: 9e4882ac997063650e6ce47604b3eaf1232c61c9
2019-04-01 16:03:58 -07:00
Shuichi KITAGUCHI
ddbfdc911d Create torch/lib directory before copying _C.lib on Windows environment. (#18666)
Summary:
`python setup.py develop` fails with following messages.
~~~
...
-- Building with NumPy bindings
-- Not using cuDNN
-- Not using MIOpen
-- Not using CUDA
-- Using MKLDNN
-- Not using NCCL
-- Building without distributed package

Copying extension caffe2.python.caffe2_pybind11_state
Copying caffe2.python.caffe2_pybind11_state from torch\Lib\site-packages\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd to C:\data\source\pytorch\build\lib.win-amd64-3.7\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd
copying torch\Lib\site-packages\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd -> C:\data\source\pytorch\build\lib.win-amd64-3.7\caffe2\python
building 'torch._C' extension
creating build\temp.win-amd64-3.7
creating build\temp.win-amd64-3.7\Release
creating build\temp.win-amd64-3.7\Release\torch
creating build\temp.win-amd64-3.7\Release\torch\csrc
...
creating C:\data\source\pytorch\build\lib.win-amd64-3.7\torch
C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\bin\HostX64\x64\link.exe /nologo /INCREMENTAL:NO /LTCG /nodefaultlib:libucrt.lib ucrt.lib /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:C:\data\source\pytorch\torch\lib /LIBPATH:C:\data\dlenv\libs /LIBPATH:C:\data\dlenv\PCbuild\amd64 "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\ATLMFC\lib\x64" "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\lib\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6.1\lib\um\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.17763.0\ucrt\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.17763.0\um\x64" shm.lib torch_python.lib /EXPORT:PyInit__C build\temp.win-amd64-3.7\Release\torch/csrc/stub.obj /OUT:build\lib.win-amd64-3.7\torch\_C.cp37-win_amd64.pyd /IMPLIB:build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.lib /NODEFAULTLIB:LIBCMT.LIB
   ライブラリ build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.lib とオブジェクト build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.exp を作成中
コード生成しています。
コード生成が終了しました。
copying build\lib.win-amd64-3.7\torch\_C.cp37-win_amd64.pyd -> torch
copying build\lib.win-amd64-3.7\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd -> caffe2\python
copying build/temp.win-amd64-3.7/Release/torch/csrc/_C.cp37-win_amd64.lib -> build/lib.win-amd64-3.7/torch/lib/_C.lib
error: could not create 'build/lib.win-amd64-3.7/torch/lib/_C.lib': No such file or directory
~~~

When `python setup.py install` is executed, `torch/lib`  has been created by previous process (copying many files) and this copy succeeds. But in develop mode, that process does not executed and this copy fails.

This patch creates `torch/lib` directory if do not exist.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18666

Differential Revision: D14704269

Pulled By: ezyang

fbshipit-source-id: b2d7c698a906b945bf34bb78f17b91b4fdfd3294
2019-04-01 07:28:08 -07:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
Gao, Xiang
a40e0a7f2d Add torch.version.git_version (#18299)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/18293
cc: colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18299

Differential Revision: D14611972

Pulled By: soumith

fbshipit-source-id: cdb48ef37c8869713a9a43ea0da08e1bed9279a2
2019-03-25 19:59:40 -07:00
Sebastian Messmer
daa77c6e26 Move schema inference to c10 (#18090)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18090

This schema inference is needed by the c10 operator registration mechanism. Move it to c10.
It is going to be used by diffs stacked on top.

Reviewed By: ezyang

Differential Revision: D14491454

fbshipit-source-id: 0f8ddcdbd91467c8347d315dd443a1ca8b216481
2019-03-21 14:57:30 -07:00
peter
906f9efc57 Revert "Add check for x64 Python before setup (#17707)" (#17864)
Summary:
This reverts commit 08fb9021da.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17864

Differential Revision: D14404920

Pulled By: soumith

fbshipit-source-id: d41fc06e249f3437d4f80d1d6a5fdbd44c90462b
2019-03-11 08:52:13 -07:00
peter
08fb9021da Add check for x64 Python before setup (#17707)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17657.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17707

Differential Revision: D14346705

Pulled By: ezyang

fbshipit-source-id: 5daafacdb99eb9a9c6517263d10f20c79f920d24
2019-03-06 10:48:16 -08:00
Lu Fang
9e08c998db Throw exception when foxi is not checked out (#17477)
Summary:
Add check and provide useful warning/error information to user if foxi is not checked out.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17477

Reviewed By: zrphercule

Differential Revision: D14212896

Pulled By: houseroad

fbshipit-source-id: 557247d5d8fdc016b1c24c2a21503e59f874ad09
2019-02-25 14:39:24 -08:00
Vishwak Srinivasan
9e69703dac USE_ --> BUILD_ for CAFFE2_OPS and TEST (#17390)
Differential Revision: D14195572

Pulled By: soumith

fbshipit-source-id: 28e4ff3fe03a151cd4ed014c64253389cb85de3e
2019-02-22 17:19:44 -08:00
Zachary DeVito
356a94b64e Lazily load libcuda libnvrtc from c++ (#17317)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/16860
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17317

Differential Revision: D14157877

Pulled By: zdevito

fbshipit-source-id: c37aec2d77c2e637d4fc6ceffe2bd32901c70317
2019-02-22 13:51:45 -08:00
Soumith Chintala
3069c45069 upgrade documentation in setup.py to NO_ -> USE_ (#17333)
Summary:
fixes https://github.com/pytorch/pytorch/issues/17265
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17333

Differential Revision: D14168483

Pulled By: soumith

fbshipit-source-id: a79f4f9d9e18cb64e2f56f777caa69ae92d2fa4b
2019-02-21 10:25:43 -08:00
Tri Dao
37890610b0 Include vec256 headers in setup.py (#17220)
Summary:
Fix #16650.

Headers such as `ATen/cpu/vml.h` contain `#include <ATen/cpu/vec256/vec256.h>`
for example, but these vec256 headers aren't included, due to commit e4c0bb1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17220

Differential Revision: D14165695

Pulled By: ezyang

fbshipit-source-id: 27b2aa2a734b3719ca4af0565f79623b64b2620f
2019-02-21 07:37:01 -08:00
Elias Ellison
89df22e57b Lightweight String check Utility (#16858)
Summary:
light weight implementation of LLVM filecheck utility. Currently only handles string matching - regexes & saving a regex to a variable name can be added as needed.

Current intended usage is through FileCheckBuilder python handle, and is shown in the tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16858

Differential Revision: D14096244

Pulled By: eellison

fbshipit-source-id: c7c8d1457691c105e6ccbb3c1a378d96baac2569
2019-02-19 12:31:57 -08:00
Dmytro Dzhulgakov
5a26579e27 Add more headers to setup.py to make pytorch/benchmark work (#16890)
Summary:
Since we don't do tmp_install any more it's better to include all necessary headers.

cc kostmo for better suggestions of how to list all headers here
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16890

Differential Revision: D14079848

Pulled By: dzhulgakov

fbshipit-source-id: 4522c80d05e5d91f99f6700cde46cac559330d28
2019-02-13 23:14:36 -08:00
Simeon Monov
bad4442a7c Parse the command line and check the arguments before build_deps() (#16914)
Summary:
This is needed to check for wrong arguments or --help options
before `build_deps()` is executed. Otherwise command line arguments
are not parsed and checked until `setup()` is run.

Fixes: #16707
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16914

Differential Revision: D14041236

Pulled By: soumith

fbshipit-source-id: 41f635772ccf47f05114775d5a19ae04c495ab3b
2019-02-12 00:15:42 -08:00
Zachary DeVito
21193bf123 try to get rid of tmp_install (#16414)
Summary:
Rehash of previous attempts. This tries a different approach where we accept the install as specified in cmake (leaving bin/ include/ and lib/ alone), and then try to adjust the rest of the files to this more standard layout.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16414

Differential Revision: D13863635

Pulled By: zdevito

fbshipit-source-id: 23725f5c64d7509bf3ca8f472dcdcad074de9828
2019-01-29 17:29:40 -08:00
Thomas Viehmann
6a6983ed7f create type hint stub files for module torch (#12500)
Summary:
We have:

- This is an initial stab at creating a type stub `torch/__init__.pyi` .
- This is only tested on Python 3, since that's the only Python version mypy
  works on.
- So far, we only aim at doing this for torch functions and torch.Tensor.
- Quite a few methods and functions have to be typed manually. These are
  done in `torch/__init__.pyi.in`

For me, PyCharm (the non-paid one) didn't seem to indicate errors in the .pyi when opening and seemed to be able to get the type hint for the few functions I tried, but I don't use PyCharm for my usual PyTorch activities, so I didn't extensively try this out.

An example of a generated PYI is at [this gist](https://gist.github.com/ezyang/bf9b6a5fa8827c52152858169bcb61b1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12500

Differential Revision: D13695553

Pulled By: ezyang

fbshipit-source-id: 4566c71913ede4e4c23ebc4a72c17151f94e8e21
2019-01-29 12:14:17 -08:00
Zachary DeVito
9477a5d9c8 Remove bash from build (#16289)
Summary:
This commit removes the dependency on `build_pytorch_libs.sh` by moving the remaining functionality that is not expressible in cmake into python. Removing the indirection through bash also removes over 300 lines of environment munging code that is incredibly hard to understand because it passes a lot of secret parameters through `os.env`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16289

Reviewed By: ezyang

Differential Revision: D13821662

Pulled By: zdevito

fbshipit-source-id: d658d26925e3b1169ac1e3d44a159cf8a1f0d9b1
2019-01-25 16:03:53 -08:00
Zachary DeVito
0cd1ab82b0 Remove dead code from setup.py, remove need for build target. (#16162)
Summary:
Now it is only necessary to use 'develop' or 'install' to build. Incremental cmake is on by default. `develop --cmake` forces it to rerun.

The NinjaBuilder stuff is dead. It was used to make building _C.so
faster but now _C.so is just an empty stub file.

Removed a bunch of custom build commands from setup.py that are
no longer meaningful now that cmake handles most of the build.

Removed unused targets in build_pytorch_lib.sh/bat
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16162

Differential Revision: D13744155

Pulled By: zdevito

fbshipit-source-id: d836484782c65b7f8e8c7a82620886f7a7777892
2019-01-21 17:27:56 -08:00
Zachary DeVito
b5c733324c Fix RERUN_CMAKE
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16132

Differential Revision: D13726816

Pulled By: zdevito

fbshipit-source-id: 26ad70651b0138642ad5240670f5c452018c13a2
2019-01-18 00:04:31 -08:00
Sebastian Messmer
3e85a2bcbf Move c10 dispatcher back to ATen/core (#16050)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16050

The c10 dispatcher will (soon) depend on IValue and IValue can't be moved to c10 yet because it depends on at::Tensor, which depends on legacy Type dispatch and we don't want the legacy dispatch in c10.

So instead, we move the c10 dispatcher back to ATen/core until we can actually move at::Tensor to c10.

Reviewed By: ezyang

Differential Revision: D13684517

fbshipit-source-id: 1125f4254223907c52f96ff73034f6d4ae9fd0a7
2019-01-17 15:56:52 -08:00
Jesse Hellemn
99b029aca3 Include all Caffe2 headers in Python installations (#16124)
Summary:
Confirmed on a local run that all the additional headers are present. This shouldn't be caught in any existing tests though.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16124

Differential Revision: D13720773

Pulled By: pjh5

fbshipit-source-id: 22a42639f5649cac555ecc5a8b6760a8cbfcf01f
2019-01-17 13:51:51 -08:00
peter
f7733526aa Generate PDB files for better debugging on Windows (#16008)
Summary:
1. Unify `build_pytorch_libs.bat`, `setup.py` and `torch/CMakeLists.txt` on the debugging flags with the `CMAKE_BUILD_TYPE` being `Debug`, `Release` and `RelWithDebInfo`.
2. Install PDBs through CMake if they are generated.

Reference:
1. CMake PDB install: https://gitlab.kitware.com/cmake/cmake/issues/18393#note_459199
2. About debugging flags https://stackoverflow.com/a/4662345
3. MSDN page about /DEBUG flag: https://docs.microsoft.com/en-us/cpp/build/reference/debug-generate-debug-info?view=vs-2017
4. MSDN page about /Z{i/I/7}: https://docs.microsoft.com/en-us/cpp/build/reference/z7-zi-zi-debug-information-format?view=vs-2017

Work to do:
- [x] Test the changes work in Release config through this PR
- [ ] <del> Test debug build through https://github.com/pytorch/pytorch/pull/16009 </del>
- [x] Test release build with debugging symbols through #16013

Difficulties:
- [x] Replace /Zi flags with /Z7 (which will be added if DEBUG or RelWithDebInfo is used), as it is not supported by sccache
- [x] Resolve `LINK : fatal error LNK1210: exceeded internal ILK size limit; link with /INCREMENTAL:NO` in the debug build
- [ ] DEBUG build blocked by a MSVC bug. In order to resolve it, we'll need to update the MSVC in CI: https://developercommunity.visualstudio.com/content/problem/225957/fatal-error-lnk1318-unexpected-pdb-error-ok-0.html
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16008

Differential Revision: D13709527

Pulled By: ezyang

fbshipit-source-id: e8365bc75d9ec64099093f7001f83d99a06b196b
2019-01-16 23:34:32 -08:00
Jesse Hellemn
406b9c49bd Fix Python path finding for benchmark tests
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16022

Differential Revision: D13673792

Pulled By: pjh5

fbshipit-source-id: 177a823ef343b7f60e26ad9ef51415332045438d
2019-01-15 10:48:40 -08:00
Jesse Hellemn
8964a2e6e6 Split Caffe2 CI into cmake-only and python builds (#15917)
Summary:
bypass-lint

- Change all Caffe2 builds to use setup.py instead of cmake
- Add a -cmake- Caffe2 build configuration that uses cmake and only builds cpp
- Move skipIfCI logic from onnx test scripts to the rest of CI logic
- Removal of old PYTHONPATH/LD_LIBRARY_PATH/etc. env management
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15917

Reviewed By: orionr

Differential Revision: D13637583

Pulled By: pjh5

fbshipit-source-id: c5c5639db0251ba12b6e4b51b2ac3b26a8953153
2019-01-14 15:20:44 -08:00
Sebastian Messmer
d408324350 Move files to/from c10/core and c10/util (#15316)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15316

This starts cleaning up the files in c10 according to the module structure we decided on.

Move to c10/util:
- Half.h, Half-inl.h, Half.cpp, bitcasts.h

Move to c10/core:
- Device.h, Device.cpp
- DeviceType.h, DeviceType.cpp

i-am-not-moving-c2-to-c10

Reviewed By: dzhulgakov

Differential Revision: D13498493

fbshipit-source-id: dfcf1c490474a12ab950c72ca686b8ad86428f63
2019-01-10 16:22:22 -08:00
peter
0ed3f766e9 Unify flags and environmental variable when building LibTorch/PyTorch (#15868)
Summary:
Fixes #15858.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15868

Differential Revision: D13622354

Pulled By: soumith

fbshipit-source-id: bb8c49520ebf926c6194d42db75accba867018c7
2019-01-10 06:47:14 -08:00
andersj
8a5ba577c1 Revert "remove use of tmp_install" (#15847)
Summary:
This reverts commit 04bf528589.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15847

Differential Revision: D13603174

Pulled By: anderspapitto

fbshipit-source-id: ae321434d3345ad94fad67bf71fd027cddeb4588
2019-01-08 16:30:19 -08:00
Jesse Hellemn
4f51ca490e Correcting source pybind11 library to install into Python
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15836

Reviewed By: anderspapitto

Differential Revision: D13601331

Pulled By: pjh5

fbshipit-source-id: 36785c501774c01f47acb49cdac265b2c95a5040
2019-01-08 15:06:55 -08:00
andersj
04bf528589 remove use of tmp_install
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14553

Differential Revision: D13583335

Pulled By: anderspapitto

fbshipit-source-id: 8711fead9eda877c1037a0bc59f91a3d2e01f3e0
2019-01-04 13:48:12 -08:00
Soumith Chintala
4c5b1cc026 version bump to 1.1 (#15554)
Summary:
version bump to 1.1
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15554

Differential Revision: D13550818

Pulled By: soumith

fbshipit-source-id: 8a28582c98b42c081e103581551a01fd96c9f42d
2018-12-26 15:44:25 -08:00
Peter Goldsborough
ad6799537e Support stateful dataset (#15096)
Summary:
Currently re-implements the dataloader for stateful datasets. Outstanding work:
- Refactor DataLoader and DataLoader2 to have common base classes and only differ in specifi pieces of logic,
- Figure out how to not duplicate the `MapDataset` logic for stateful vs. non-stateful
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15096

Differential Revision: D13522043

Pulled By: goldsborough

fbshipit-source-id: 08e461ca51783047f11facc4d27dfa2e4f1e4c2a
2018-12-24 06:26:40 -08:00
peter
d71fac20eb Refactor hotpatch_vars and apply it to libtorch (#14976)
Summary:
Fixes #14801.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14976

Differential Revision: D13485381

Pulled By: soumith

fbshipit-source-id: 0af3c2e1b90988d56f6f85632328d1e4b788ffd2
2018-12-16 21:53:31 -08:00
Junjie Bai
bdfff2f8c2 Add missing caffe2_hip extension in setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15189

Reviewed By: orionr

Differential Revision: D13457644

Pulled By: bddppq

fbshipit-source-id: c2363e9b8fd21709b62777e5b2199f01ec1c65f8
2018-12-13 15:59:51 -08:00
Zachary DeVito
92314c83fa re-enable copy of python files, but be careful that the copy is only … (#14982)
Summary:
…done once

This allow no-op build to work correctly even when BUILD_CAFFE2_OPS is on.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14982

Differential Revision: D13413960

Pulled By: zdevito

fbshipit-source-id: 6e5412a8c375af8a47c76f548cdd31cff15f3853
2018-12-11 16:54:08 -08:00
Orion Reblitz-Richardson
687834dcb4 Install cpp tests when built (#15000)
Summary:
This is broken out of https://github.com/pytorch/pytorch/pull/13733/

We want to install cpp tests so they can ultimately be runnable from that location for Caffe2 tests run from PyTorch builds.

cc pjh5 yf225 anderspapitto
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15000

Reviewed By: pjh5

Differential Revision: D13416253

Pulled By: orionr

fbshipit-source-id: 51280be0a22557a742f90c9f303c58c35cbd4a38
2018-12-11 10:07:48 -08:00
Jesse Hellemn
5222a1b190 Fixing reading of FBGEMM from env variables
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15023

Reviewed By: orionr

Differential Revision: D13406778

Pulled By: pjh5

fbshipit-source-id: 2265f01170fb7969cbdf4e44ca6ef183f5d8017d
2018-12-10 18:18:38 -08:00
Zachary DeVito
e747acbebb Respect -q of setup.py (#14972)
Summary:
1. Changes the prints along the 'rebuild' pathway to respect the '-q' flag of setup.py
A clean rebuild now only prints:

    [zdevito@devgpu172.prn2 /data/users/zdevito/pytorch] python setup.py -q rebuild develop
    [0/1] Install the project...
    -- Install configuration: "RelWithDebInfo"
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.

2. Deletes apparently dead calls to `generate_code`. Now that CMake builds these files,
it appears that it is getting called twice and the second version is never used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14972

Reviewed By: soumith

Differential Revision: D13396330

Pulled By: zdevito

fbshipit-source-id: 83c45143bbc6a6d2c1cfee929291ec059f2b5dc3
2018-12-09 22:47:49 -08:00
Sergei Nikolaev
a0ee3a279c USE_TENSORRT support and TensorRT 5 compatibility
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13945

Differential Revision: D13317525

Pulled By: yinghai

fbshipit-source-id: 8630dfec1bbc5aac19539e344e7c38a7fd8b051d
2018-12-07 14:01:11 -08:00
HB_alon
5e307bd1be use "Extension" instead of the unimported "setuptools.Extension" (#14475)
Summary:
use "Extension" instead of the unimported "setuptools.Extension"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14475

Differential Revision: D13356219

Pulled By: ezyang

fbshipit-source-id: 5a3e7eb73a32d6bf09676efd9eddded5586435cd
2018-12-05 22:18:47 -08:00
Soumith Chintala
aa842fe101 clean up linkage options (#14609)
Summary: minor code cleanup

Differential Revision: D13277803

Pulled By: soumith

fbshipit-source-id: 5ef925fe95037cab540b329054d7070c1ea7031e
2018-11-30 09:36:59 -08:00
andersj
fb7e40b7eb nccl fixes (#14195)
Summary:
This has 4 changes

1) propagate USE_SYSTEM_NCCL. Previously it was ignored and cmake always did a FindPackage
2) respect SCCACHE_DISABLE in our caffe2 sccache wrapper for circleci
3) use SCCACHE_DISABLE when building nccl, because it triggers the same bug as when using CCACHE (already tracked in https://github.com/pytorch/pytorch/issues/13362). This was hidden because we weren't respecting USE_SYSTEM_NCCL, and were never building nccl ourselves in CI
4) In one particular CI configuration (caffe2, cuda 8, cudnn 7), force USE_SYSTEM_NCCL=1. Building the bundled nccl triggers a bug in nvlink. I've done some investigation, but this looks like a tricky, preexisting bug, so rather than hold up this diff I'm tracking it separately in https://github.com/pytorch/pytorch/issues/14486
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14195

Differential Revision: D13237502

Pulled By: anderspapitto

fbshipit-source-id: 1100ac1269c7cd39e2e0b3ba12a56a3ce8977c55
2018-11-28 14:43:06 -08:00
Sebastian Messmer
50e9c56830 Move Scalar and ScalarType to c10/core
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14022

Reviewed By: ezyang

Differential Revision: D13015236

fbshipit-source-id: 92aac4e342d85f75a31837b2943fa5b80f0c35c9
2018-11-27 12:59:36 -08:00
Zachary DeVito
788d2e87bd Address jittering issues in python_print (#14064)
Summary:
export - print a method with python_print
import - import a method with import_method

We want to ensure:

    export(g) == export(import(export(g)))

That is after after exporting/importing once, the graph will stay exactly
the same. This is less strict that g == import(export(g)) which would
require us to maintain a lot more information about the structure of the
IR and about the names of debug symbols.

This PR addresses this with the following fixes:
* print out double-precision numbers with high enough precision such
  that they always parse in the same way
* when creating loop-carried dependencies, sort them
  by variable name, ensuring a consistent order
* parse nan correctly
* DCE: remove unused outputs of if statements, and loop-carried dependencies
  in loops that are dead both after the loop and inside the body of the
  loop.
* Do not set uniqueName for variables whose names are _[0-9]+, these
  are probably rare in user code, and we need a way to communicate
  that we do not care about a variable name when re-parsing the graph.
  Otherwise temporary variable names will jitter around.
* Expand the definition of a constant in printing code to None,
  and family.
* Allow re-treeing to work as long as the only thing in its way is a
  constant node. These do not have side effects but are sometimes
  inserted in a different order when tracing compared to how we print them.
* Print all constant nodes out first in the order in which they are used_val
 (or, if they are inlined, ensure they get assigned CONSTANT.cX number
  in a consistent order). Cleanup tuples (this is done in the compiler,
  but not in the tracer, leading to some tuple indexing jitter if not
  done).
* use strtod_l, not std::stod which can throw exceptions

Other:
* Add REL_WITH_DEB_INFO to setup.py. It already existed for the
  cmake files. Threading it into setup.py allows us to turn on
  debug symbols with optimization everywhere.
* enable round trip testing for all generated graphs. This only adds
  ~6 seconds to total build time but tests printing for every graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14064

Differential Revision: D13094637

Pulled By: zdevito

fbshipit-source-id: 0a1c6912194d965f15d6b0c6cf838ccc551f161d
2018-11-21 06:38:29 -08:00
Edward Yang
48099c23b4 Move AT_CUDA_CHECK to c10
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13910

Reviewed By: smessmer

Differential Revision: D13046201

fbshipit-source-id: 8d360a0e4d6c2edf070d130e600c6b04f0ee0058
2018-11-19 08:20:10 -08:00
Anders Papitto
2983998bb3 add torch-python target (#12742)
Summary:
This is the next minimal step towards moving _C into cmake. For now,
leave _C in setup.py, but reduce it to an empty stub file. All of its
sources are now part of the new torch-python cmake target.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12742

Reviewed By: soumith

Differential Revision: D13089691

Pulled By: anderspapitto

fbshipit-source-id: 1c746fda33cfebb26e02a7f0781fefa8b0d86385
2018-11-16 11:43:48 -08:00
Edward Yang
fbabe5bf62 Rename c10::detail to c10::impl (#13838)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13838

According to Sebastian, the detail convention is specifically for header-private
functionality.  That's not what c10/detail is; it's general, library private headers
which may be used in multiple places within PyTorch.  Rename it to impl to avoid
the confusion in nomenclature.

Reviewed By: smessmer

Differential Revision: D13024368

fbshipit-source-id: 050f2632d83a69e3ae53ded88e8f938c5d61f0ef
2018-11-14 07:39:37 -08:00
jario-jin
0bedaf9cf6 Update setup.py to support Nvidia TX2 (#13939)
Summary:
add platform.machine() == 'aarch64' for supporting Nvidia TX2
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13939

Differential Revision: D13055834

Pulled By: soumith

fbshipit-source-id: 0fadc87adf9e6b796978ce743e824eb98b006856
2018-11-13 20:10:35 -08:00
CircleCI
f1a2bc4eae Corrected python lib path on windows to be consistent with Linux (#13848)
Summary:
The python lib path on Windows was set to an incorrect path. This fixes it to be consistent with Linux.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13848

Differential Revision: D13030945

Pulled By: soumith

fbshipit-source-id: 7fb9013ffe66cff98018aea25fdb5cda03cbceb1
2018-11-12 14:39:55 -08:00
Johannes M Dieterich
53a3c46950 Switch to packaged Thrust on Ubuntu, enable CentOS 7.5 as a CI target (#12899)
Summary:
1) Use the hip-thrust version of Thrust as opposed to the GH master. (ROCm 267)

2) CentOS 7.5 docker (ROCm 279)

* Always install the libraries at docker creation for ubuntu.
* Add Dockerfile for CentOS ROCm
* Enable the centos build
* Source devtoolset in bashrc
* Set locales correctly depending on whether we are on Ubuntu or CentOS
* Install a newer cmake for CentOS
* Checkout thrust as there is no package for CentOS yet.

PyTorch/Caffe2 on ROCm passed tests: https://github.com/ROCmSoftwarePlatform/pytorch/pull/280

For attention: bddppq ezyang

Docker rebuild for Ubuntu not urgent (getting rid of Thrust checkout and package install is mainly cosmetic). If docker for CentOS 7.5 is wanted, build is necessary. Build of PyTorch tested by me in CentOS docker. PyTorch unit tests work mostly, however, a test in test_jit causes a python recursion error that seems to be due to the python2 on CentOS as we haven't ever seen this on Ubuntu - hence please do not enable unit tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12899

Differential Revision: D13029424

Pulled By: bddppq

fbshipit-source-id: 1ca8f4337ec6a603f2742fc81046d5b8f8717c76
2018-11-12 14:39:54 -08:00
David Brownell
75bf877534 Preventing error where ninja build files are overwritten when invokin… (#13698)
Summary:
…g clean and build together
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13698

Differential Revision: D13030905

Pulled By: soumith

fbshipit-source-id: 234576ac92e0aa8c2d2409958d3cf85eb29ed1f3
2018-11-12 14:39:48 -08:00
Edward Yang
e35418b3be New implementations of DeviceGuard, StreamGuard and MultiStreamGuard (with CUDA specializations) (#13342)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13342

This PR introduces a few new concepts:

- DeviceGuardImplInterface, and implementations for CPU and CUDA, which
  provide a generic interface for interfacing with device and stream state,
  without requiring a direct dependency on the code in question.
- InlineDeviceGuard, a general template for generating both specialized
  and dynamically dispatched device guard implementations.  Dynamic
  dispatch is done by specializing it on a VirtualGuardImpl.
- Provide a device-independent DeviceGuard class, which can be used even
  from CPU code. It uses the aforementioned dynamic dispatch.
- CUDA-specialized CUDAGuard class, which doesn't have a dynamic dispatch
  but can only be used from CUDA.
- StreamGuard, which is the same as above, but for streams rather than
  devices.
- Optional variants of all the aforementioned guards, which are a no-op if
  no device/stream is specified
- CUDAMultiStreamGuard, specifically for the case when we want to set
  a device on every guard.

There are some subtle semantic changes, which have been thoroughly documented
in the class definition.

BC-breaking changes:

- Move constructor/assignment have been removed from all device guard
  implementations.
- In some cases where you previously wrote 'set_device' (or 'set_stream'), you now must write
  'reset_device', because if you switch devices/device types, the stream/device on the
  previous device is unset.  This is different from previous behavior.
- CUDAGuard no longer handles streams, or multiple streams.  Use CUDAStreamGuard
  or CUDAMultiStreamGuard as appropriate for your use case.

Reviewed By: dzhulgakov

Differential Revision: D12849620

fbshipit-source-id: f61956256f0b12be754b3234fcc73c2abc1be04e
2018-11-11 12:11:10 -08:00
Tongzhou Wang
a63ef1d605 Suggest git submodule update --init --recursive (#13769)
Summary:
We now have submodules that have submodules
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13769

Reviewed By: soumith

Differential Revision: D13000203

Pulled By: SsnL

fbshipit-source-id: 63c0c19c6c9d25ae3bf255a2421a82ca68278866
2018-11-09 08:41:44 -08:00
Freddie Mendoza
a8e303dc46 change USE_MKLDNN default from ON (from #13303) to OFF for ppc64le (#13759)
Summary:
MKLDNN is not supported on ppc64le change USE_MKLDNN to OFF for ppc64le
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13759

Differential Revision: D12993121

Pulled By: soumith

fbshipit-source-id: 539d5cfcff2c03b59fa71e10b52fac333a64c381
2018-11-08 19:33:39 -08:00
Gu, Jinghui
d01cb70497 build with mkl-dnn by default (#13303)
Summary:
build with mkl-dnn by default
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13303

Reviewed By: yinghai

Differential Revision: D12979633

Pulled By: orionr

fbshipit-source-id: 00d23fa27c0d13e82f7e5acb3ebd00ed7ba1d5dc
2018-11-08 11:18:27 -08:00
Peter Goldsborough
d4f9dbfa66 Remove catch check
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13677

Differential Revision: D12961992

Pulled By: goldsborough

fbshipit-source-id: 1f0207704d05ac67ed1ec1502bec617c845d9f79
2018-11-07 12:27:15 -08:00
Daya S Khudia
18de330e86 CMake integration for int8 server operators
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13558

Reviewed By: Maratyszcza

Differential Revision: D12945460

Pulled By: dskhudia

fbshipit-source-id: 1a91027b305fd6af77eebd9a4fad092a12f54712
2018-11-06 15:45:15 -08:00
Soumith Chintala
a7ee632dff Various Test and build fixes (#13556)
Summary:
- fixes weights-contiguous requirement for THCUNN Convolutions
- Add tests that conv backward pass works for non-contiguous weights
- fix RNN tests / error messages to be consistent and pass
- relax weight grad precision for fp16 for a particular test
- fix regression of CMAKE_PREFIX_PATH not passing through
- add missing skipIfNoLapack annotations where needed

Differential Revision: D12918456

Pulled By: soumith

fbshipit-source-id: 8642d36bffcc6f2957800d6afa1e10bef2a91d05
2018-11-06 07:13:47 -08:00
Ilija Radosavovic
9e432b593d Include caffe2 proto headers in pytorch package data (#13217)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13217

Caffe2 proto headers are not included in pytorch package data (https://github.com/pytorch/pytorch/blob/master/setup.py#L1180). However, they are required for building custom Caffe2 ops living outside PyTorch/Caffe2 repo (e.g. custom Detectron ops).

Reviewed By: pjh5

Differential Revision: D12815881

fbshipit-source-id: 4d1aaa6a69a2193247586e85e4244fbbdb3e8192
2018-11-03 16:19:39 -07:00
Pieter Noordhuis
24839aac59 Link libgloo.a after libc10d.a to resolve remaining symbols (#13462)
Summary:
libcaffe2.so depends on libgloo.a for the ops in caffe2/contrib/gloo.
Symbols in libgloo.a that are not used are ignored and don't end up in
libcaffe2.so. libc10d.a depends on the caffe2 target, which in turn
depends on the gloo target, and it expects all libgloo.a symbols to be
part of libcaffe2.so. Symbols from libgloo.a that are not used in
libcaffe2.so remain undefined in libc10d.a.

To fix this, we link to libgloo.a when linking _C.so, such that any
gloo symbols in libc10d.a are resolved when linking _C.so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13462

Differential Revision: D12892830

Pulled By: pietern

fbshipit-source-id: 7560b3899b62f76081b394498480e513a84cefab
2018-11-01 16:03:33 -07:00
David Brownell
50a8f8531b Updated for for arbitrary command line arg ordering
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13253

Differential Revision: D12829884

Pulled By: soumith

fbshipit-source-id: 9d8abcdf635e2daffce80ddf1e0e418a1e4c337d
2018-10-29 15:52:03 -07:00
Anders Papitto
380d2dfb27 absorb nccl (#13150)
Summary:
always build nccl from within the main cmake build, rather than via a separate invocation in build_pytorch_libs.sh. Use the existing caffe2 codepaths
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13150

Differential Revision: D12815674

Pulled By: anderspapitto

fbshipit-source-id: a710b6f242d159b9816911a25ee2c4b8c3f855aa
2018-10-29 12:04:32 -07:00
Gu, Jinghui
dbab9b73b6 seperate mkl, mklml, and mkldnn (#12170)
Summary:
1. Remove avx2 support in mkldnn
2. Seperate mkl, mklml, and mkldnn
3. Fix convfusion test case
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12170

Reviewed By: yinghai

Differential Revision: D10207126

Pulled By: orionr

fbshipit-source-id: 1e62eb47943f426a89d57e2d2606439f2b04fd51
2018-10-29 10:52:55 -07:00
Sam Gross
e6ce9f303f Check that QNNPACK directory exists in setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13174

Differential Revision: D12808599

Pulled By: colesbury

fbshipit-source-id: 2548a024043f32ee570378dfead8880b00608478
2018-10-26 14:37:11 -07:00
Marat Dukhan
5e73b828bd CMake integration for Int8 ops
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13145

Differential Revision: D10860849

Pulled By: Maratyszcza

fbshipit-source-id: fdbcc23ff9beaeaedfd561176df6cfe87685c1f5
2018-10-25 22:25:10 -07:00
Anders Papitto
e07e63f0b3 Absorb shm
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13088

Differential Revision: D10856067

Pulled By: anderspapitto

fbshipit-source-id: cfbf0f6cad3953e1ee1c55482c00a3db9f140594
2018-10-25 13:55:23 -07:00
Anders Papitto
b883afc928 Absorb c10d into the main cmake build
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12953

Differential Revision: D10850274

Pulled By: anderspapitto

fbshipit-source-id: 42296e6e49ad8c1845040e031eab95ddbaf58ae4
2018-10-24 22:34:00 -07:00
Anders Papitto
69906afaee absorb THD into main cmake build (#12775)
Summary:
We want to move _C into the same cmake invocation that builds
libcaffe2 and libtorch. However, _C depends on THD and c10d, which in
turn depend on libcaffe2. That means that we can't move _C into that
cmake file unless we do these two first. This change does so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12775

Differential Revision: D10457374

Pulled By: anderspapitto

fbshipit-source-id: 2c1aa3b8a418a73d2112e93c7da53a2e70cf7bba
2018-10-24 21:28:37 -07:00
Anders Papitto
2dacf28b66 link libgloo_cuda.a explictly from setup.py (#12951)
Summary:
rather than pass a list through a text file
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12951

Differential Revision: D10528309

Pulled By: anderspapitto

fbshipit-source-id: d94befcd61b6304815859694b623046f256462df
2018-10-24 13:19:46 -07:00
Yangqing Jia
52beb338ab Add Modules_CUDA_Fix folder to installed folder (#13013)
Summary:
This is used to patch our cmake cuda scripts - should be in the installation script.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13013

Reviewed By: ir413

Differential Revision: D10519104

Pulled By: Yangqing

fbshipit-source-id: 542049224ea41068f32d4c0f6399c7e8b684f764
2018-10-24 10:16:18 -07:00
Anders Papitto
8f51c513a6 gloo: build once, share between pytorch/caffe2
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12885

Differential Revision: D10492244

Pulled By: anderspapitto

fbshipit-source-id: 79af1ceb9bb0dab4585a728e64554ff4f38d6c32
2018-10-22 11:06:14 -07:00
Peter Goldsborough
a022fd2d6b Implement DataLoader (#11918)
Summary:
This PR implements a DataLoader API for the C++ frontend.

The components present in this API largely match the Python API. It consists of:
- `Dataset`s: Conceptually a function from a set of indices to a batch of examples;
- `Transform`s: A functional transformation of a dataset. A `Map<D, T>` for Dataset `D` and transform `T` is itself a dataset;
- `Sampler`s: Specify a strategy for generating indices for a new batch;
- A `DataLoader`, with the ability to automatically parallelize fetching of samples across multiple worker threads;

Note that collation functions fall naturally out of the `Map<Dataset, Transform>` abstraction.

Things that are missing right now that maybe should be added:
- Memory pinning for CUDA tensors

The API was designed to be generalizable to almost any kind of dataset, transform or sampling strategy, while providing a convenient API out of the box. To achieve this, it is quite heavily templatized on various possible input types.

There are many parts to this PR! Right now, I would like feedback on:
- Your impression of the general usability of the API;
- Your impression of which parts seem too complex or overthought;
- The implementation of the parallelization aspects of the DataLoader. I've followed the Python implementation in some matters, but also differ in others. I think my implementation is a little cleaner and decouples components slightly better than the Python dataloader.

I haven't added too many comments yet, as this is fresh out of the oven. Let me know if anything is unclear from the code itself.

There also aren't any tests yet. I will write a comprehensive test suite once we agree on the API and implementation.

apaszke ezyang The controller you requested could not be found. pietern
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11918

Reviewed By: ezyang

Differential Revision: D9998881

Pulled By: goldsborough

fbshipit-source-id: 22cf357b63692bea42ddb1cc2abc71dae5030aea
2018-10-22 10:22:41 -07:00
JerryShih
0fa69c0276 Remove the protobuf library in pytorch linking list. (#12451)
Summary:
There will be a link error when the caffe2 doesn't use its protobuf under third_party. The pytorch will always link that protobuf. The pytorch doesn't use the protobuf directly. We could remove it from
the list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12451

Differential Revision: D10262676

Pulled By: ezyang

fbshipit-source-id: c2ff3fdf757fc21ed689e7f663c082064b1a0bca
2018-10-18 18:31:51 -07:00
Benoit Steiner
bbe6ef3864 torch.finfo and torch.iinfo to mimic the numpy equivalent (#12472)
Summary:
This pull request intends to provide the functionality requested in https://github.com/pytorch/pytorch/issues/10742 by adding a new torch.finfo and torch.iinfo API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12472

Differential Revision: D10250829

Pulled By: benoitsteiner

fbshipit-source-id: eb22ca55d5b0064bef381fa7f1eb75989977df30
2018-10-15 13:43:52 -07:00
Yangqing Jia
713e706618 Move exception to C10 (#12354)
Summary:
There are still a few work to be done:

- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h

This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:

(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.

Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354

Reviewed By: orionr

Differential Revision: D10238910

Pulled By: Yangqing

fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
2018-10-15 13:33:18 -07:00
Philip Yang
b57fdf1db5 Properly set cmake python library and include_dirs (#12569)
Summary:
Properly set cmake python_library and include_dirs hints, so that systems with multiple version of python can still find the correct libraries and header files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12569

Differential Revision: D10359910

Pulled By: soumith

fbshipit-source-id: 2238dcbed7aac8a818c9435e6bba46cda5f81cad
2018-10-12 08:11:21 -07:00
Orion Reblitz-Richardson
25bd7fe488 Add USE_FFMPEG flag for setup.py and R2Plus1D (#12543)
Summary:
Needed for https://github.com/facebookresearch/R2Plus1D/pull/46
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12543

Differential Revision: D10320147

Pulled By: orionr

fbshipit-source-id: a7dcbf7c0d4b405b9e89b28ef75a0ed1cf2a3e6a
2018-10-10 18:09:48 -07:00
Teng Li
c5d7494ca1 Use open-source NCCL2 in PyTorch (#12359)
Summary:
- Removed the old nccl file
- Make open-source NCCL a submodule
- CMake to make NCCL itself

NCCL2 now is in the default build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12359

Reviewed By: orionr, yns88

Differential Revision: D10219665

Pulled By: teng-li

fbshipit-source-id: 134ff47057512ba617b48bf390c1c816fff3f881
2018-10-08 15:39:07 -07:00
Sam Gross
f9fb37ca79 Guard Denormals-Are-Zero with runtime CPU check (#12386)
Summary:
Previously, we were only enabling Flush-To-Zero (FTZ) and
Denormals-Are-Zero (DAZ) when compiling with SSE3 enabled. After,
Christian's patch (https://github.com/pytorch/pytorch/pull/12109) we
won't be compiling core files with SSE3 or SSE4 enabled, to better
support older AMD processors.

This moves the FTZ and DAZ code behind a runtime CPU check in
preparation for that change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12386

Differential Revision: D10222237

Pulled By: colesbury

fbshipit-source-id: 7ffe32561ab965e1e5f9eb6e679602bbf4775538
2018-10-05 14:54:54 -07:00
Orion Reblitz-Richardson
895994a7c3 Back out "[pytorch][PR] [Build] Use open-source NCCL2 in PyTorch"
Reviewed By: The controller you requested could not be found.

fbshipit-source-id: a13075339d3a7b970e81be0b1a32a7c4c3a6c68d
2018-10-04 14:12:04 -07:00
Teng Li
ae7a7fb398 Use open-source NCCL2 in PyTorch (#12312)
Summary:
- Removed the old nccl file
- Make open-source NCCL a submodule
- CMake to make NCCL itself

NCCL2 now is in the default build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12312

Differential Revision: D10190845

Pulled By: teng-li

fbshipit-source-id: 08d42253b774149a66919d194f88b34628c39bae
2018-10-04 11:42:17 -07:00
Sven-Hendrik Haase
080266e79c Document CUDAHOSTCXX environment variable (#12265)
Summary:
This variable is already being used so this just serves to document that. I think it's an important variable, too, so it should definitely be documented there somewhere.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12265

Differential Revision: D10162261

Pulled By: soumith

fbshipit-source-id: e0d01e012c2fedea63372de9967a8eaa3745fe94
2018-10-03 06:33:06 -07:00
daquexian
1fb8925efe Fix typo LMBD->LMDB in docs of setup.py (#12282)
Summary:
`setup.py` reads `USE_LMDB` rather than `USE_LMBD`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12282

Differential Revision: D10162025

Pulled By: soumith

fbshipit-source-id: 6295a777be10509ca49516ad7c10061d26b6f9c9
2018-10-03 06:14:19 -07:00
Edward Yang
1619264ca5 Make ATen-core and caffe2 mutually recursive / merge template data<T>() (#11970)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11970

Adds an ATen-core-headers target, which caffe2_cpu_internal depends
on, and makes ATen-core depend on caffe2_headers.  If you link against
ATen-core, you must ALSO link against caffe2_cpu_internal; if you
link against caffe2_cpu_internal, you must ALSO link against ATen-core,
otherwise you'll have undefined symbols.

Then, we merge template data<T>() method with Caffe2 implementation,
demonstrating that includes to Caffe2 (core) from ATen/core are working

Reviewed By: jerryzh168

Differential Revision: D9967509

fbshipit-source-id: 3d220c38b2c3c646f8ff2884fdcc889fa9276c7a
2018-09-27 17:40:42 -07:00
Yangqing Jia
9c49bb9ddf Move registry fully to c10 (#12077)
Summary:
This does 6 things:

- add c10/util/Registry.h as the unified registry util
  - cleaned up some APIs such as export condition
- fully remove aten/core/registry.h
- fully remove caffe2/core/registry.h
- remove a bogus aten/registry.h
- unifying all macros
- set up registry testing in c10

Also, an important note that we used to mark the templated Registry class as EXPORT - this should not happen, because one should almost never export a template class. This PR fixes that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12077

Reviewed By: ezyang

Differential Revision: D10050771

Pulled By: Yangqing

fbshipit-source-id: 417b249b49fed6a67956e7c6b6d22374bcee24cf
2018-09-27 03:09:54 -07:00
Orion Reblitz-Richardson
02d7c88fa4 Unify versions across setup.py, libtorch, and libcaffe2 (#12053)
Summary:
This unifies our versions across setup.py, libtorch, and libcaffe2. CMake has a default version (bumped to 1.0.0) that can be overridden by setup.py. The versions are also printed as a part of cmake/Summary.cmake to make sure they are correct.

cc Yangqing ezyang soumith goldsborough pjh5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12053

Differential Revision: D10041878

Pulled By: orionr

fbshipit-source-id: a98a01771f6c008d1016ab63ab785c3a88c3ddb0
2018-09-26 08:55:06 -07:00
Peter Goldsborough
e05d689c49 Unify C++ API with C++ extensions (#11510)
Summary:
Currently the C++ API and C++ extensions are effectively two different, entirely orthogonal code paths. This PR unifies the C++ API with the C++ extension API by adding an element of Python binding support to the C++ API. This means the `torch/torch.h` included by C++ extensions, which currently routes to `torch/csrc/torch.h`, can now be rerouted to `torch/csrc/api/include/torch/torch.h` -- i.e. the main C++ API header. This header then includes Python binding support conditioned on a define (`TORCH_WITH_PYTHON_BINDINGS`), *which is only passed when building a C++ extension*.

Currently stacked on top of https://github.com/pytorch/pytorch/pull/11498

Why is this useful?

1. One less codepath. In particular, there has been trouble again and again due to the two `torch/torch.h` header files and ambiguity when both ended up in the include path. This is now fixed.
2. I have found that it is quite common to want to bind a C++ API module back into Python. This could be for simple experimentation, or to have your training loop in Python but your models in C++. This PR makes this easier by adding pybind11 support to the C++ API.
3. The C++ extension API simply becomes richer by gaining access to the C++ API headers.

soumith ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11510

Reviewed By: ezyang

Differential Revision: D9998835

Pulled By: goldsborough

fbshipit-source-id: 7a94b44a9d7e0377b7f1cfc99ba2060874d51535
2018-09-24 14:44:21 -07:00
Yangqing Jia
a6f1ae7f20 set up c10 scaffolding. Move macros proper first.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11939

Reviewed By: orionr, dzhulgakov

Differential Revision: D10004629

Pulled By: Yangqing

fbshipit-source-id: ba50a96820d35c7922d81c78c4cbe849c85c251c
2018-09-24 11:09:59 -07:00
Peter Goldsborough
6100c0ea14 Introduce ExtensionVersioner for C++ extensions (#11725)
Summary:
Python never closes shared library it `dlopen`s. This means that calling `load` or `load_inline` (i.e. building a JIT C++ extension) with the same C++ extension name twice in the same Python process will never re-load the library, even if the compiled source code and the underlying shared library have changed. The only way to circumvent this is to create a new library and load it under a new module name.

I fix this, of course, by introducing a layer of indirection. Loading a JIT C++ extension now goes through an `ExtensionVersioner`, which hashes the contents of the source files as well as build flags, and if this hash changed, bumps an internal version stored for each module name. A bump in the version will result in the ninja file being edited and a new shared library and effectively a new C++ extension to be compiled. For this the version name is appended as `_v<version>` to the extension name for all versions greater zero.

One caveat is that if you were to update your code many times and always re-load it in the same process, you may end up with quite a lot of shared library objects in your extension's folder under `/tmp`. I imagine this isn't too bad, since extensions are typically small and there isn't really a good way for us to garbage collect old libraries, since we don't know what still has handles to them.

Fixes https://github.com/pytorch/pytorch/issues/11398 CC The controller you requested could not be found.

ezyang gchanan soumith fmassa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11725

Differential Revision: D9948244

Pulled By: goldsborough

fbshipit-source-id: 695bbdc1f1597c5e4306a45cd8ba46f15c941383
2018-09-20 14:43:12 -07:00
Mingzhe Li
a7cbcb1bb9 Enable build_python on windows (#11385)
Summary:
The PR aims to resolve issues related to BUILD_PYTHON and BUILD_TEST after FULL_CAFFE2 is removed on Windows.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11385

Reviewed By: orionr

Differential Revision: D9884906

Pulled By: mingzhe09088

fbshipit-source-id: fc114c0cbff6223f1ec261161e4caecc1fef5dd6
2018-09-17 21:40:03 -07:00
Bram Wasti
e8ecbcdf01 Move IValue to ATen/core (#11610)
Summary:
unblocks D9202320
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11610

Differential Revision: D9774853

Pulled By: bwasti

fbshipit-source-id: 4798223f6de680a7152283e8cad8814da7f90209
2018-09-17 18:25:50 -07:00
Soumith Chintala
73738ec570 bump version to 1.0 (#11717)
Summary:
I'm just doing the honors and bumping the version to 1.0.0.

1.0 preview and RC releases will have the 1.0.0.dev{date} tag
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11717

Reviewed By: SsnL

Differential Revision: D9840857

Pulled By: soumith

fbshipit-source-id: 4c9c2e01dccb3c521dab26c49e1569d970a87ace
2018-09-17 12:13:48 -07:00
Gregory Chanan
e125e61824 Fix flake8
Summary: Fix flake8

Reviewed By: ezyang

Differential Revision: D9873872

fbshipit-source-id: 26e81238f22caaeccd2c8b4f39cedb6cfb5520dd
2018-09-17 11:10:29 -07:00
Jesse Hellemn
5bfd8f583c Moving copy of Caffe2 protos back to build_pytorch_libs.sh (#11726)
Summary:
This way it shows up in all current and future setup.py commands, as otherwise we'd have to override every once to have them all call copy_protos. This is needed because the nightly packages still do not include caffe2_pb2, because setup.py bdist does not go through setup.py install or setup.py develop
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11726

Reviewed By: orionr

Differential Revision: D9844075

Pulled By: pjh5

fbshipit-source-id: 57b469e48010aacd0c08c214ba8a7e5d757feefa
2018-09-17 08:58:05 -07:00
Soumith Chintala
acb6f18bab fix generate_code.py caching (#11644)
Summary:
Currently, because of some setup.py logic, `ninja` caching of the `generate_code.py` build step was broken. This resulted in `generate_code.py` running every single time builds were happening, regardless of whether inputs changed.

This updated logic fixes the input caching
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11644

Reviewed By: orionr

Differential Revision: D9814348

Pulled By: soumith

fbshipit-source-id: 2012960908d0f600488d410094095cfd72adc34f
2018-09-13 12:39:48 -07:00
Teng Li
6dcdbd3a1d Make C10d support CPU only build (#11513)
Summary:
This makes torch.distributed works for CPU only build.

Also added one more CI test case to cover MPI CPU build.
All CI tests should cover this change
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11513

Differential Revision: D9784546

Pulled By: teng-li

fbshipit-source-id: 0976a6b0fd199670926f0273e17ad7d2805e42e7
2018-09-11 22:10:34 -07:00
Zachary DeVito
289a8c9b7d Allow train/eval, and non-Tensor arguments to python functions (#11505)
Summary:
This whitelists train/eval functions in script modules, and tests that nested nn.Modules still work.

This also changes the code for calling python functions from script to allow non-tensor inputs/outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11505

Differential Revision: D9765466

Pulled By: zdevito

fbshipit-source-id: 1177bff931324422b69e18fa0bbaa82e3c98ec69
2018-09-11 15:05:09 -07:00
Orion Reblitz-Richardson
d32b41003a Copy protos on install same as develop (#11517)
Summary:
This is a potential fix for https://github.com/pytorch/pytorch/issues/11453 and https://github.com/pytorch/pytorch/issues/11074 worked through with pjh5 . Turns out we had some protos copy code that was in the .sh file that was removed. Better to have it in setup.py, though, same as for develop.

cc ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11517

Differential Revision: D9771911

Pulled By: orionr

fbshipit-source-id: 76975d8f71f38d951eaaed0b50dd3ec36dd177a9
2018-09-11 10:09:56 -07:00
Soumith Chintala
4e8d9a4a58 Introducing python setup.py rebuild develop (#11487)
Summary:
This speeds up incremental builds by doing the following changes:

- Uses `rsync` instead of `cp` (when `rsync` is found) which is a bit smarter in doing "maybe copy"
- Introduces a `rebuild` mode which does not rerun `cmake` in `build_pytorch_libs.sh`.
   *Note: `rebuild` should only be used if you dont add / remove files to the build, as `cmake` is not rerun*

Current no-op rebuild speedup:
- 1m 15s -> 20s

There are some lingering bugs. No-op rebuilds rerun `cmake`  for two rebuilds (likely that cmake logic is dependent on the install folder, hence kicking off rebuild).

So what you see

```
python setup.py rebuild develop    # first time - ~5 mins
python setup.py rebuild develop    # second time - ~3 mins
python setup.py rebuild develop    # third time - ~2 mins
python setup.py rebuild develop    # fourth time - ~20 seconds
python setup.py rebuild develop    # fifth time - ~20 seconds
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11487

Differential Revision: D9769087

Pulled By: soumith

fbshipit-source-id: 20fbecde33af6426149c13767e8734fb3be783c5
2018-09-11 08:56:25 -07:00
Orion Reblitz-Richardson
a175282776 Flags for LMDB, LevelDB, and Caffe2 ops (#11462)
Summary:
Add flags for LMDB and LevelDB, default `OFF`. These can be enabled with

```
USE_LMDB=1 USE_LEVELDB=1 python setup.py build_deps
```

Also add a flag to build Caffe2 ops, which is default `ON`. Disable with

```
NO_CAFFE2_OPS=1 python setup.py build_deps
```

cc Yangqing soumith pjh5 mingzhe09088
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11462

Reviewed By: soumith

Differential Revision: D9758156

Pulled By: orionr

fbshipit-source-id: 95fd206d72fdf44df54fc5d0aeab598bff900c63
2018-09-10 17:27:50 -07:00
Peter Goldsborough
a0d4106c07 Integrate custom op tests with CI (#10611)
Summary:
This PR is stacked on https://github.com/pytorch/pytorch/pull/10610, and only adds changes in one file `.jenkins/pytorch/test.sh`, where we now build the custom op tests and run them.

I'd also like to take this PR to discuss whether the [`TorchConfig.cmake`](https://github.com/pytorch/pytorch/blob/master/cmake/TorchConfig.cmake.in) I made is robust enough (we will also see in the CI) orionr Yangqing dzhulgakov what do you think?

Also ezyang for CI changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10611

Differential Revision: D9597627

Pulled By: goldsborough

fbshipit-source-id: f5af8164c076894f448cef7e5b356a6b3159f8b3
2018-09-10 15:40:21 -07:00
Orion Reblitz-Richardson
802d21c8f4 Remove FULL_CAFFE2 flag (#11321)
Summary:
Continuing pjh5's work to remove FULL_CAFFE2 flag completely.

With these changes you'll be able to also do something like

```
NO_TEST=1 python setup.py build_deps
```
and this will skip building tests in caffe2, aten, and c10d. By default the tests are built.

cc mingzhe09088 Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11321

Reviewed By: mingzhe09088

Differential Revision: D9694950

Pulled By: orionr

fbshipit-source-id: ff5c4937a23d1a263378a196a5eda0cba98af0a8
2018-09-07 15:09:44 -07:00
Peter Goldsborough
01930a3145 Move sync_params to C++ (#9805)
Summary:
The next function I'm moving to C++ is `sync_params`. It is stacked on top of https://github.com/pytorch/pytorch/pull/9729, so some changes will go away when it lands and I rebase.

I also split code into a `.h` and `.cpp` file for better code organization.

The controller you requested could not be found. pietern apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9805

Differential Revision: D9688604

Pulled By: goldsborough

fbshipit-source-id: 4467104d3f9e2354425503b9e4edbd59603e20a8
2018-09-07 12:56:40 -07:00
iotamudelta
9de2085806 Use custom hcc/HIP, purge hcSPARSE (#11198)
Summary:
* purge hcSPARSE now that rocSPARSE is available
* integrate a custom hcc and HIP
* hcc brings two important compiler fixes (fixes hundreds of unit tests)
* HIP brings a smart dispatcher that allows us to avoid a lot of static_casts (we haven't yet removed the automatic static_casts but this catches some occurrences the script did not catch)
* mark 5 unit tests skipping that have regressed w/ the new hcc (we don't know yet what is at fault)
* optimize bitonic sort - the comparator is always an empty struct - therefore passing it by value saves at least 3 bytes. It also removes an ambiguity around passing references to `__global__` functions
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11198

Differential Revision: D9652340

Pulled By: ezyang

fbshipit-source-id: f5af1d891189da820e3d13b7bed91a7a43154690
2018-09-06 19:38:07 -07:00
Orion Reblitz-Richardson
dda8402447 Cleanup dependency of distributed flags (#11221)
Summary:
Now that we're building everything together, making all distributed flags conditional of USE_DISTRIBUTED being set.

cc pietern The controller you requested could not be found. cpuhrsch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11221

Reviewed By: Yangqing

Differential Revision: D9664267

Pulled By: orionr

fbshipit-source-id: a296cda5746ad150028c97160f8beacba955ff73
2018-09-06 08:56:00 -07:00
Jesse Hellemn
c0efe6f027 Forward declarations of needed curand functions (#10911)
Summary:
Needed for FULL_CAFFE2=1 with statically linked CUDA libraries. Waiting on advice from Nvidia
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10911

Reviewed By: pjh5

Differential Revision: D9636256

Pulled By: orionr

fbshipit-source-id: fcad7945910b6c8fb5f52e81cc87dad5fcfb3c65
2018-09-05 16:56:26 -07:00
Richard Zou
68c2e014cb Handling for py2/py3 division differences (#11016)
Summary:
- In Python 2, use of `/` (regardless of int/float/Tensor) causes a compiler error if
  `from __future__ import division` is not imported in the file.
- The / operator is universally set to do "true" division for integers
- Added a `prim::FloorDiv` operator because it is used in loop unrolling.

The error if users use '/' in python 2 without importing from __future__
occurs when building the JIT AST.

cc apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11016

Differential Revision: D9613527

Pulled By: zou3519

fbshipit-source-id: 0cebf44d5b8c92e203167733692ad33c4ec9dac6
2018-09-05 14:57:38 -07:00
Teng Li
020501b7b0 Getting rid of USE_C10D for build (#11237)
Summary:
Will use USE_DISTRIBUTED for both c10d and THD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11237

Differential Revision: D9647825

Pulled By: teng-li

fbshipit-source-id: 06e0ec9b5e2f8f38780fc88718f8499463e9e969
2018-09-04 17:27:53 -07:00
iotamudelta
33c7cc13ca improve docker packages, fix bugs, enable tests, enable FFT (#10893)
Summary:
* improve docker packages (install OpenBLAS to have at-compile-time LAPACK functionality w/ optimizations for both Intel and AMD CPUs)
* integrate rocFFT (i.e., enable Fourier functionality)
* fix bugs in ROCm caused by wrong warp size
* enable more test sets, skip the tests that don't work on ROCm yet
* don't disable asserts any longer in hipification
* small improvements
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10893

Differential Revision: D9615053

Pulled By: ezyang

fbshipit-source-id: 864b4d27bf089421f7dfd8065e5017f9ea2f7b3b
2018-09-02 08:54:42 -07:00
Teng Li
3791bd12c8 PT1 Release Milestone No.2 MPI Group Support with all tests passed (#11128)
Summary:
Added MPI group support.
And this will make all previous group test cases of MPI passed.

Also, release the MPI thread level support by serializing different PG's MPI ops. This is required.

The build is fixed too
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11128

Differential Revision: D9602188

Pulled By: teng-li

fbshipit-source-id: 1d618925ae5fb7b47259b23051cc181535aa7497
2018-08-31 12:39:56 -07:00
Edward Yang
cd9416317d Minor copy-edit on setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10933

Reviewed By: cpuhrsch

Differential Revision: D9526650

fbshipit-source-id: 8ad1c989bee7009b3f95a2641189f55cf6c1979f
2018-08-29 13:41:04 -07:00
Orion Reblitz-Richardson
3c9775fff8 Remove nanopb since we've switched to protobuf (#10772)
Summary:
We no longer use nanopb in PyTorch (or Caffe2) so removing. All protobuf manipulation should go through standard protobuf, which is statically linked inside libcaffe2.so by default.

cc zdevito pjh5 ezyang Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10772

Reviewed By: pjh5

Differential Revision: D9465894

Pulled By: orionr

fbshipit-source-id: 8cdf9f1d3953b7a48478d381814d7107df447201
2018-08-24 10:54:38 -07:00
Orion Reblitz-Richardson
8c13971f57 Remove protobuf require and use requirements.txt (#10771)
Summary:
In prep for making FULL_CAFFE2 default, users shouldn't be required to have protobuf installed.

cc pjh5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10771

Reviewed By: pjh5

Differential Revision: D9474458

Pulled By: orionr

fbshipit-source-id: 3e28f5ce64d125a0a0418ce083f9ec73aec62492
2018-08-24 10:39:40 -07:00
Johannes M Dieterich
a4c59a9dab MIOpen integration, more tests enabled, bug fixes (#10612)
Summary:
* first integration of MIOpen for batch norm and conv on ROCm
* workaround a ROCm compiler bug exposed by elementwise_kernel through explicit capture of variables in the densest packing
* workaround a ROCm compiler bug exposed by having `extern "C" __host__` as a definition and just `__host__` in the implementation through the hipify script
* use fabs() in accordance with C++11 for double absolute, not ::abs() which is integer-only on ROCm
* enable test_sparse set on CI, skip tests that don't work currently on ROCm
* enable more tests in test_optim after the elementwise_bug got fixed
* enable more tests in test_dataloader
* improvements to hipification and ROCm build

With this, resnet18 on CIFAR data trains without hang or crash in our tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10612

Reviewed By: bddppq

Differential Revision: D9423872

Pulled By: ezyang

fbshipit-source-id: 22c0c985217d65c593f35762b3eb16969ad96bdd
2018-08-23 15:24:47 -07:00
Edward Yang
227635142f Delete THD master_worker (#10731)
Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10731

Differential Revision: D9423675

Pulled By: ezyang

fbshipit-source-id: 37221e11d84cc3672b944af598ea229a1d4c38cc
2018-08-22 08:54:36 -07:00
Peter Goldsborough
c101a57a74 Build mechanism for custom operators (#10226)
Summary:
This is the last step in the custom operator implementation: providing a way to build from C++ and Python. For this I:

1. Created a `FindTorch.cmake` taken largely from ebetica with a CMake function to easily create simple custom op libraries
2. Created a ` torch/op.h` header for easy inclusion of necessary headers,
3. Created a test directory `pytorch/test/custom_operator` which includes the basic setup for a custom op.
    1. It defines an op in `op.{h,cpp}`
    2. Registers it with the JIT using `RegisterOperators`
    3. Builds it into a shared library via a `CMakeLists.txt`
    4. Binds it into Python using a `setup.py`. This step makes use of our C++ extension setup that we already have. No work, yey!

The pure C++ and the Python builds are separate and not coupled in any way.

zdevito soumith dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10226

Differential Revision: D9296839

Pulled By: goldsborough

fbshipit-source-id: 32f74cafb6e3d86cada8dfca8136d0dfb1f197a0
2018-08-16 18:56:17 -07:00
Anders Papitto
130881f0e3 Delete build_caffe2.sh, replace with build_libtorch.py (#10508)
Summary:
delete build_caffe2.sh, replace with build_libtorch.py as suggested by peter (and copy-pasted from his draft PR).  This ensures that all consumers of the torch CMake file go through as unified a path as possible.

In order to change the surrounding infrastructure as little as possible, I made some tweaks to enable build_pytorch_libs.sh to generate the test binaries relative to the current directory, rather than hardcoding to pytorch/build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10508

Differential Revision: D9354398

Pulled By: anderspapitto

fbshipit-source-id: 05b03df087935f88fca7ccefc676af477ad2d1e9
2018-08-16 08:10:04 -07:00
Orion Reblitz-Richardson
021b4888db Remove setup_requires and tests_require from setup.py for FULL_CAFFE2 (#10530)
Summary:
In my environment, it looks like setup.py hangs when running

```
FULL_CAFFE2=1 python setup.py build_deps
```

Removing this fixes things, but we might also want to look at `tests_require`, which came over from `setup_caffe2.py`.

cc pjh5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10530

Differential Revision: D9349597

Pulled By: orionr

fbshipit-source-id: 589145eca507dfaf16386884ee2fbe60299660b4
2018-08-15 14:26:53 -07:00
Anders Papitto
d1442b36f3 add a rebuild_libtorch command for speedier iteration. (#10036)
Summary:
It just calls into `ninja install`. For iterative work on
libtorch.so/_C.so,
`python setup.py rebuild_libtorch develop` should provide quick iteration
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10036

Differential Revision: D9317869

Pulled By: anderspapitto

fbshipit-source-id: 45ea45a1b445821add2fb9d823a724fc319ebdd2
2018-08-14 12:10:02 -07:00
iotamudelta
75651d5b58 improve use of ROCm libraries, enable more tests, small fixes (#10406)
Summary:
* some small leftovers from the last PR review
* enable more unit test sets for CI
* replace use of hcRNG w/ rocRAND (docker image was already updated w/ newer rocRAND)
* use rocBLAS instead of hipBLAS to allow convergence w/ Caffe2
* use strided_batched gemm interface also from the batched internal interface
* re-enable Dropout.cu as we now have philox w/ rocRAND
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10406

Reviewed By: Jorghi12

Differential Revision: D9277093

Pulled By: ezyang

fbshipit-source-id: 7ef2f6fe4ead77e501ed7aea5c3743afe2466ca2
2018-08-13 11:39:43 -07:00
Jesse Hellemn
cd81217f8e A single print statement in setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10473

Reviewed By: ml7

Differential Revision: D9299196

Pulled By: pjh5

fbshipit-source-id: f9aa84c2859df12f9da9ac5205e1918c253e19fb
2018-08-13 11:39:42 -07:00
Sam Gross
0b63d12db6 Don't call into Python during Storage destruction. (#10407)
Summary:
```
This removes PyObjectFinalizer. We were seeing SIGSEGV at exit in some
programs that use multiprocessing. The backtrace pointed to
StorageRef.__del__ being called from subtype_dealloc. My guess is that
the Python interpreter was shutdown before all C++ Storage objects were
deallocated. Deallocating the C++ Storage called the finalizer which
called back into Python after it was no longer safe to do so.

This avoids a callback from C++ into Python during Storage finalization.
Instead, dead Storage objects (expired weak references) are collected
periodically when shared_cache exceeds a limit. The limit is scaled with
2x the number of live references, which places an upper bound on the
amount of extra memory held by dead Storage objects. In practice, this
should be very small.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10407

Differential Revision: D9272400

Pulled By: colesbury

fbshipit-source-id: ecb14d9c6d54ffc91e134c34a4e770a4d09048a2
2018-08-13 11:20:07 -07:00
Jesse Hellemn
def3715e82 Minor changes for nicer pip packages (#9544)
Summary:
I am using this to test a CI job to upload pip packages, and so am using the Caffe2 namespace to avoid affecting the existing pytorch packages.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9544

Reviewed By: orionr

Differential Revision: D9267111

Pulled By: pjh5

fbshipit-source-id: a68162ed29d2eb9ce353d8435ccb5f16c3b0b894
2018-08-10 12:09:46 -07:00
Yangqing Jia
40109b16d0 Remove caffe1 specific proto (#10380)
Summary:
This was used as a convenient way for us to convert c1 models. Now that conversion is more or less done, we should probably require any users who need to convert c1 models to explicitly install c1. This PR removes the explicit c1 proto (which was copied from c1) in favor of explicit installation.

Note that caffe_translator would still work properly, only difference is that now users need to install c1 separately.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10380

Differential Revision: D9267981

Pulled By: Yangqing

fbshipit-source-id: a6ce5d9463e6567976da83f2d08b2c3d94d14390
2018-08-10 11:10:26 -07:00
peter
506142ac8a Add warning for building PyTorch using Python 2.7 on Windows (#10247)
Summary:
Fixes #9232.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10247

Differential Revision: D9178257

Pulled By: SsnL

fbshipit-source-id: cc553335a5a918b6d77fe1064460cb66114859ca
2018-08-05 21:24:02 -07:00
Shuichi KITAGUCHI
df23bdc82d add BEGIN NOT-CLEAN-FILES marker to .gitignore. (#10233)
Summary:
Using Visual Studio Code and Visual Studio, these IDEs store configurations to `FOLDER/.vscode` and `FOLDER/.vs`.
But "setup.py clean" deletes these folders because those are described in `.gitignore` file.

To prevent this, add "BEGIN NOT-CLEAN-FILES" marker to `.gitignore` file and "setup.py clean" ignores lines after this marker.

Discussed in #10206
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10233

Differential Revision: D9175515

Pulled By: ezyang

fbshipit-source-id: 24074a7e6e505a3d51382dc5ade5c65c97deda37
2018-08-05 15:55:44 -07:00
Elias Ellison
170d29769b Strings lexing, parsing, implementation in print (#9324)
Summary:
This PR adds strings to the ast and implements them for print statements. Strings are lifted as attributes to the print node. They must be arguments to print itself, not as an argument for an object that is passed to print.  If they are encountered elsewhere a NYI exception will be thrown.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9324

Reviewed By: jramseyer

Differential Revision: D8807128

Pulled By: eellison

fbshipit-source-id: 984401ff458ed18d473c6d1bd86750e56c77d078
2018-08-02 11:09:03 -07:00
Gregory Chanan
2d56b5cf8b Prepare THC for first class scalars (0-dimensional tensors).
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10072

Differential Revision: D9082421

Pulled By: gchanan

fbshipit-source-id: d4327b07aaef85cc2521393008154ebceae8cbfd
2018-08-01 14:28:51 -07:00
Edward Yang
37a226de63 When BUILD_ATEN=OFF, use ATen/core directly (#10019)
Summary:
ATenCore.h is a dummy header to just test that this is working at all.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10019

Reviewed By: smessmer

Differential Revision: D9067262

Pulled By: ezyang

fbshipit-source-id: 58bab9c0aa83b56335e36b719b9b6505400d8dee
2018-07-30 21:09:55 -07:00
Edward Yang
a08119afc2 Eliminate direct access to size/strides of THTensor; replace them with std::vector (#9561)
Summary:
* THTensor now stores `sizes_` and `strides_` which is a `std::vector<int64_t>`
* Anywhere a "public" API function made use of a int64_t* of sizes, I opted to just finagle it out of the tensor using THTensor_getSizePtr rather than try to rewrite all of these sites to use ArrayRef. They should use ArrayRef eventually, but not yet.
* There are new utility functions for resizing sizes/strides in one go (THTensor_resizeDim), or replacing sizes and strides with completely new values (THTensor_setSizesAndStrides)
* Anywhere you said `t->size[n] = 0`, we now say `THTensor_setSizeAt(t, n, 0)`, ditto for strides
* Anywhere you said `t->size[n]`, we now say `t->size(n)` (coming soon: ditto for strides)

Previous review of just the `std::vector` change in #9518, but I'm planning to merge this all in one go.

Note for gchanan: review from commit "ci" and after
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9561

Reviewed By: cpuhrsch

Differential Revision: D8901926

Pulled By: ezyang

fbshipit-source-id: 483cf275060ab0a13845cba1ece39dd127142510
2018-07-19 14:10:06 -07:00
Anders Papitto
4c615b1796 Introduce libtorch to setup.py build (#8792)
Summary:
Prior to this diff, there have been two ways of compiling the bulk of the torch codebase. There was no interaction between them - you had to pick one or the other.

1) with setup.py. This method
- used the setuptools C extension functionality
- worked on all platforms
- did not build test_jit/test_api binaries
- did not include the C++ api
- always included python functionality
- produced _C.so

2) with cpp_build. This method
- used CMake
- did not support Windows or ROCM
- was capable of building the test binaries
- included the C++ api
- did not build the python functionality
- produced libtorch.so

This diff combines the two.

1) cpp_build/CMakeLists.txt has become torch/CMakeLists.txt. This build
- is CMake-based
- works on all platforms
- builds the test binaries
- includes the C++ api
- does not include the python functionality
- produces libtorch.so

2) the setup.py build
- compiles the python functionality
- calls into the CMake build to build libtorch.so
- produces _C.so, which has a dependency on libtorch.so

In terms of code changes, this mostly means extending the cmake build to support the full variety of environments and platforms. There are also a small number of changes related to the fact that there are now two shared objects - in particular, windows requires annotating some symbols with dllimport/dllexport, and doesn't allow exposing thread_local globals directly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8792

Reviewed By: ezyang

Differential Revision: D8764181

Pulled By: anderspapitto

fbshipit-source-id: abec43834f739049da25f4583a0794b38eb0a94f
2018-07-18 14:59:33 -07:00