Summary:
The functions guard_lt, guard_equals, and guard_leq work similarly to torch.check and expect_true, but they operate on SymPy expressions. Notably, guard_equals applies local replacements before comparison, which might be better extracted into a separate function.
This pull request standardizes naming conventions to match symbolic_shapes.py. Specifically,
- it introduces size_vars.expect_true and size_vars.check.
- guard_lt becomes check_lt
- guard_leq becomes check_leq
- guard_equals becomes check_equals
I am also seeing a couple of wrong usages !! that i will fix in the next PR
Test Plan:
OSS and cont
Rollback Plan:
Differential Revision: D77054177
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156518
Approved by: https://github.com/bobrenjc93
The functions guard_lt, guard_equals, and guard_leq work similarly to torch.check and expect_true, but they operate on SymPy expressions. Notably, guard_equals applies local replacements before comparison, which might be better extracted into a separate function.
This pull request standardizes naming conventions to match symbolic_shapes.py. Specifically,
- it introduces size_vars.expect_true and size_vars.check.
- guard_lt becomes check_lt
- guard_leq becomes check_leq
- guard_equals becomes check_equals
I am also seeing a couple of wrong usages !! that i will fix in the next PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155776
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #154774
This pr uses the coalescing information in generating a tiling. The previous tiling heuristic would have each dependency generate a tiling. Then, we sum up the score for each generated tiling, preferring any 2d tiling over the default. The new tiling heuristics scores each tiling by its global coalesced memory. This gives both a potentially better tiling (especially for more complicated, 3d patterns) as well as information we can use in generating block sizes.
In triton heuristics, for generating 3d tiled reductions, we take the same total block size that the 2d reduction would use, then distribute the block according to whichever block coalesces the most memory.
The motivating kernel is in https://github.com/pytorch/pytorch/issues/149982 which is a 32 element reduction. A smaller version of it is [here](https://gist.github.com/eellison/0fa9396f5479eb4dba09756e3bf6ff2a). We need to run this kernel once in the forward per linear layer on a contiguous tensor, and once in the backward on a transposed tensor.
While the contiguous kernel has coalesced accesses, and is performant on master, the transposed version accesses uncoalesced memory on main and is ~2.8x slower. See, this [full log](https://gist.github.com/eellison/fa644bfd9d0ae11dadb62e17a5d48a83) from the above repro. Now, with this PR, it is only ~1.15x slower. See the [updated log](https://gist.github.com/eellison/0b2b653309494d28cf7b48929a022075).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153751
Approved by: https://github.com/jansel
ghstack dependencies: #153723, #153730, #153748
In order to take the globally best tiling, we need to normalize all the node read and writes to a common iteration space. This first pr finds a common split among nodes in a fused scheduler node, and then normalizes reads and writes to the common split.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153723
Approved by: https://github.com/jansel
when a tensor has unbacked symbols it can be general enough to represent both contiguous and non contiguous tensors.
in that case we cant really evaluate is_contiguous. In many places in the code base, we check for is_contiguous to take a fast path. but the general path usually works for both contiguous and not contiguous in that case we probably want
to use definitely _contiguous API.
This is appleid for reshape in this PR and also to tensor meta data computation, the meta data now will have an attribute that says that its contiguous when its always contiguous. We would store that only if definitely _contiguous is true now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153432
Approved by: https://github.com/bobrenjc93
Triton codegen currently [sorts vars by divisor](ae6f6b8efb/torch/_inductor/codegen/simd.py (L233-L237)). When there are two vars with the same divisor, the order is undecided.
```python
nodes.sort(
key=lambda x: V.graph.sizevars.size_hint(
x.divisor, fallback=config.unbacked_symint_fallback
)
)
```
The test case leads to the following nodes:
```
(Pdb) nodes[0]
IterationRangesEntry(x1, ((s37 + 127)//128), 2, (xindex//ps0), {x0: ((s37 + 127)//128), x1: 2, x2: ((s12 + 127)//128), x4: 2*(((s12 + 127)//128))*(((s37 + 127)//128)), x5: 0, x6: 2, x7: (((s12 + 127)//128))*(((s37 + 127)//128))})
(Pdb) nodes[1]
IterationRangesEntry(x0, 1, ((s37 + 127)//128), ModularIndexing(xindex, 1, ps0), {x0: ((s37 + 127)//128), x1: 2, x2: ((s12 + 127)//128), x4: 2*(((s12 + 127)//128))*(((s37 + 127)//128)), x5: 0, x6: 2, x7: (((s12 + 127)//128))*(((s37 + 127)//128))})
(Pdb) nodes[2]
IterationRangesEntry(x2, 2*(((s37 + 127)//128)), ((s12 + 127)//128), (xindex//(2*(((s37 + 127)//128)))), {x0: ((s37 + 127)//128), x1: 2, x2: ((s12 + 127)//128), x4: 2*(((s12 + 127)//128))*(((s37 + 127)//128)), x5: 0, x6: 2, x7: (((s12 + 127)//128))*(((s37 + 127)//128))})
(Pdb) V.graph.sizevars.statically_known_equals(nodes[0].length, 2)
True
(Pdb) V.graph.sizevars.statically_known_equals(nodes[1].length, 1)
True
(Pdb) V.graph.sizevars.statically_known_equals(nodes[2].length, 1)
True
(Pdb) V.graph.sizevars.statically_known_equals(nodes[0].divisor, 1)
True
(Pdb) V.graph.sizevars.statically_known_equals(nodes[1].divisor, 1)
True
(Pdb) V.graph.sizevars.statically_known_equals(nodes[2].divisor, 2)
True
```
Since x1 and x0 both have divisor 1, the relative order is random across runs.
In some runs, we have order [x1, x0, x2] with divisors as [1,1,2] and lengths as [2,1,1]. After x1, we have [divisor = divisor * node.length](ae6f6b8efb/torch/_inductor/codegen/simd.py (L246)) = 1 * 2 = 2. Then, when processing x0, we have node.divisor=1, divisor=2, and [FloorDiv(node.divisor, divisor)](ae6f6b8efb/torch/_inductor/codegen/simd.py (L251)) = 0, which indicates an iteration length of 0 and leads errors later.
The fix is to sort by both divisor and length_is_one. So for two nodes with the same divisor, we process the node with length=1 first.
Fixes#149789
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151634
Approved by: https://github.com/Skylion007, https://github.com/drisspg
# Feature
Fixes https://github.com/pytorch/pytorch/issues/148718 by reordering the tensor dims to `(z, y, x)`.
As a bonus refactor, block pointers no longer needed the `reorder=True` argument to `self.active_range_trees()`. Since this argument is no longer used anywhere, this PR simply deletes it as opposed to updating the logic for the new iteration order.
# Perf impact
It looks like there's a decent perf bump on A100, with cudagraphs enabled. Granted, perf runs seem to have some noise between commits. ([Workflow run](https://github.com/pytorch/pytorch/actions/runs/13914815576).)
Training (all neutral or positive):

Inference (one positive, one very small negative):

As reported in https://github.com/pytorch/pytorch/issues/148718, this PR makes consecutive threads access consecutive memory addresses. This should theoretically give the GPU more opportunities to coalesce loads and stores. From Nvidia's [kernel profiling guide](https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html):
> Local memory is private storage for an executing thread and is not visible outside of that thread. It is intended for thread-local data like thread stacks and register spills. Local memory addresses are translated to global virtual addresses by the AGU unit. Local memory has the same latency as global memory. One difference between global and local memory is that local memory is arranged such that consecutive 32-bit words are accessed by consecutive thread IDs. Accesses are therefore fully coalesced as long as all threads in a warp access the same relative address (e.g., same index in an array variable, same member in a structure variable, etc.).
I couldn't find any information on how coalescing works for other kinds of memory, but the guide mentions it is also supported for accesses to the L2 cache.
> The L2 Request Coalescer (LRC) processes incoming requests for L2 and tries to coalesce read requests before forwarding them to the L2 cache. It also serves programmatic multicast requests from the SM and supports compression for writes.
The [answer to this Stack Overflow post](https://stackoverflow.com/a/5044424) also explains coalescing in a straightforward way. Inductor's current iteration order corresponds to the first (uncoalesced) example in that answer, while the order after this PR corresponds to the second (coalesced) example.
Besides GPUs, this order of accessing data is highly advantageous for systems relying on DMAs, as those are designed to access contiguous spans of memory. This change improves the performance of an elementwise add kernel on an internal model, using internal hardware, by 1.76x. I will share the details with reviewers who are Meta employees via a private channel.
# Test plan
- Updated expected code on CI tests.
- Added a new test checking the {x,y,z}indices and block pointers on a 3D pointwise kernel.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149339
Approved by: https://github.com/jansel
Summary:
Relands D69965761 / https://github.com/pytorch/pytorch/pull/147583
Before this PR, calling a triton kernel would look like:
```py
kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0)
```
where the `grid=` was passed as a callable (function closure) arg. This PR removes the grid arg:
```py
kernel.run(a, b, xnumel, stream=stream0)
```
instead now the grid computation is included in the kernel launcher, with something like:
```py
def launcher(in_ptr0, out_ptr0, xnumel, stream):
grid_0 = ((xnumel + 1023) >> 10)
grid_1 = 1
grid_2 = 1
runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel)
```
This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`.
It also allows us to unify the handling of grids between the Python and C++ wrapper code. Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid.
This unification allows this PR to be a net deletion of code.
Differential [disconnected] Revision: D70471332
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148305
Approved by: https://github.com/shunting314, https://github.com/eellison
Summary:
Relands D69965761 / https://github.com/pytorch/pytorch/pull/147583
Before this PR, calling a triton kernel would look like:
```py
kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0)
```
where the `grid=` was passed as a callable (function closure) arg. This PR removes the grid arg:
```py
kernel.run(a, b, xnumel, stream=stream0)
```
instead now the grid computation is included in the kernel launcher, with something like:
```py
def launcher(in_ptr0, out_ptr0, xnumel, stream):
grid_0 = ((xnumel + 1023) >> 10)
grid_1 = 1
grid_2 = 1
runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel)
```
This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`.
It also allows us to unify the handling of grids between the Python and C++ wrapper code. Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid.
This unification allows this PR to be a net deletion of code.
Differential Revision: D70471332
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148305
Approved by: https://github.com/shunting314, https://github.com/eellison
Softmax need do some preparation work that access the input tensor in two passes
- compute amax of each row
- compute (x - amax).exp.sum for each row
When the row size is large, cache can not hold all the active data and accessing the input multiple passes increases execution time since the kernel is membw bounded.
Online softmax uses a customized reduction to compute max and sum at the same time by accessing the data in one pass. Check this paper for more details ( https://arxiv.org/abs/1805.02867 ).
Also here is an online softmax kernel generated by inductor as a reference: https://gist.github.com/shunting314/67ae4fffd45d4f2753c781780332fa54
## Microbenchmark
- `TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1 TORCHINDUCTOR_ONLINE_SOFTMAX=0 DO_PERF_TEST=1 python test/inductor/test_online_softmax.py -k test_softmax` : without online softmax
- eager_ms=6.671296119689941
- opt_ms=8.06931209564209
- `TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1 TORCHINDUCTOR_ONLINE_SOFTMAX=1 DO_PERF_TEST=1 python test/inductor/test_online_softmax.py -k test_softmax`: with online softmax
- eager_ms=6.634047985076904
- opt_ms=6.230591773986816
Ideally, online softmax should save about 2ms here. We saves about 1.84ms in practice.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127011
Approved by: https://github.com/jansel
Before this PR, calling a triton kernel would look like:
```py
kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0)
```
where the `grid=` was passed as a callable (function closure) arg. This PR removes the grid arg:
```py
kernel.run(a, b, xnumel, stream=stream0)
```
instead now the grid computation is included in the kernel launcher, with something like:
```py
def launcher(in_ptr0, out_ptr0, xnumel, stream):
grid_0 = ((xnumel + 1023) >> 10)
grid_1 = 1
grid_2 = 1
runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel)
```
This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`.
It also allows us to unify the handling of grids between the Python and C++ wrapper code. Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid.
This unification allows this PR to be a net deletion of code.
Note the attached diff contains some minor fbcode-only changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147583
Approved by: https://github.com/eellison, https://github.com/shunting314
As title.
Many changes adapted from https://github.com/pytorch/pytorch/pull/129537.
Also this diff is only for *static* method of torchbind *attributes*. Some case that's not supported/tested:
- dynamic torchbind objects
- torchbind objects as an input to the module.
Note that in JIT Inductor, the attributes are lifted as inputs. So even if we just have torchbind objects as attributes, they will show up as inputs in the graph.
Example generated python code in torch.compile with inductor backend for the test case in `inductor/test_torchbind.py` (P1730554370):
```python
async_compile.wait(globals())
del async_compile
def call(args):
arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg1_1, (2, 3), (3, 1))
assert_size_stride(arg2_1, (2, 3), (3, 1))
buf2 = empty_strided_cpu((2, 3), (3, 1), torch.float32)
cpp_fused_add_0(arg1_1, arg2_1, buf2)
del arg1_1
del arg2_1
# Topologically Sorted Source Nodes: [x, takes_foo_tuple_return], Original ATen: [aten.add]
buf3 = torch.ops._TorchScriptTesting.takes_foo_tuple_return.default(arg3_1, buf2)
buf4 = buf3[0]
assert_size_stride(buf4, (2, 3), (3, 1))
buf5 = buf3[1]
assert_size_stride(buf5, (2, 3), (3, 1))
buf6 = buf4; del buf4 # reuse
cpp_fused_add_1(buf6, buf5)
del buf5
# Topologically Sorted Source Nodes: [y, b], Original ATen: [aten.add]
buf7 = torch.ops._TorchScriptTesting.takes_foo.default(arg3_1, buf6)
del buf3
del buf6
buf8 = buf7
assert_size_stride(buf8, (2, 3), (3, 1))
# Topologically Sorted Source Nodes: [c], Original ATen: []
buf9 = torch.ops.higher_order.call_torchbind(arg3_1, 'add_tensor', buf2)
del arg3_1
del buf7
buf10 = buf9
assert_size_stride(buf10, (2, 3), (3, 1))
del buf9
buf11 = buf2; del buf2 # reuse
cpp_fused_add_2(buf11, buf8, buf10)
return (buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg1_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32)
arg2_1 = rand_strided((2, 3), (3, 1), device='cpu', dtype=torch.float32)
import pickle
global arg3_1
arg3_1 = pickle.loads(b'\x80\x04\x95[\x00\x00\x00\x00\x00\x00\x00\x8c\x05torch\x94\x8c\x0cScriptObject\x94\x93\x94)\x81\x94]\x94(K\nK\x14e\x8c0__torch__.torch.classes._TorchScriptTesting._Foo\x94\x86\x94b.')
fn = lambda: call([arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146927
Approved by: https://github.com/angelayi
Prior to this PR, constexprs were appearing in signatures as `{.. "XBLOCK : tl.constexpr": "constexpr"}` when they really should appear as `{.. "XBLOCK": "constexpr"}`.
This PR represents the argument names as ArgName objects, which can optionally be marked as constexpr.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145583
Approved by: https://github.com/jansel
# Issue
https://github.com/pytorch/pytorch/pull/137243 introduced a feature where the ND tiling algorithm analyzes memory dependencies. It iterates over all `Dep`'s of the kernel. However, the analysis is only applicable to `MemoryDep` instances, which are a subclass of `Dep`. In particular, it doesn't work for `StarDep`'s, for the reasons described here: https://github.com/pytorch/pytorch/blob/main/torch/_inductor/codegen/simd.py#L1653
# Fix
This PR changes the algorithm to only iterate over `MemoryDep` instances.
# Testing
Parameterized an existing test for `torch.bucketize` to also run with ND tiling. This test emits a node with `StarDep`'s. Without this PR, the compiler would crash on this test case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144497
Approved by: https://github.com/eellison