By reusing `c10/metal/atomic.h`
This also fixes `GPUTests.test_index_put_fallback[12]_mps` that is unrolled by inductor, so no need for dedicated atomic_add support
TODOs:
- Get rid of indexing kernel and compute it directly when kernel is run
- Simulate atomic_add for int64 types as series of int32 atomic-add-and-fetch
- Setup tolerances correctly to pass float16/bfloat16 tests (as CPU always takes sequential strategy)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151869
Approved by: https://github.com/Skylion007, https://github.com/dcci
In this approach, we are catching any lane within a wave that is doing fastatomics to the same destination address and computing the sum on the CU. This is leading to 3x improvement in scatter_add performance and 2x improvement in index_select.
scatter_add performance on MI300x:
dtype|Baseline (before optimizations)|opportunistic fastatomics
-------|----------------------------------|----------------------------------
f32|1.389425039|0.430447996
fp16|2.195472956|0.779729486
bf16|2.194051027|0.784599513
Using the following reproducer
```
import torch
import triton
def main():
dtype = torch.float32
dim = 1305301
a = torch.rand(100, device="cuda", dtype=dtype)
index = torch.randint(0, 100, (dim,), device="cuda")
src = torch.rand(dim, device="cuda", dtype=dtype)
print("=" * 20)
print(
triton.testing.do_bench(
lambda: a.scatter_add(0, index, src),
return_mode="median",
)
)
print("=" * 20)
if __name__ == "__main__":
main()
```
co-authored by: @amd-hhashemi
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146264
Approved by: https://github.com/jeffdaily, https://github.com/mxz297
Co-authored-by: Hashem Hashemi <hashem.hashemi@amd.com>
Fixes#135998
Adds support for fp8. These are compared bitwise, without atol and rtol. The implementation uses the same comparison functions, just with atol and rtol forced to zero. The error message is different from the default case; it only tells the user the first mismatch. This is to avoid triggering the error from #135998.
Test Plan:
New unit test covers new code paths.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150002
Approved by: https://github.com/cyyever, https://github.com/zou3519
Summary: add one option to allow skipping all reduce unused parameters, this could help improve training throughput significantly when the number of unused parameters is large in the model.
Test Plan: unit tests, CI
Differential Revision: D72282069
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151503
Approved by: https://github.com/mrshenli
Currently, `torch._chunk_cat` only supports contiguous inputs (due to `.view()` usage in `_pad_chunk()` supporting only contiguous tensor). This doesn't work for internal models where there can be non-contiguous input tensors:
- size=[8192, 16416], stride=[16448, 1] # stride[0] is larger than size[1]
- size=[1152, 384], stride=[1, 1152] # column-major tensor
In this PR, we relax the assumption on contiguous input tensor, by switching from `.view()` to `.reshape()`. Note that since `.reshape()` will try to use `.view()` under the hood whenever possible, this should not cause regression to existing use cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151263
Approved by: https://github.com/BoyuanFeng
Finishes up the work started in #121686 + adds test
Update: this was not as straightforward as I originally imagined. Context below.
**TL;DR:** `TestFoo{CPU, CUDA}` now actually derive from `TestFoo`! Also, `{CPU, CUDA}TestBase` setup / teardown logic is now always called (it is required to set the primary device), regardless of whether `super().setUpClass()` / `super().tearDownClass()` are called or not.
**Background:** The typical way to get device-specific tests is to write a generic `TestFoo` and call `instantiate_device_type_tests(TestFoo, locals())` to get `TestFooCPU`, `TestFooCUDA`, etc. After this, generic tests (e.g. `TestFoo.test_bar()`) become `TestFooCPU.test_bar_cpu()` / `TestFooCUDA.test_bar_cuda()`.
Behind the scenes, this was historically accomplished by creating a `TestFooCUDA` that derives from both a `CUDATestBase` and an *empty class* called `TestFoo_base`. This `TestFoo_base` has the same bases as `TestFoo`, but none of the test functions (e.g. `test_bar()`). The documented reason for this is to avoid things like a derived `TestFooCUDA.test_bar()` being discovered in addition to the real device-specific test `TestFooCUDA.test_bar_cuda()`.
(1) A reason this matters is because it should be possible to call e.g. `super().setUpClass()` from a custom setup / teardown classmethod. If the generated TestFooCUDA does not derive from TestFoo, but instead derives from the empty class described above, this syntax does not work; in fact there is no way to form a proper `super()` call that works across the device-specific test variants. Here's an example that breaks in the OpInfo tests:
070f389745/test/test_ops.py (L218-L221)
(2) Further, there is some precedent within a custom `setUpClass()` impl for storing things on the `cls` object to be accessed at test time. This must be the device-specific test class (`TestFooCUDA`) and not `TestFoo` for this to work. As an example, the open device registration tests load a module during setup and use it in the test logic:
070f389745/test/test_cpp_extensions_open_device_registration.py (L63-L77)070f389745/test/test_cpp_extensions_open_device_registration.py (L79-L80)
To accomplish both (1) and (2) at the same time, I decided to revisit the idea of utilizing a proper inheritance hierarchy for `TestFoo` -> `{TestFooCPU, TestFooCUDA}`. That is: have TestFooCPU / TestFooCUDA **actually** derive from `TestFoo`. This achieves both (1) and (2). The only thing left is to make sure the generic tests (e.g. `TestFoo.test_bar()`) are not discoverable, as was the stated reason for diverging from this in the first place. It turns out we can simply `delattr()` these generic tests from `TestFoo` once `TestFooCPU` / `TestFooCUDA` have been setup with the device-specific variants, and all works well. The `instantiate_device_type_tests(...)` logic already deletes `TestFoo` from scope, so I don't see a problem with deleting generic tests from this base class as well (CI will prove me right or wrong ofc).
**Side note:** I was encountering a weird race condition where sometimes the custom `setUpClass()` / `tearDownClass()` defined & swapped in [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L940-L955)) would be used, and sometimes it wouldn't. This non-deterministic behavior was called out previously by @ngimel here:
4a47dd9b3f/test/inductor/test_torchinductor_dynamic_shapes.py (L128-L130)
To address this, I moved this block of logic to before the first call to `instantiate_test()`, as that method queries for the primary device, and the primary device identification logic may manually invoke `setUpClass()` (see [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L381-L384))). Goal: define the `setUpClass()` / `tearDownClass()` we want for correctness before they're ever called. This seems to work and the behavior is deterministic now AFAICT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151129
Approved by: https://github.com/janeyx99, https://github.com/masnesral, https://github.com/malfet
Finishes up the work started in #121686 + adds test
Update: this was not as straightforward as I originally imagined. Context below.
**TL;DR:** `TestFoo{CPU, CUDA}` now actually derive from `TestFoo`! Also, `{CPU, CUDA}TestBase` setup / teardown logic is now always called (it is required to set the primary device), regardless of whether `super().setUpClass()` / `super().tearDownClass()` are called or not.
**Background:** The typical way to get device-specific tests is to write a generic `TestFoo` and call `instantiate_device_type_tests(TestFoo, locals())` to get `TestFooCPU`, `TestFooCUDA`, etc. After this, generic tests (e.g. `TestFoo.test_bar()`) become `TestFooCPU.test_bar_cpu()` / `TestFooCUDA.test_bar_cuda()`.
Behind the scenes, this was historically accomplished by creating a `TestFooCUDA` that derives from both a `CUDATestBase` and an *empty class* called `TestFoo_base`. This `TestFoo_base` has the same bases as `TestFoo`, but none of the test functions (e.g. `test_bar()`). The documented reason for this is to avoid things like a derived `TestFooCUDA.test_bar()` being discovered in addition to the real device-specific test `TestFooCUDA.test_bar_cuda()`.
(1) A reason this matters is because it should be possible to call e.g. `super().setUpClass()` from a custom setup / teardown classmethod. If the generated TestFooCUDA does not derive from TestFoo, but instead derives from the empty class described above, this syntax does not work; in fact there is no way to form a proper `super()` call that works across the device-specific test variants. Here's an example that breaks in the OpInfo tests:
070f389745/test/test_ops.py (L218-L221)
(2) Further, there is some precedent within a custom `setUpClass()` impl for storing things on the `cls` object to be accessed at test time. This must be the device-specific test class (`TestFooCUDA`) and not `TestFoo` for this to work. As an example, the open device registration tests load a module during setup and use it in the test logic:
070f389745/test/test_cpp_extensions_open_device_registration.py (L63-L77)070f389745/test/test_cpp_extensions_open_device_registration.py (L79-L80)
To accomplish both (1) and (2) at the same time, I decided to revisit the idea of utilizing a proper inheritance hierarchy for `TestFoo` -> `{TestFooCPU, TestFooCUDA}`. That is: have TestFooCPU / TestFooCUDA **actually** derive from `TestFoo`. This achieves both (1) and (2). The only thing left is to make sure the generic tests (e.g. `TestFoo.test_bar()`) are not discoverable, as was the stated reason for diverging from this in the first place. It turns out we can simply `delattr()` these generic tests from `TestFoo` once `TestFooCPU` / `TestFooCUDA` have been setup with the device-specific variants, and all works well. The `instantiate_device_type_tests(...)` logic already deletes `TestFoo` from scope, so I don't see a problem with deleting generic tests from this base class as well (CI will prove me right or wrong ofc).
**Side note:** I was encountering a weird race condition where sometimes the custom `setUpClass()` / `tearDownClass()` defined & swapped in [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L940-L955)) would be used, and sometimes it wouldn't. This non-deterministic behavior was called out previously by @ngimel here:
4a47dd9b3f/test/inductor/test_torchinductor_dynamic_shapes.py (L128-L130)
To address this, I moved this block of logic to before the first call to `instantiate_test()`, as that method queries for the primary device, and the primary device identification logic may manually invoke `setUpClass()` (see [here](4a47dd9b3f/torch/testing/_internal/common_device_type.py (L381-L384))). Goal: define the `setUpClass()` / `tearDownClass()` we want for correctness before they're ever called. This seems to work and the behavior is deterministic now AFAICT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151129
Approved by: https://github.com/janeyx99, https://github.com/masnesral, https://github.com/malfet
This PR is the duplicated one for https://github.com/pytorch/pytorch/pull/139975.
This PR is to add torch._scaled_mm for CPU backend.
_scaled_mm_out_cpu and _scaled_mm_cpu are new added and included in torch._scaled_mm CPU dispatch. We also add _scaled_mm_out_cpu_emulated as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150410
Approved by: https://github.com/atalman
This adds lazy initialization support to ProcessGroupGloo via `TORCH_GLOO_LAZY_INIT` or via `create_device(..., lazy_init=True)`
This is still a draft PR as there's one race condition when doing coalesced operations that needs to be fixed upstream in Gloo first. Depends on https://github.com/facebookincubator/gloo/pull/427 landing first
This also updates the gloo submodule to include the required changes.
Test plan:
added lazy init test variants
```
pytest -v test/distributed/test_c10d_gloo.py -k Lazy
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150801
Approved by: https://github.com/fduwjj
This PR is the duplicated one for https://github.com/pytorch/pytorch/pull/139975.
This PR is to add torch._scaled_mm for CPU backend.
_scaled_mm_out_cpu and _scaled_mm_cpu are new added and included in torch._scaled_mm CPU dispatch. We also add _scaled_mm_out_cpu_emulated as a fallback function if the current platform cannot run FP8 matmul using oneDNN. And this PR also updates the various UTs related to FP8 to support CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150410
Approved by: https://github.com/atalman
Summary:
Codegen used to generate tmp_arg_{index} as temporary args, and index is the position of the caller.
We changed the logic of codegen such that we can reuse previous generated samples, and only delete after arg is no longer used. In this case, we need to make {index} unique, since different functions could reuse the same "tmp_arg_{index}" name string, but corresponds to different args.
Test Plan: `python test/inductor/test_aot_inductor.py -k test_autotuning_args_reuse`
Differential Revision: D72297084
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150522
Approved by: https://github.com/desertfire, https://github.com/22quinn
Relanding #148590 due to merge conflict.
This PR has multiple changes to `ProcessGroupNCCL` (which unfortunately are related):
1. When async_op=False, we directly launch the collective on "current" stream, instead of a trampoline stream and join back.
- Resolves#147729
- Resolves#146881
- Also saves two event syncs (which have overhead in case of HIP) and one pybind when we call `work.wait()` in distributed_c10d.py on behalf of user.
2. Entirely remove `record_stream` and use CPU-side stashing for managing tensor lifetime against recycling.
- Resolves#147168
3. Remove tensor life management when async_op=False; only use it when async_op=True.
4. To guard against user not calling `work.wait()`, we ask watchdog to unstash tensors after detecting completion of collectives, to prevent us from holding reference to tensors forever. This is a safety net, rather than a service guarantee, see discussion [here](https://github.com/pytorch/pytorch/issues/147168#issuecomment-2660142460).
5. Profile in async_op=False mode would look different -- collective kernels would show up in the same line and compute kernels.
Joint work with @cenzhaometa who wants to remove the event sync overhead.
Squashed contents:
* [ptd][nccl] use current-stream as nccl-stream under async=False mode (#147820)
PTD current workflow:
- PTD creates its own dedicated `ncclStream` for comm operation
- it will first add a dependency on current-stream (typically the compute stream) to ensure tensors are ready before invoking collective
such stream synchronization become expensive in Inference world (cpu overhead: 70us vs GPU kernel time: 160us).
This diff:
- async=False [default], will use current-stream as nccl-stream and avoid the stream-sync overhead
- async=True, will retain existing logic: create new nccl-stream, let it wait on current-stream to ensure tensors are ready
- pass down async from c10d down to NCCL-PG
this helps shave off 50% CPU overhead **(70us -> 35us)**, which reduce total CPU/GPU from **230us to 195us by 15%**
* [PGNCCL] Make avoid-record-stream default
* [c10d] Add asyncOp argument to Ops
* Change python side wait
* Pass asyncOp at ProcessGroup level
* Watchdog unstashing tensors as a safety net
* Stash tensors for reduce_scatter_v and all_gather_v
Pull Request approved: https://github.com/pytorch/pytorch/pull/149753
* [c10d] Move unstashing from watchdog to main thread
Pull Request approved: https://github.com/pytorch/pytorch/pull/150079
* [PGNCCL][BE] Merge mutex into TensorShelf for encapsulation
Pull Request approved: https://github.com/pytorch/pytorch/pull/150130
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150398
Approved by: https://github.com/atalman
Changes in this PR:
1. Add `is_structseq` and `is_structseq_class` functions to determine a object or a class is PyStructSequence.
2. Add a generic class `structseq` which can be used as the registration key for PyStructSequence types like `namedtuple` for Named Tuple types.
3. Change `is_namedtuple` to accept subclasses of namedtuple to be namedtuple. Before this PR, only namedtuple class directly created by `collections.namedtuple` or `typing.NamedTuple` were namedtuple classes while their subclasses were not. This PR makes `is_namedtuple` return true for subclasses of namedtuple class.
Resolves#75982. New tests are included in this PR.
- #75982
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113257
Approved by: https://github.com/zou3519
- Distinguish between conjugated/non_conjugated inputs by appending conjugation to the operator key
- For matmul or dot, add `conjugateWithTensor:name:` calls before running the op
- Enable testing for conjugated ops by passing `include_conjugated_inputs` to opinfo
- Filter `include_conjugated_inputs` argument from `sample_inputs_window` (probably should have landed as separate PR)
- Preserve conj property when gathering the views, that fixes `cov` operator
Fixes https://github.com/pytorch/pytorch/issues/148156
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150157
Approved by: https://github.com/dcci
Summary:
When `a` and `b` have dtype `torch.float4_e2m1fn_x2` and `a_scale` and `b_scale` have dtype `torch.float8_e4m3fn`, makes
```python
c = torch._scaled_mm(a, b, a_scale, b_scale, out_dtype=torch.bfloat16)
```
call the cuBLAS fp4 gemm kernel, as specified in https://docs.nvidia.com/cuda/cublas/index.html?highlight=fp4#d-block-scaling-for-fp8-and-fp4-data-types
note: output scale (`scale_in_D` from the cuBLAS docs) is not tested in this PR - we can enable in a follow-up.
Test Plan:
```bash
pytest test/test_matmul_cuda.py -s -k mxfp8_nvfp4
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148792
Approved by: https://github.com/eqy
ghstack dependencies: #148791
Summary:
To align with thrift-python, we are adding the int base class for `non-Flag` enums. In order to not break production code, the annotation `python.NoIntBaseClassDeprecated` is added to opt-out some enums
After the related customer code logic changes, we can now safely remove the annotations that were added earlier.
Our ultimate goal is to unconditionally add the `int` base to `thrift-py3` enums.
Test Plan:
```
buck test 'fbcode//mode/opt' fbcode//caffe2/torch/fb/training_toolkit/applications/bulk_eval/tests:evaluator_test -- --exact 'caffe2/torch/fb/training_toolkit/applications/bulk_eval/tests:evaluator_test - test_setup_evaluation_utils (caffe2.torch.fb.training_toolkit.applications.bulk_eval.tests.evaluator_test.EvaluatorTest)'
```
Reviewed By: ahilger
Differential Revision: D71446522
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149744
Approved by: https://github.com/izaitsevfb, https://github.com/huydhn
Summary:
User defined Triton kernel sometimes rely on real inputs to determine
the path of execution. We need real inputs to invoke the correct
behavior of the user defined triton kernels (see example in test case,
where we have an early return for random inputs)
Test Plan:
Included in the commit.
python test/inductor/test_aot_inductor.py -k triton_autotuning
python test/inductor/test_aot_inductor.py -k triton_mutated_autotuning
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149553
Approved by: https://github.com/davidberard98, https://github.com/eellison
Summary:
We need to properly fakify torchbind objects, including the ones in graph module attributes, so the resgitered fake implementation works properly.
- _fakify_script_objects in `compile_fx`
- Allow fake torchbind objects in `torchbind_constants`
Remove `node.meta["unbacked_bindings"]` for `aot_compile` in `compile_fx`. Otherwise `ShapeProp` will fail when trying to resolve the `unbacked_bindings` of `with_effect` tokens.
Update `sigrid_transforms_test` to use the latest `torch._inductor.aot_compile` API.
Add a test for `Fakify torchbind objects in compile_fx and add tests for SigridTransformsInstanceTorchBind` in `e2e_test`.
Test Plan:
```
buck run //caffe2/torch/fb/sparsenn:sigrid_test -- -r test_transform_torch_bind
buck run //sigmoid/inference/test:e2e_test_cpu -- -r SigridTransforms
buck2 run mode/dev-nosan sigmoid/inference/ts_migration:pt2i_readiness_main -- --model_id 545017754 --test_suite ads_all --mode test_preproc
```
Differential Revision: D70013257
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149529
Approved by: https://github.com/angelayi
AOTDispatch doing AOT backward graph preparation does not know real tangents that user will specify when runs backward.
AOTD guesses the tangents. Before - we guessed that memory format of tangents will be as memory format of corresponding outputs. And if specified tangents at runtime are not the same memory format as we guessed during compilation, AOTD does coercion (copy) to guessed memory_format
But as Horace found, there are popular use cases, where the outputs of compiled region will be in specific memory_format. E.g. in 4D tensor transposing dims 1 and 2.
https://github.com/karpathy/nanoGPT/blob/master/model.py#L57
This PR changes the logic, that AOTD expects the same "strideness" of tangents as outputs. As a result it will avoid coercion for the case of transposed dims.
Limitations:
We keep guessing memory_format for:
1/ Dynamic shapes (needs more changes)
2/ Tensor subclasses (needs more changes)
Other changes:
test_torchinductor was always creating contiguous tangents via `torch.randn()`, changing them to be `torch.randn_like()` to compare computation with the same strideness.
(E.g. for cuda float16 strideness affects numerics for fft ops).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144579
Approved by: https://github.com/bdhirsh