This is for "for some large number Z, make sure the error messages are readable English." - beginning to audit all `unimplemented` sites and making sure that all messages are at least English-readable. Hints may not necessarily be provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147385
Approved by: https://github.com/jansel
Now that all cells are modeled as `NewCellVariable` in Dynamo, we no
longer need to put cell variables into this special `closure_cells`,
rather we just merge `closure_cells` with `symbolic_locals`.
This allows us to merge and remove some code paths, notably make
`LOAD_CLOSURE` the same as `LOAD_FAST`, and `LOAD_DEREF` & `STORE_DEREF`
the same for inlining or regular `InstructionTranslator`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140154
Approved by: https://github.com/jansel
ghstack dependencies: #140330, #140152, #140436, #140435, #140153
In addition to `NewCellVariable`, Dynamo has 3 ways of modeling cell objects:
1. For cells captured and created by the root frame, represent them as
their contents in `root_tx.symbolic_locals`, which `LOAD_DEREF` and
`STORE_DEREF` update directly, without going through `SideEffects`.
2. `ClosureVariable`: this is created when cells from (1) are captured
by a newly created function Dynamo is about to inline. It's a handle
with a name that redirects `LOAD_DEREF` and `STORE_DEREF` back (1),
to make `root_tx.symbolic_locals` up-to-date.
3. For cells that are captured by both the root frame and some
pre-existing function Dynamo is about to inline, represent those
cells as contents, and do not allow writes to them.
Note that (2) and (3) are mainly to conform with (1) -- to make sure
Dynamo has a consistent modeling of cells for the same cell objects.
In this patch, we represent all of these cells as `NewCellVariable`. The
main new code paths introduced are:
- using `NewCellVariable` to model cell objects created by the root
frame (the cells are passed in as input to `InstructionTranslator`),
this is what allows us to get rid of all 3 legacy paths above.
- adding a new `AutoDerefLocalSource` to deal with the python-code
level (guards) and bytecode level (codegen) auto-dereferencing
behavior, when accessing pre-existing python cells. This also
involves a tiny update to guard manager generation.
- plumbing some extra info into `LocalSource` and `CellVariable` so that
we can still emit `LOAD_DEREF`, `STORE_DEREF`, `LOAD_CLOSURE` (instead
of `make_cell`, `cell_contents` attribute access, and `LOAD_FAST`),
which is important for readability, performance, and some
assumptions `bytecode_transformation.py` makes.
As a result, this patch removes a lot of the now-dead code paths and
TODOs. Notably, it significantly simplified the `prune_dead_locals`
function, which was duplicating a lot of the logic from
`prune_dead_object_new`; this conveniently closes#137123.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140153
Approved by: https://github.com/jansel
ghstack dependencies: #140330, #140152, #140436, #140435
I wasn't paying enough attention and didn't notice that LOAD_DEREF is
defined differently for InliningInstructionTranslator. Match it up with
the code there.
This also fixes comptime.print(), which was broken, because closing over
an argument turned it into a cell rather than a regular local.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126637
Approved by: https://github.com/yanboliang
This PR adds `@comptime`, a decorator that causes a given function to be executed at compile time when Dynamo is symbolically evaluating their program. To query the Dynamo state, we offer a public ComptimeContext API which provides a limited set of APIs for querying Dynamo's internal state. We intend for users to use this API and plan to keep it stable. Here are some things you can do with it:
* You want to breakpoint Dynamo compilation when it starts processing a particular line of user code: give comptime a function that calls breakpoint
* You want to manually induce a graph break for testing purposes; give comptime a function that calls unimplemented
* You want to perform a debug print, but you don't want to induce a graph break; give comptime a function that prints.
* You can print what the symbolic locals at a given point in time are.
* You can print out the partial graph the Dynamo had traced at this point.
* (My original motivating use case.) You want to add some facts to the shape env, so that a guard evaluation on an unbacked SymInt doesn't error with data-dependent. Even if you don't know what the final user API for this should be, with comptime you can hack out something quick and dirty. (This is not in this PR, as it depends on some other in flight PRs.)
Check out the tests to see examples of comptime in action.
In short, comptime is a very powerful debugging tool that lets you drop into Dynamo from user code, without having to manually jerry-rig pdb inside Dynamo to trigger after N calls.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90983
Approved by: https://github.com/jansel