Commit Graph

2184 Commits

Author SHA1 Message Date
gasoonjia
501c5972f0 [pytorch] raise exception when calling dim order on sparse tensor (#145888)
This diff introduces a change to the PyTorch library that raises an exception when calling the `dim_order` method on a sparse tensor.

Differential Revision: [D68797044](https://our.internmc.facebook.com/intern/diff/D68797044/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145888
Approved by: https://github.com/Jack-Khuu
2025-01-29 06:15:44 +00:00
Benjamin Glass
5aa5a5763e [inductor triton] Disable incorrect TF32 usage on CUDA capability < 8 (#145684)
Triton 2.2 and greater have a bug where allowing TF32 generation for a GPU that does not support TF32 will cause code generation errors. Patch around this problem by:

1. Adding a function to `torch.cuda` that determines whether CUDA hardware is capable of using the TF32 format.
2. Using that function to explicitly disable TF32 generation when calling Triton, where needed.

To demonstrate that this fix works, try running `test/inductor/test_max_autotune.py` on a GPU with CUDA compute capability < 8 (e.g. any NVIDIA consumer GPU) without this fix.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145684
Approved by: https://github.com/eqy
2025-01-28 22:01:08 +00:00
Dmitry Nikolaev
d4871750d9 [ROCm] Enable post-merge trunk workflow on MI300 runners; skip and fix MI300 related failed tests (#143673)
This PR
* makes changes to the workflow files and scripts so we can run CI workflows on the MI300 runners
* skips and fixes several tests, failed on MI300, observed in https://github.com/pytorch/pytorch/pull/140989

Skipped due to unsupported Float8_e4m3fn data type on MI300 (need to update test code to use datatypes supported by MI300):
- distributed.tensor.parallel.test_micro_pipeline_tp.py::MicroPipelineTPTest::test_fuse_all_gather_scaled_matmul_A_dims_\*_gather_dim_\* (24 tests across inductor/distributed configs)
- distributed.tensor.parallel.test_micro_pipeline_tp.py::test_fuse_scaled_matmul_reduce_scatter_A_dims_\*_scatter_dim_\* (12 tests across inductor/distributed configs))
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_cast_and_t
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_pattern_2

Skipped due to AssertionError on MI300:
- inductor.test_mkldnn_pattern_matcher.py::test_qconv2d_int8_mixed_bf16
- distributed._tools.test_sac_ilp::TestSACILP::test_sac_ilp_case1

Skipped:
- test_cuda.py::TestCudaMallocAsync::test_clock_speed
- test_cuda.py::TestCudaMallocAsync::test_power_draw
- test_torch.py::TestTorchDeviceTypeCUDA::test_deterministic_cumsum_cuda

Skipped flaky tests on MI300:
- distributed.test_c10d_gloo.py::ProcessGroupGlooTest::test_gather_stress_cuda
- inductor.test_cpu_repro::CPUReproTests::test_lstm_packed_unbatched_False* (256 tests)

Fixed:
- test_matmul_cuda.py::TestFP8MatmulCudaCUDA::test_float8_basics_cuda

Features:
- inductor/test_fp8.py - declare a new function to convert FP8 datatypes to ROCm supported FP8 datatypes. It keeps test names for CUDA and ROCm and allows to enable Inductor FP8 tests on CPU

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143673
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/pruthvistony

Co-authored-by: saienduri <saimanas.enduri@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-01-09 05:18:57 +00:00
cyy
df458be4e5 [4/N] Apply py39 ruff and pyupgrade fixes (#143257)
```torch/fx/passes/annotate_getitem_nodes.py``` was changed to support the new type hinting annotations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143257
Approved by: https://github.com/justinchuby, https://github.com/albanD
2025-01-04 10:47:51 +00:00
Davide Italiano
41b5c600df [ReduceOps] Add dimension checking for cummin()/cummax(). (#143920)
Summary: cum{min,max} didn't guard against 0-d vector and allowed an arbitrary dimension to be passed.

Test Plan: torch_test.py

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #71477

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143920
Approved by: https://github.com/malfet
2025-01-03 04:14:33 +00:00
Wenqin Yang
8d9ff9c8a4 Fix a bug for wrong stride in fake tensor (#141427)
Fixes #141426

Please see details in the issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141427
Approved by: https://github.com/jansel
2024-12-31 23:45:32 +00:00
Eddie Yan
b90a3b7281 [cumsum][CUDA][64-bit indexing] Add 64-bit indexing path for cumsum (#143696)
For #143486

Interestingly enough changing the indexing type seems to degrade performance when a larger width is not needed, even on small sizes, so making this a template param rather than forcing all cases to 64-bit

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143696
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2024-12-24 03:45:28 +00:00
PyTorch MergeBot
49fdc52fd2 Revert "Add a warning when a tensor with requires_grad=True is converted to a scalar (#143261)"
This reverts commit bc78b6ea4f.

Reverted https://github.com/pytorch/pytorch/pull/143261 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing lint, plz help fix and reland this ([comment](https://github.com/pytorch/pytorch/pull/143261#issuecomment-2560583332))
2024-12-24 03:15:38 +00:00
Joshua Hamilton
bc78b6ea4f Add a warning when a tensor with requires_grad=True is converted to a scalar (#143261)
Fixes #143071

Operations performed on tensors with `requires_grad=True` such as
```python
import torch

x = torch.tensor(2.0, requires_grad=True)
y = x ** 3
```
and
```python
x = torch.tensor(2.0, requires_grad=True)
y = torch.pow(x,3)
```
are valid operations.

While an operation using `numpy` like
```python
import numpy as np

x = torch.tensor(2.0, requires_grad=True)
y = np.pow(x,3)
# > RuntimeError: Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
```
leads to an error.

However, an operation that uses `math` like
```python
import math

x = torch.tensor(2.0, requires_grad=True)
y = math.pow(x,3)
```
does not cause an error, and `y` is no longer a tensor with a gradient!

This represents a [footgun](https://en.wiktionary.org/wiki/footgun#Noun) for some users, like myself when training small, custom, non-neural network models.

To prevent future undesired behavior, I added a warning when converting tensors with `requires_grad=True` to scalars. Now, when using `math.pow` on a `tensor`, we get a single warning with:
```python
x = torch.tensor(2.0, requires_grad=True)
y = math.pow(x,3)
# > UserWarning: Converting a tensor with requires_grad=True to a scalar may lead to unexpected behavior.
# Consider using tensor.detach() first.
```

Please let me know if you have any questions 👍
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143261
Approved by: https://github.com/albanD
2024-12-24 00:22:18 +00:00
Tom Ritchford
f1cbf4b1b5 Enable ruff's unused variable checking everywhere in pytorch (#136965)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136965
Approved by: https://github.com/cyyever, https://github.com/albanD
2024-12-22 02:33:11 +00:00
Tom Ritchford
8d4926e30a Fix unused variables in test/torch.py (#143399)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143399
Approved by: https://github.com/albanD
2024-12-18 17:57:24 +00:00
emmettbicker
576789197a Add support for CPU scalar in addcmul (#143264)
Step required for performance in #143122

Adds support for CPU scalar for tensor_2 in addcmul. For example:
```
import torch
a = torch.rand(2, 2, device="cuda")
b = torch.tensor(1e-3)

torch.add(a, b)
torch.addcmul(a, a, b)  # used to fail, now works
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143264
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2024-12-18 04:43:29 +00:00
Natalia Gimelshein
859be14c4e fix a few int64_t index computations, fix complex128 scan that had to… (#143401)
…o few threads
per title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143401
Approved by: https://github.com/eqy
2024-12-18 04:27:27 +00:00
albanD
70be7900bb Fix Tensor clear to properly clear slots (#143203)
Fixes a bug introduced in https://github.com/pytorch/pytorch/pull/137267

While the test ensures the finalizer did run to make sure things are cleared, the objects are not properly collected by the gc due to the faulty tp_clear implementation. So, while the finalizer did run, the object was still alive.
Fixing this by giving tp_clear the same treatment as tp_traverse and tp_dealloc on Tensor: make it a unique function that handles the full subclass hierarchy in one place.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143203
Approved by: https://github.com/ezyang, https://github.com/colesbury
ghstack dependencies: #143202
2024-12-14 00:17:07 +00:00
gasoonjia
29e985b7b0 [dim_order] raised runtime error when tensor has ambiguous dim order (#141632)
This diff makes tensor.dim_order() raise error when tensor's dim order is ambiguous. Detail discussion can be found https://fb.workplace.com/groups/894363187646754/permalink/2039987243084337/

Differential Revision: [D65133579](https://our.internmc.facebook.com/intern/diff/D65133579/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141632
Approved by: https://github.com/larryliu0820
2024-12-08 23:16:57 +00:00
Natalia Gimelshein
0443398f5b Implement deterministic scan (#140887)
Fixes #89492
Uses block-wise cub primitives
On large inputs, this implementation is approximately 25% slower than device cub implementation, so it's turned on only in cases where cub would have been (floating point inputs, cumsum that is effectively 1d)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140887
Approved by: https://github.com/ezyang, https://github.com/kurtamohler
2024-11-19 23:43:26 +00:00
PyTorch MergeBot
7f10351ba0 Revert "Implement deterministic scan (#140887)"
This reverts commit 4eed438a42.

Reverted https://github.com/pytorch/pytorch/pull/140887 on behalf of https://github.com/ngimel due to breaks with 11.4 ([comment](https://github.com/pytorch/pytorch/pull/140887#issuecomment-2486409438))
2024-11-19 18:08:48 +00:00
Prachi Gupta
7156d0824d [ROCm] Fix largeIndexBlockSize (#139087)
On ROCm, hipification converts std::min to ::min, but ::min is not returning the right result. This impacts index_add_ operation on a large tensor, we end up picking the large values instead of max supported block size (128). This leads to GPU accessing memory out of bounds.

While we wait for ::min to be fixed, we can use < operator to compare instead of relying on ::min.

Example Code w/ failure:
```
D=6144
hidden_states = torch.zeros([16384, 6144],           device="cuda:0", dtype=torch.bfloat16)
index         = torch.randint(0, 16384, (1, 32, 16384), device="cuda:0", dtype=torch.int64)
output        = torch.empty([1, 32, 16384, 6144],    device="cuda:0", dtype=torch.bfloat16)
hidden_states.index_add_(0, index.view(-1), output.view(-1, D))
```

```
Traceback (most recent call last):
RuntimeError: HIP error: invalid configuration argument
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139087
Approved by: https://github.com/jeffdaily, https://github.com/pruthvistony
2024-11-19 06:29:48 +00:00
Natalia Gimelshein
4eed438a42 Implement deterministic scan (#140887)
Fixes #89492
Uses block-wise cub primitives
On large inputs, this implementation is approximately 25% slower than device cub implementation, so it's turned on only in cases where cub would have been (floating point inputs, cumsum that is effectively 1d)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140887
Approved by: https://github.com/ezyang, https://github.com/kurtamohler
2024-11-18 20:56:14 +00:00
Nikita Shulga
0f739b8f66 [Codemod] skipIfMps->skipIfMPS (#140562)
As `MPS` is an acronym that stands for Metal Performance Shaders
Also to closer align with `skipCUDAIf` not `skipCudaIf`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140562
Approved by: https://github.com/ZainRizvi, https://github.com/r-barnes
2024-11-13 19:45:08 +00:00
zeshengzong
cb71bcc542 Replace clone.detach with detach.clone (#140264)
Fixes #64532

As state in issue, replace `clone.detach` by `detach.clone`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140264
Approved by: https://github.com/soulitzer
2024-11-13 07:01:02 +00:00
zeshengzong
5ef33e40b3 Add size param check of unfold (#139965)
Fixes #76617

Changes:

- Add check of input `size` value, give user friendly hint message
- fix `FIXME: move to shape ops test suite` in test file

Before
```python
import torch
x = torch.arange(1., 8)
x.unfold(0, -1, 1)

Traceback (most recent call last):
  File "/home/zong/code/unfold.py", line 12, in <module>
    x.unfold(0, -1, 1)
RuntimeError: Storage size calculation overflowed with sizes=[9, -1] and strides=[1, 1]

```

After
```python
import torch
x = torch.arange(1., 8)
x.unfold(0, -1, 1)

Traceback (most recent call last):
  File "/home/zong/code/pytorch/../unfold.py", line 12, in <module>
    x.unfold(0, -1, 1)
RuntimeError: size is -1 but must be >= 0
```

Test Result:
```bash
pytest test/test_shape_ops.py
```

![image](https://github.com/user-attachments/assets/d7bcef62-04e6-4187-9c8f-bc5220ff6c33)

```bash
$ lintrunner
```

![image](https://github.com/user-attachments/assets/6b48d095-5c8a-4e75-9957-dc22d39a73bb)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139965
Approved by: https://github.com/ezyang
2024-11-09 17:12:53 +00:00
PyTorch MergeBot
067d2a089d Revert "Expose Storage _use_count API in Python (#139426)"
This reverts commit e31136d07b.

Reverted https://github.com/pytorch/pytorch/pull/139426 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing some inductor job in trunk ([comment](https://github.com/pytorch/pytorch/pull/139426#issuecomment-2453269063))
2024-11-03 02:40:45 +00:00
Jane Xu
e31136d07b Expose Storage _use_count API in Python (#139426)
Would be nice to replace the torch._C._storage_Use_Count call in https://github.com/pytorch/torchtune/pull/1936, at least without needing to know about _cdata in OSS code.

Initially keeping it private as Tensor._use_count is also private.

In favor over https://github.com/pytorch/pytorch/pull/139109 in solving the same problem, as exposing an existing API is better than adding a new one (and this enables a more robust fix)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139426
Approved by: https://github.com/soulitzer
2024-11-02 23:36:31 +00:00
PyTorch MergeBot
49bfbed2eb Revert "Add deterministic path for CUDA cumsum (#136224)"
This reverts commit 383eba5229.

Reverted https://github.com/pytorch/pytorch/pull/136224 on behalf of https://github.com/ezyang due to larger memory usage apparently not acceptable ([comment](https://github.com/pytorch/pytorch/pull/136224#issuecomment-2447382819))
2024-10-30 14:43:15 +00:00
Mikayla Gawarecki
37149d032c Fix .to(cpu) for Storage (#138011)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138011
Approved by: https://github.com/albanD
2024-10-23 01:31:48 +00:00
William Wen
92fdea8a39 remove skips due to https://github.com/pytorch/torchdynamo/issues/1991 (#138133)
Closes https://github.com/pytorch/pytorch/issues/93479. A bunch of other dynamo-wrapped tests also exhibit "torch.* returned non-Tensor output unimplemented" making the issue seem less relevant to me. Some tests are marked as xfail as they fail for other reasons.

If these tests are indeed important, we should create a new issue to track them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138133
Approved by: https://github.com/ezyang
2024-10-17 17:42:46 +00:00
Haifeng Jin
2db3f85894 Fixes NumPy 2 test failures in test_torch.py (#137740)
Related to #107302

The breakages are caused by backward incompatibility between NumPy 1 and NumPy 2.
This PR fixes all the corresponding test failures in `test_torch.py`.

1. The dtype of the return value `np.percentile` when passed a `torch.float32` tensor.
NumPy 1: Return value of `np.float64`.
NumPy 2: Return value of `np.float32`.
Solution: Enforce it with `.astype(np.float64)`.

2. The type of `np.gradient()` when returning multiple arrays.
NumPy1: A list of arrays.
NumPy2: A tuple of arrays.
Solution: Cast the tuple to a list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137740
Approved by: https://github.com/ezyang
2024-10-12 02:40:17 +00:00
Kurt Mohler
383eba5229 Add deterministic path for CUDA cumsum (#136224)
Change `cumsum` to call its decomposition when `use_deterministic_algorithms(True)` and input is CUDA.

Fixes #89492
Fixes #75240

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136224
Approved by: https://github.com/ezyang, https://github.com/justinchuby, https://github.com/eqy
2024-10-10 06:59:08 +00:00
Miles
f301f6544b fix bug for fill_empty_deterministic_ not support complex half (#137488)
Fixes #133157

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137488
Approved by: https://github.com/ezyang
2024-10-10 01:21:32 +00:00
vasiliy
a063a82c8b [redo] Fp8 support for item() with cuda, index_select, and fill_ cpu (#137341)
Summary:

Redo of https://github.com/pytorch/pytorch/pull/128780, easier to copy-paste.

Test Plan: CI

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137341
Approved by: https://github.com/eqy
2024-10-07 00:58:51 +00:00
albanD
c0deec120f Fix resurrection logic to trigger early enough (#137267)
Fixes https://github.com/pytorch/pytorch/issues/136358

The bug here is that the Tensor object is actually 2 classes: `Tensor` from `_tensor.py` and `TensorBase` from c++.

Before this PR, they have the following gc methods:
Tensor:
 - tp_clear subtype_clear
 - tp_traverse THPVariable_subclass_traverse
 - tp_dealloc THPVariable_subclass_dealloc

TensorBase:
- tp_clear THPVariable_clear
- tp_traverse THPFunction_traverse (fake function that is just an error)
- tp_dealloc object_dealloc

The problem is that when clear is called on the Tensor, subtype_clear is going to clear the things owned by the "Tensor" type, in particular, its `__dict__` attribute, before delegating to the TensorBase clear where we detect that resurrection needs to happen and skip it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137267
Approved by: https://github.com/ezyang, https://github.com/kshitij12345
2024-10-04 21:13:54 +00:00
PyTorch MergeBot
e9d2765ec8 Revert "Add deterministic path for CUDA cumsum (#136224)"
This reverts commit d1bb8e828f.

Reverted https://github.com/pytorch/pytorch/pull/136224 on behalf of https://github.com/atalman due to Break internal CI ([comment](https://github.com/pytorch/pytorch/pull/136224#issuecomment-2379214226))
2024-09-27 12:54:47 +00:00
Kurt Mohler
d1bb8e828f Add deterministic path for CUDA cumsum (#136224)
Change `cumsum` to call its decomposition when `use_deterministic_algorithms(True)` and input is CUDA.

Fixes #89492

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136224
Approved by: https://github.com/ezyang, https://github.com/justinchuby
2024-09-26 04:52:05 +00:00
PyTorch MergeBot
e3b89ca124 Revert "Add deterministic path for CUDA cumsum (#136224)"
This reverts commit b1a02bf708.

Reverted https://github.com/pytorch/pytorch/pull/136224 on behalf of https://github.com/ezyang due to Failing internall CI ([comment](https://github.com/pytorch/pytorch/pull/136224#issuecomment-2374201626))
2024-09-25 14:11:01 +00:00
Kurt Mohler
b1a02bf708 Add deterministic path for CUDA cumsum (#136224)
Change `cumsum` to call its decomposition when `use_deterministic_algorithms(True)` and input is CUDA.

Fixes #89492

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136224
Approved by: https://github.com/ezyang, https://github.com/justinchuby
2024-09-24 21:34:43 +00:00
Robert Hardwick
eac04fe72a Increase bf32 tolerances for some cdist tests in test_torch (#136315)
- Set the new tolerances ~= N * eps(bfloat16) which should be a comfortable upper bound for tolerances. Where N is the inner dimension of the matmal.

Logic behind choice of tolerance:

The maximum error of the summation of a series of N numbers in bfloat16 should be `N * epsilon(bfloat16)` , I confirmed by sampling different random seeds that the maximum observed error doesn't exceed this value and is usually much less.

Fixes test failures on Arm® Neoverse™ V1 ( not raised as an issue as this hardware type is not currently covered by linux-aarch64 workflow )

```
Traceback (most recent call last):
  File "/var/lib/jenkins/workspace/test/test_torch.py", line 2478, in test_cdist_large
    self.assertEqual(expected, actual)
  File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3885, in assertEqual
    raise error_metas.pop()[0].to_error(
AssertionError: Tensor-likes are not close!

Mismatched elements: 134118 / 1000000 (13.4%)
Greatest absolute difference: 0.03829193115234375 at index (291, 726) (up to 0.005 allowed)
Greatest relative difference: 0.03519868478178978 at index (291, 726) (up to 1.3e-06 allowed)
```

@malfet @jondea

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136315
Approved by: https://github.com/albanD
2024-09-24 16:10:11 +00:00
PyTorch MergeBot
fd182b90a7 Revert "Add deterministic path for CUDA cumsum (#136224)"
This reverts commit d45b0151e5.

Reverted https://github.com/pytorch/pytorch/pull/136224 on behalf of https://github.com/atalman due to Failing internall CI ([comment](https://github.com/pytorch/pytorch/pull/136224#issuecomment-2369244135))
2024-09-23 19:57:13 +00:00
Kurt Mohler
d45b0151e5 Add deterministic path for CUDA cumsum (#136224)
Change `cumsum` to call its decomposition when `use_deterministic_algorithms(True)` and input is CUDA.

Fixes #89492

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136224
Approved by: https://github.com/ezyang, https://github.com/justinchuby
2024-09-20 02:41:56 +00:00
Nikita Shulga
cd5452aace [CUDA] is_bf16_supported() should not crash if there are no GPUs (#132313)
`False` is the good answer on a system that does not have any CUDA GPUs.
- Added regression test to TestTorch.

Fixes https://github.com/pytorch/pytorch/issues/132303

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132313
Approved by: https://github.com/eqy, https://github.com/syed-ahmed
2024-08-02 02:50:43 +00:00
Songhao Jia
a141334c88 migitate wrong tensor.dim_order() (#131366)
Summary:
there're some issues for dim order creation. T194410923 has detail illustration.

One of the reason is sometimes `is_contiguous` function may generate ambiguous memory format result (some tensors might be both channels_last and contiguous at the same time), and dim order generation rely on memory format result underneath for shortcut.

To mitigate the issue, we make dim order utilizing the short cut if and only if the tensor is only belongs to single memory format. Otherwise, we will still recalculate it.

Test Plan: CI

Differential Revision: D60056793

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131366
Approved by: https://github.com/ezyang
2024-07-30 21:58:15 +00:00
Aaron Orenstein
5a0068cc69 [BE] mypy: disallow untyped decorators (#131428)
Untyped decorators strip the types from their decorated function so even if the underlying function is fully typed then callers to it don't get any benefit from type annotations.

Step 1 - Enable the error and override in all the offending files.

#131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131428
Approved by: https://github.com/justinchuby, https://github.com/oulgen
2024-07-23 21:50:55 +00:00
wizzniu
8963623494 Re-implement pin_memory to be device-agnostic by leveraging the Accelerator concept (#126376)
This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.

Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.

Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.

Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
2024-07-23 01:44:15 +00:00
PyTorch MergeBot
726b9268d2 Revert "Re-implement pin_memory to be device-agnostic by leveraging the Accelerator concept (#126376)"
This reverts commit c986aeea2d.

Reverted https://github.com/pytorch/pytorch/pull/126376 on behalf of https://github.com/atalman due to Failing internal builds ([comment](https://github.com/pytorch/pytorch/pull/126376#issuecomment-2237496633))
2024-07-18 20:25:20 +00:00
wizzniu
c986aeea2d Re-implement pin_memory to be device-agnostic by leveraging the Accelerator concept (#126376)
This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.

Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.

Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.

Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
2024-07-18 11:54:14 +00:00
eellison
9ab8d47f9d Constant folding for dynamic shape node (#129686)
Extend constant folding for dynamic shape node, only support pointwise op and some restricted ops

We support dynamic shapes by limiting constant folding of ops that are guaranteed to have uniform values (full, pointwise ops, and views) and running these operators with tensors of shape 1. This also eliminates the possibility of memory overhead of constant folding.

Taken over from https://github.com/pytorch/pytorch/pull/128937

joint work with @imzhuhl

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129686
Approved by: https://github.com/Chillee
ghstack dependencies: #130367
2024-07-16 00:17:11 +00:00
PyTorch MergeBot
9df4bc6a0d Revert "Constant folding for dynamic shape node (#129686)"
This reverts commit b7d287fbec.

Reverted https://github.com/pytorch/pytorch/pull/129686 on behalf of https://github.com/atalman due to Failing internally.  Test: https://github.com/pytorch/ao/blob/main/test/prototype/mx_formats/test_mx_linear.py ([comment](https://github.com/pytorch/pytorch/pull/129686#issuecomment-2228755295))
2024-07-15 15:19:24 +00:00
eellison
b7d287fbec Constant folding for dynamic shape node (#129686)
Extend constant folding for dynamic shape node, only support pointwise op and some restricted ops

We support dynamic shapes by limiting constant folding of ops that are guaranteed to have uniform values (full, pointwise ops, and views) and running these operators with tensors of shape 1. This also eliminates the possibility of memory overhead of constant folding.

Taken over from https://github.com/pytorch/pytorch/pull/128937

joint work with @imzhuhl

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129686
Approved by: https://github.com/Chillee
ghstack dependencies: #130367
2024-07-12 03:44:29 +00:00
cyy
cb5e9183c6 [Caffe2] [2/N] Remove Caffe2 from tests (#128911)
Follows #128675

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128911
Approved by: https://github.com/titaiwangms, https://github.com/r-barnes
2024-06-19 00:05:50 +00:00
Aaron Orenstein
dcfa7702c3 Flip default value for mypy disallow_untyped_defs [1/11] (#127838)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127838
Approved by: https://github.com/oulgen
2024-06-08 18:16:33 +00:00
Aaron Gokaslan
12c4a2c297 [BE]: Apply PLR1736 fixes (unnecessary index lookup) (#127716)
Applies the PLR1736 preview rule with some more autofixes to cut down on unnecessary accesses. Added a noqa since that test actually testing the dunder method.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127716
Approved by: https://github.com/ezyang
2024-06-03 17:22:13 +00:00
Xuehai Pan
67ef2683d9 [BE] wrap deprecated function/class with typing_extensions.deprecated (#127689)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

Resolves #126888

- #126888

This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127689
Approved by: https://github.com/Skylion007
2024-06-02 12:30:43 +00:00
PyTorch MergeBot
033e733021 Revert "[BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)"
This reverts commit 749a132fb0.

Reverted https://github.com/pytorch/pytorch/pull/126898 on behalf of https://github.com/fbgheith due to switching typing-extensions=4.3.0 to 4.9.0 causes internal failure ([comment](https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456))
2024-05-31 19:47:24 +00:00
Mikayla Gawarecki
cd06ae0cb8 Relax use_count constraints for swap_tensors when AccumulateGrad holds a reference (#127313)
### Before this PR:
`torch.utils.swap_tensors(a, b)` required the `use_count` of `a` and `b` to be 1

```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here would fail due to the reference held by AccumulateGrad node, which is not cleaned up after backward
# torch.utils.swap_tensors(a, b)
del out
# Calling swap_tensors here would pass
torch.utils.swap_tensors(a, b)
```
### After this PR:
`torch.utils.swap_tensors(a, b)` requires the `use_count` of `a` and `b` to be 1 or 2 IF the second reference is held by `AccumulateGrad`

A pre-hook will be registered on the `AccumulateGrad` node so that it will fail if it is called (i.e. if user attempts to backward through the graph).

```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here is ok
torch.utils.swap_tensors(a, b)
# If we ever backward to the AccumulateGrad node it will error that it was poisoned by swap_tensors
```

### Application to `nn.Module`

This issue is especially pertinent in context of `nn.Module` where parameters will have `AccumulateGrad` nodes initialized after forward. Specifically, this is intended to address https://github.com/pytorch/pytorch/pull/126814#issuecomment-2127777866. Previously, this would fail at the `m.cpu()` but we want users to be able to do something like the following, and instead raise an error if the user ever attempts to backward through the poisoned `AccumulateGrad` node

```python
import torch
import torch.nn as nn
m = nn.Linear(3, 5)
inp = torch.randn(2, 3)
out = m(inp)
out.sum().backward()
m.cpu()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127313
Approved by: https://github.com/soulitzer
2024-05-30 07:06:55 +00:00
Xuehai Pan
749a132fb0 [BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.

Resolves #126888

- #126888

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
2024-05-29 12:09:27 +00:00
William Wen
5359af0c7e [dynamo] wrap GraphModule exceptions in dynamo-wrapped tests (#126341)
Better approach to https://github.com/pytorch/pytorch/pull/126197 to catch issues like https://github.com/pytorch/pytorch/issues/125568.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126341
Approved by: https://github.com/anijain2305, https://github.com/jansel
2024-05-29 05:18:04 +00:00
Yu, Guangye
c09205a057 Deprecate device-specific GradScaler autocast API (#126527)
# Motivation

## for `torch.amp.GradScaler`,
- `torch.cpu.amp.GradScaler(args...)` is completely equivalent to `torch. amp.GradScaler("cpu", args...)`.
- `torch.cuda.amp.GradScaler(args...)` is completely equivalent to `torch.amp.GradScaler("cuda", args...)`.

So, we intend to depreate them and **strongly recommend** developer to use `torch.amp.GradScaler`.

## for `custom_fwd` and `custom_bwd`,
this is a good solution to make the custom function run with or without effect even in an autocast-enabled region and can be shared by other backends, like CPU and XPU.
So we generalize it to be device-agnostic and put them int `torch/amp/autocast_mode.py` and re-expose to `torch.amp.custom_fwd` and `torch.amp.custom_bwd`. Meanwhile, we deprecate `torch.cuda.amp.custom_fwd` and `torch.cuda.amp.custom_bwd`.

# Additional Context
Add UT to cover the deprecated warning.
No need for more UTs to cover the functionality of `torch.amp.custom_f/bwd`, the existing UTs that previously covered the functionality of `torch.cuda.amp.custom_f/bwd` can cover them.
To facilitate the review, we separate these code changes to two PRs. The first PR cover `torch.amp.GradScaler`. The follow-up covers `custom_fwd` and `custom_bwd`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126527
Approved by: https://github.com/jgong5, https://github.com/gujinghui, https://github.com/janeyx99, https://github.com/EikanWang
2024-05-25 06:41:34 +00:00
Matthew Hoffman
86ad101370 Enable pickling torch._C.Generator (#126271)
Fixes #71398

Add `__reduce__` and `__setstate__` methods for `torch._C.Generator`.

`__reduce__` returns a tuple of 3 values:

1. `torch.Generator` itself.
2. A one-element tuple containing the `torch.device` to create the `Generator` with, since this cannot be changed after the object is created.
3. The state, a three-element tuple: the initial seed, the offset (or `None` if a CPU `Generator`), and the RNG state tensor.

`__setstate__` calls `manual_seed`, `set_offset` (if not `None`), and `set_state` on each respective element of the state.

Added test demonstrating successful reserialization with cpu and cuda `Generator`s.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126271
Approved by: https://github.com/ezyang
2024-05-22 14:38:47 +00:00
Nikita Shulga
a379ed6e98 Fix SobolEngine default dtype handling (#126781)
- Change default dtype argument to `None` and fetch it value via `torch.get_default_dtype()` call if not defined
- Fix bug in first draw handling logic, that would ignore dtype in favor of default one due to type promotion
- Add regression tests

Fixes https://github.com/pytorch/pytorch/issues/126478
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126781
Approved by: https://github.com/Skylion007, https://github.com/albanD
2024-05-22 01:55:48 +00:00
Tarunbir Gambhir
ad67553c5c Updated test_torch.py to use new OptimizerInfo infrastructure (#125538)
Fixes #123451 (only addresses test_torch.py cases)

This PR solves the specific task to update `test_grad_scaling_autocast` and `test_params_invalidated_with_grads_invalidated_between_unscale_and_step` in `test/test_torch.py` to use the new OptimizerInfo infrastructure.

I have combined tests that call `_grad_scaling_autocast_test` into one called `test_grad_scaling_autocast` and used `_get_optim_inputs_including_global_cliquey_kwargs` to avoid hard-coded configurations.

```
$ lintrunner test/test_cuda.py
ok No lint issues.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125538
Approved by: https://github.com/janeyx99
2024-05-18 15:42:45 +00:00
albanD
19a9de114a Forbid subclassing _TensorBase directly (#125558)
As per title.
This ensures that all the places where we assume the method defined in _tensor.py do exist.

BC-Breaking: This is bc-breaking as the user cannot subclass this private class anymore.
You should replace any use of _TensorBase to Tensor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125558
Approved by: https://github.com/ezyang
2024-05-08 20:29:29 +00:00
PyTorch MergeBot
a0e2f62edd Revert "Include support for the scatter gather cuda kernels to allow for comp… (#124809)"
This reverts commit 9e24c263f9.

Reverted https://github.com/pytorch/pytorch/pull/124809 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/124809#issuecomment-2091751002))
2024-05-02 21:36:18 +00:00
Danial Javady
9e24c263f9 Include support for the scatter gather cuda kernels to allow for comp… (#124809)
Fixes #121965

This PR hopes to add support complex numbers in the scatter/gather related kernels. For brevity, I will only include `complex<float>` for now as `complex<double>`, for example, will be more complicated.

C++ unit tests are currently passing alongside tests in `test_scatter_gather_ops.py`. Python test suites also seem to be passing.

Please keep the following in mind:
1) I think this is my first time using Pytorch.
2) This is my first contribution to Pytorch.

Environment:
3080 & WSL 2. `nvcc` is at 12.4.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124809
Approved by: https://github.com/mikaylagawarecki
2024-05-01 23:58:35 +00:00
PyTorch MergeBot
4d410155b2 Revert "Include support for the scatter gather cuda kernels to allow for comp… (#124809)"
This reverts commit e09f98c705.

Reverted https://github.com/pytorch/pytorch/pull/124809 on behalf of https://github.com/clee2000 due to windows build failure is real, https://github.com/pytorch/pytorch/actions/runs/8910674030/job/24470387612#step:11:11236 is the correct failure line, ignore the statement saying build passed, batch is errorcodes arent propagating again ([comment](https://github.com/pytorch/pytorch/pull/124809#issuecomment-2088680371))
2024-05-01 16:02:02 +00:00
Danial Javady
e09f98c705 Include support for the scatter gather cuda kernels to allow for comp… (#124809)
Fixes #121965

This PR hopes to add support complex numbers in the scatter/gather related kernels. For brevity, I will only include `complex<float>` for now as `complex<double>`, for example, will be more complicated.

C++ unit tests are currently passing alongside tests in `test_scatter_gather_ops.py`. Python test suites also seem to be passing.

Please keep the following in mind:
1) I think this is my first time using Pytorch.
2) This is my first contribution to Pytorch.

Environment:
3080 & WSL 2. `nvcc` is at 12.4.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124809
Approved by: https://github.com/eqy, https://github.com/mikaylagawarecki
2024-05-01 14:31:31 +00:00
Yifu Wang
91a4740e72 Disable the CUDA fast path for split_with_sizes_copy when capturing (#125052)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125052
Approved by: https://github.com/awgu, https://github.com/eellison, https://github.com/eqy
2024-04-27 07:59:39 +00:00
Aaron Orenstein
a8574a9719 Fix global flake8 issues (#124771)
Prior to this `lintrunner --all-files --take FLAKE8` failed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124771
Approved by: https://github.com/Skylion007
ghstack dependencies: #124428
2024-04-26 15:35:53 +00:00
PyTorch MergeBot
1ac60484c1 Revert "Fix global flake8 issues (#124771)"
This reverts commit f01275934b.

Reverted https://github.com/pytorch/pytorch/pull/124771 on behalf of https://github.com/jeanschmidt due to Unfortunately, I needed to revert #123735 and this one depends on it. So please check if there are no merge conflicts or breakages and feel free to merge this PR again ([comment](https://github.com/pytorch/pytorch/pull/124428#issuecomment-2078699836))
2024-04-26 06:15:17 +00:00
Aaron Orenstein
f01275934b Fix global flake8 issues (#124771)
Prior to this `lintrunner --all-files --take FLAKE8` failed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124771
Approved by: https://github.com/Skylion007
ghstack dependencies: #124428
2024-04-25 14:25:00 +00:00
Isuru Fernando
edcd968b51 Add out wrappers to some decompositions (#115437)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115437
Approved by: https://github.com/lezcano
2024-04-23 06:26:11 +00:00
Aaron Gokaslan
29cc293725 [BE]: FURB142 - Remove set mutations. Use set update (#124551)
Uses set mutation methods instead of manually reimplementing (update, set_difference etc).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124551
Approved by: https://github.com/ezyang
2024-04-21 14:12:33 +00:00
Aaron Gokaslan
5a1216bb2e [BE]: Update ruff to 0.4.1 (#124549)
Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.

Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0

| Repository                                         | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7         | 251.8         | 351.1            | 274.9            |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
2024-04-21 14:06:23 +00:00
Jane Xu
b412b75b42 [optim] add fused_adam/adamw_kernel support for CPU device (#123074)
On par with `CUDA` implementation.

For `autocast` logic, same with `CUDA` + `Fused Adam`:
 - check inf in `gradscalar.step`
 - In fused kernel, if there is `inf`, do nothing. If not, unscale the grad ( also write back) and update the param.

**TestPlan**:
```
# extend CUDA only test for CPU fused adagrad
python test_optim.py -k test_fused_matches_forloop
python test_optim.py -k test_fused_large_tensor
python test_torch.py -k test_grad_scaling_autocast_fused

# extend fused test
python test_torch.py -k test_params_invalidated_with_grads_invalidated_between_unscale_and_step
python test_optim.py -k test_can_load_older_state_dict

# newly added test (follow 6b1f13ea2f/test/test_cuda.py (L1108))
python test_optim.py -k test_grad_scaling_autocast_fused_optimizers
```

**Benchmark**:
**5.1x** on 56 core SPR
**Parameter-size=1M**
**Nparams=10**
[test script](https://gist.github.com/zhuhaozhe/ef9a290ad3f8f4067b3373a3bdaa33e7)

```
numactl -C 0-55 -m 0 python bench_adam.py
non-fused 6.0174267292022705 s
fused 1.1787631511688232 s
```

**Note: Fused kernel accuracy**
The accuracy failure in CI shows a little higher than default tolerance
```
2024-04-02T06:09:16.2213887Z Mismatched elements: 21 / 64 (32.8%)
2024-04-02T06:09:16.2214339Z Greatest absolute difference: 1.5735626220703125e-05 at index (6, 6) (up to 1e-05 allowed)
2024-04-02T06:09:16.2214813Z Greatest relative difference: 1.0073336852656212e-05 at index (4, 1) (up to 1.3e-06 allowed)
```
I have debug it step by step and unfortunately we may not able to make the `fused kernel` exactly same with `non fused` one due to compiler optimizations.
For example, in non-fused impl
```
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
```
and in fused impl
```
  exp_avg_sq_ptr[d] = scalar_t(beta2) * exp_avg_sq_ptr[d];
  //  std::cout << "exp_avg_sq " <<   exp_avg_sq_ptr[d] << std::endl;
  exp_avg_sq_ptr[d] = exp_avg_sq_ptr[d] +
      scalar_t(exp_avg_sq_grad_coefficient) * grad_val * grad_val;
```
If I keep `std::cout`, I can get exactly same results in UT
```
===============param
0.6796758770942688
0.6796758770942688
```
But when I comment out it, there will be a difference
```
===============param
0.6796758770942688
0.6796759366989136
```
So I will make the tolerance a little higher than default one.

Co-authored-by: Jane Xu <janeyx@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123074
Approved by: https://github.com/jgong5, https://github.com/janeyx99
2024-04-19 11:14:04 +00:00
Sam Larsen
6502c888cf Enable fx graph cache in torch_test.py when using PYTORCH_TEST_WITH_INDUCTOR=1 (#122010)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122010
Approved by: https://github.com/eellison
2024-03-19 02:17:10 +00:00
Kurt Mohler
13a54ce279 Avoid COW materialization in at::parallel_for/parallel_reduce (#120455)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120455
Approved by: https://github.com/albanD
2024-03-01 05:05:28 +00:00
PyTorch MergeBot
86ff31c4a0 Revert "Avoid COW materialization in at::parallel_for/parallel_reduce (#120455)"
This reverts commit cabc09a5f2.

Reverted https://github.com/pytorch/pytorch/pull/120455 on behalf of https://github.com/izaitsevfb due to breaks xla jobs ([comment](https://github.com/pytorch/pytorch/pull/120455#issuecomment-1970026100))
2024-02-28 22:30:18 +00:00
Kurt Mohler
cabc09a5f2 Avoid COW materialization in at::parallel_for/parallel_reduce (#120455)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120455
Approved by: https://github.com/albanD
2024-02-28 00:37:33 +00:00
Sergii Dymchenko
bd9db6a9c7 Update to TorchFix 0.4.0 (#119424)
`torch.library.Library` updated to `torch.library._scoped_library` in files with many tests where it seems obvious to do, otherwise `noqa: TOR901` added - see https://github.com/pytorch/pytorch/pull/118318 for more context.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119424
Approved by: https://github.com/zou3519
2024-02-12 23:30:12 +00:00
Hirochika Matsumoto
02c24b0b5e Add Python binding resizable to class {Untyped,Typed}Storage (#119286)
This PR exposes `resizable` method of `StorageImpl` to Python frontend to make it accessible for users.

Fixes #119233

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119286
Approved by: https://github.com/ezyang, https://github.com/mikaylagawarecki
2024-02-07 19:15:55 +00:00
CaoE
113138aa55 add test cases for GradScaler on CPU (#109994)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109994
Approved by: https://github.com/jgong5, https://github.com/ezyang
2024-02-02 21:49:07 +00:00
Yifu Wang
0f7e63620f CUDA fast path for split_with_sizes_copy.out (#117203)
### Motivation
In per-parameter sharding FSDP, each rank holds one shard of every parameter. Before a bucket of parameters is used, FSDP performs all-gather to reconstruct the full parameters. The following example demonstrates the process for `world_size=2`, `num_params=3` (`A`, `B`, `C` standands for values in param `A`, `B`, `C`):

All-gather output:
```
AAAABBBCCAAAABBBCC
```

After all-gather-copy-out:
```
AAAAAAAA  BBBBBB  CCCC
```

The performance of all-gather-copy-out is crucial for the viability of per-parameter sharding FSDP. After thorough experiments, we believe that acceptable performance for this op is not achievable via composing existing ATen ops today.

We have proven that ideal performance is achievable with a [custom kernel](https://github.com/pytorch/pytorch/pull/115515). This PR aims to incorporate the optimizations to appropriate ATen ops (as suggested by @albanD).

### all-gather-copy-out via Composing ATen Ops

Carrying out the op out via composing ATen ops involves a combination of view ops and copy ops. After thorough experiments, we found that the most natural/performant way to express the op is via `split_with_sizes` + `_foreach_copy_`, which works as follows:

Reshape all-gather output as (world_size, -1):
```
AAAABBBCC
AAAABBBCC
```

`split_with_sizes` + `_foreach_copy_`:
```
AAAA BBB CC
AAAA BBB CC
```

However, the performance of this approach is still far below that of the custom kernel. We've identified the following reasons:
- The approach requires materializing `O(num_params)` intermediate views, which induces large amount of CPU overhead when `num_params` is high.
- `_foreach_copy_` uses the same block size all tensors, leading to waste for small tensors and insufficient thread count for large tensors. This means low effective occupancy.
- `_foreach_copy_` dispatches multiple kernels for typical problem sizes for all-gather-copy-out. This further lowers the effective occupancy.
- Due to the nature of the workload, the underlying copies are unaligned. `_foreach_copy_` isn't aggressive enough in exploiting vectorization oppurtunities in such workloads.

### PR
Introduces a CUDA backend for `split_with_sizes_copy.out` that addresses the above inefficiencies. See code for details.

### Benchmarks
The benchmarks are conducted on a set of representative problems sizes on an A100. CPU overhead and GPU execution time is measured separately, as reasonable CPU overhead doesn't directly affect e2e throughput. The reported copy bandwidth is calculated with GPU execution time.

Compared to the baseline, we observe 3x-10x higher throughput compared to the baseline depending on the problem size. We also observe lower CPU overhead across the board compared to the baseline.

Baseline:
```
num_params=150   world_size=8     mixed=True    Param size: 0.059 GB    Copy bandwidth: 67.564 GB/s (gpu ms/iter: 0.869, cpu ms/iter 10.460)
num_params=54    world_size=8     mixed=True    Param size: 1.453 GB    Copy bandwidth: 260.373 GB/s (gpu ms/iter: 5.582, cpu ms/iter 0.572)
num_params=54    world_size=8     mixed=True    Param size: 0.512 GB    Copy bandwidth: 239.585 GB/s (gpu ms/iter: 2.135, cpu ms/iter 0.587)
num_params=50    world_size=8     mixed=True    Param size: 0.200 GB    Copy bandwidth: 205.361 GB/s (gpu ms/iter: 0.976, cpu ms/iter 0.534)
num_params=3     world_size=8     mixed=True    Param size: 0.983 GB    Copy bandwidth: 268.397 GB/s (gpu ms/iter: 3.663, cpu ms/iter 0.084)
num_params=9     world_size=8     mixed=True    Param size: 0.802 GB    Copy bandwidth: 265.240 GB/s (gpu ms/iter: 3.024, cpu ms/iter 0.154)
num_params=3     world_size=8     mixed=True    Param size: 1.573 GB    Copy bandwidth: 268.918 GB/s (gpu ms/iter: 5.849, cpu ms/iter 0.087)
num_params=9     world_size=8     mixed=True    Param size: 2.248 GB    Copy bandwidth: 268.141 GB/s (gpu ms/iter: 8.384, cpu ms/iter 0.151)
num_params=150   world_size=128   mixed=True    Param size: 0.064 GB    Copy bandwidth: 73.237 GB/s (gpu ms/iter: 0.874, cpu ms/iter 10.664)
num_params=54    world_size=128   mixed=True    Param size: 1.458 GB    Copy bandwidth: 259.902 GB/s (gpu ms/iter: 5.609, cpu ms/iter 0.584)
num_params=54    world_size=128   mixed=True    Param size: 0.515 GB    Copy bandwidth: 238.703 GB/s (gpu ms/iter: 2.158, cpu ms/iter 0.612)
num_params=50    world_size=128   mixed=True    Param size: 0.203 GB    Copy bandwidth: 205.144 GB/s (gpu ms/iter: 0.987, cpu ms/iter 0.559)
num_params=3     world_size=128   mixed=True    Param size: 0.983 GB    Copy bandwidth: 270.467 GB/s (gpu ms/iter: 3.635, cpu ms/iter 0.073)
num_params=9     world_size=128   mixed=True    Param size: 0.802 GB    Copy bandwidth: 267.700 GB/s (gpu ms/iter: 2.997, cpu ms/iter 0.133)
num_params=3     world_size=128   mixed=True    Param size: 1.573 GB    Copy bandwidth: 268.913 GB/s (gpu ms/iter: 5.849, cpu ms/iter 0.093)
num_params=9     world_size=128   mixed=True    Param size: 2.248 GB    Copy bandwidth: 266.589 GB/s (gpu ms/iter: 8.433, cpu ms/iter 0.207)
num_params=150   world_size=1024  mixed=True    Param size: 0.202 GB    Copy bandwidth: 135.107 GB/s (gpu ms/iter: 1.495, cpu ms/iter 10.904)
num_params=54    world_size=1024  mixed=True    Param size: 1.524 GB    Copy bandwidth: 258.675 GB/s (gpu ms/iter: 5.890, cpu ms/iter 0.996)
num_params=54    world_size=1024  mixed=True    Param size: 0.575 GB    Copy bandwidth: 238.919 GB/s (gpu ms/iter: 2.408, cpu ms/iter 0.765)
num_params=50    world_size=1024  mixed=True    Param size: 0.246 GB    Copy bandwidth: 209.836 GB/s (gpu ms/iter: 1.172, cpu ms/iter 0.611)
num_params=3     world_size=1024  mixed=True    Param size: 1.007 GB    Copy bandwidth: 270.607 GB/s (gpu ms/iter: 3.720, cpu ms/iter 0.100)
num_params=9     world_size=1024  mixed=True    Param size: 0.818 GB    Copy bandwidth: 266.375 GB/s (gpu ms/iter: 3.071, cpu ms/iter 0.176)
num_params=3     world_size=1024  mixed=True    Param size: 1.611 GB    Copy bandwidth: 270.601 GB/s (gpu ms/iter: 5.952, cpu ms/iter 0.099)
num_params=9     world_size=1024  mixed=True    Param size: 2.248 GB    Copy bandwidth: 268.558 GB/s (gpu ms/iter: 8.371, cpu ms/iter 0.207)
num_params=150   world_size=8     mixed=False   Param size: 0.035 GB    Copy bandwidth: 43.749 GB/s (gpu ms/iter: 0.797, cpu ms/iter 10.531)
num_params=54    world_size=8     mixed=False   Param size: 0.961 GB    Copy bandwidth: 254.084 GB/s (gpu ms/iter: 3.781, cpu ms/iter 0.752)
num_params=54    world_size=8     mixed=False   Param size: 0.282 GB    Copy bandwidth: 216.792 GB/s (gpu ms/iter: 1.299, cpu ms/iter 0.717)
num_params=50    world_size=8     mixed=False   Param size: 0.149 GB    Copy bandwidth: 188.025 GB/s (gpu ms/iter: 0.793, cpu ms/iter 0.633)
num_params=3     world_size=8     mixed=False   Param size: 0.655 GB    Copy bandwidth: 267.793 GB/s (gpu ms/iter: 2.447, cpu ms/iter 0.107)
num_params=9     world_size=8     mixed=False   Param size: 0.634 GB    Copy bandwidth: 264.232 GB/s (gpu ms/iter: 2.401, cpu ms/iter 0.182)
num_params=3     world_size=8     mixed=False   Param size: 1.049 GB    Copy bandwidth: 268.455 GB/s (gpu ms/iter: 3.906, cpu ms/iter 0.089)
num_params=9     world_size=8     mixed=False   Param size: 1.711 GB    Copy bandwidth: 267.633 GB/s (gpu ms/iter: 6.394, cpu ms/iter 0.177)
num_params=150   world_size=128   mixed=False   Param size: 0.038 GB    Copy bandwidth: 46.698 GB/s (gpu ms/iter: 0.807, cpu ms/iter 10.488)
num_params=54    world_size=128   mixed=False   Param size: 0.963 GB    Copy bandwidth: 253.450 GB/s (gpu ms/iter: 3.799, cpu ms/iter 0.655)
num_params=54    world_size=128   mixed=False   Param size: 0.283 GB    Copy bandwidth: 216.857 GB/s (gpu ms/iter: 1.307, cpu ms/iter 0.671)
num_params=50    world_size=128   mixed=False   Param size: 0.151 GB    Copy bandwidth: 189.059 GB/s (gpu ms/iter: 0.799, cpu ms/iter 0.572)
num_params=3     world_size=128   mixed=False   Param size: 0.655 GB    Copy bandwidth: 269.849 GB/s (gpu ms/iter: 2.429, cpu ms/iter 0.078)
num_params=9     world_size=128   mixed=False   Param size: 0.634 GB    Copy bandwidth: 264.501 GB/s (gpu ms/iter: 2.399, cpu ms/iter 0.149)
num_params=3     world_size=128   mixed=False   Param size: 1.049 GB    Copy bandwidth: 268.426 GB/s (gpu ms/iter: 3.906, cpu ms/iter 0.086)
num_params=9     world_size=128   mixed=False   Param size: 1.711 GB    Copy bandwidth: 267.495 GB/s (gpu ms/iter: 6.398, cpu ms/iter 0.170)
num_params=150   world_size=1024  mixed=False   Param size: 0.122 GB    Copy bandwidth: 101.151 GB/s (gpu ms/iter: 1.211, cpu ms/iter 10.476)
num_params=54    world_size=1024  mixed=False   Param size: 1.000 GB    Copy bandwidth: 252.323 GB/s (gpu ms/iter: 3.963, cpu ms/iter 0.633)
num_params=54    world_size=1024  mixed=False   Param size: 0.318 GB    Copy bandwidth: 218.322 GB/s (gpu ms/iter: 1.455, cpu ms/iter 0.622)
num_params=50    world_size=1024  mixed=False   Param size: 0.185 GB    Copy bandwidth: 196.369 GB/s (gpu ms/iter: 0.944, cpu ms/iter 0.576)
num_params=3     world_size=1024  mixed=False   Param size: 0.671 GB    Copy bandwidth: 269.369 GB/s (gpu ms/iter: 2.491, cpu ms/iter 0.076)
num_params=9     world_size=1024  mixed=False   Param size: 0.645 GB    Copy bandwidth: 264.441 GB/s (gpu ms/iter: 2.439, cpu ms/iter 0.140)
num_params=3     world_size=1024  mixed=False   Param size: 1.074 GB    Copy bandwidth: 269.955 GB/s (gpu ms/iter: 3.978, cpu ms/iter 0.073)
num_params=9     world_size=1024  mixed=False   Param size: 1.711 GB    Copy bandwidth: 267.168 GB/s (gpu ms/iter: 6.405, cpu ms/iter 0.147)
```
New kernel:
```
num_params=150   world_size=8     mixed=True    Param size: 0.059 GB    Copy bandwidth: 560.946 GB/s (gpu ms/iter: 0.105, cpu ms/iter 1.066)
num_params=54    world_size=8     mixed=True    Param size: 1.453 GB    Copy bandwidth: 732.657 GB/s (gpu ms/iter: 1.984, cpu ms/iter 0.417)
num_params=54    world_size=8     mixed=True    Param size: 0.512 GB    Copy bandwidth: 753.514 GB/s (gpu ms/iter: 0.679, cpu ms/iter 0.419)
num_params=50    world_size=8     mixed=True    Param size: 0.200 GB    Copy bandwidth: 719.400 GB/s (gpu ms/iter: 0.279, cpu ms/iter 0.410)
num_params=3     world_size=8     mixed=True    Param size: 0.983 GB    Copy bandwidth: 782.121 GB/s (gpu ms/iter: 1.257, cpu ms/iter 0.098)
num_params=9     world_size=8     mixed=True    Param size: 0.802 GB    Copy bandwidth: 766.458 GB/s (gpu ms/iter: 1.047, cpu ms/iter 0.134)
num_params=3     world_size=8     mixed=True    Param size: 1.573 GB    Copy bandwidth: 790.611 GB/s (gpu ms/iter: 1.989, cpu ms/iter 0.099)
num_params=9     world_size=8     mixed=True    Param size: 2.248 GB    Copy bandwidth: 789.754 GB/s (gpu ms/iter: 2.847, cpu ms/iter 0.138)
num_params=150   world_size=128   mixed=True    Param size: 0.064 GB    Copy bandwidth: 565.667 GB/s (gpu ms/iter: 0.113, cpu ms/iter 0.996)
num_params=54    world_size=128   mixed=True    Param size: 1.458 GB    Copy bandwidth: 670.681 GB/s (gpu ms/iter: 2.174, cpu ms/iter 0.289)
num_params=54    world_size=128   mixed=True    Param size: 0.515 GB    Copy bandwidth: 676.135 GB/s (gpu ms/iter: 0.762, cpu ms/iter 0.264)
num_params=50    world_size=128   mixed=True    Param size: 0.203 GB    Copy bandwidth: 662.603 GB/s (gpu ms/iter: 0.306, cpu ms/iter 0.249)
num_params=3     world_size=128   mixed=True    Param size: 0.983 GB    Copy bandwidth: 769.283 GB/s (gpu ms/iter: 1.278, cpu ms/iter 0.078)
num_params=9     world_size=128   mixed=True    Param size: 0.802 GB    Copy bandwidth: 761.057 GB/s (gpu ms/iter: 1.054, cpu ms/iter 0.104)
num_params=3     world_size=128   mixed=True    Param size: 1.573 GB    Copy bandwidth: 774.325 GB/s (gpu ms/iter: 2.031, cpu ms/iter 0.075)
num_params=9     world_size=128   mixed=True    Param size: 2.248 GB    Copy bandwidth: 773.048 GB/s (gpu ms/iter: 2.908, cpu ms/iter 0.099)
num_params=150   world_size=1024  mixed=True    Param size: 0.202 GB    Copy bandwidth: 641.405 GB/s (gpu ms/iter: 0.315, cpu ms/iter 0.616)
num_params=54    world_size=1024  mixed=True    Param size: 1.524 GB    Copy bandwidth: 646.772 GB/s (gpu ms/iter: 2.356, cpu ms/iter 0.276)
num_params=54    world_size=1024  mixed=True    Param size: 0.575 GB    Copy bandwidth: 658.157 GB/s (gpu ms/iter: 0.874, cpu ms/iter 0.278)
num_params=50    world_size=1024  mixed=True    Param size: 0.246 GB    Copy bandwidth: 642.032 GB/s (gpu ms/iter: 0.383, cpu ms/iter 0.245)
num_params=3     world_size=1024  mixed=True    Param size: 1.007 GB    Copy bandwidth: 728.990 GB/s (gpu ms/iter: 1.381, cpu ms/iter 0.080)
num_params=9     world_size=1024  mixed=True    Param size: 0.818 GB    Copy bandwidth: 689.763 GB/s (gpu ms/iter: 1.186, cpu ms/iter 0.102)
num_params=3     world_size=1024  mixed=True    Param size: 1.611 GB    Copy bandwidth: 765.507 GB/s (gpu ms/iter: 2.104, cpu ms/iter 0.078)
num_params=9     world_size=1024  mixed=True    Param size: 2.248 GB    Copy bandwidth: 757.626 GB/s (gpu ms/iter: 2.967, cpu ms/iter 0.106)
num_params=150   world_size=8     mixed=False   Param size: 0.035 GB    Copy bandwidth: 584.272 GB/s (gpu ms/iter: 0.060, cpu ms/iter 0.656)
num_params=54    world_size=8     mixed=False   Param size: 0.961 GB    Copy bandwidth: 728.234 GB/s (gpu ms/iter: 1.319, cpu ms/iter 0.264)
num_params=54    world_size=8     mixed=False   Param size: 0.282 GB    Copy bandwidth: 730.059 GB/s (gpu ms/iter: 0.386, cpu ms/iter 0.279)
num_params=50    world_size=8     mixed=False   Param size: 0.149 GB    Copy bandwidth: 670.899 GB/s (gpu ms/iter: 0.222, cpu ms/iter 0.274)
num_params=3     world_size=8     mixed=False   Param size: 0.655 GB    Copy bandwidth: 775.699 GB/s (gpu ms/iter: 0.845, cpu ms/iter 0.077)
num_params=9     world_size=8     mixed=False   Param size: 0.634 GB    Copy bandwidth: 773.612 GB/s (gpu ms/iter: 0.820, cpu ms/iter 0.112)
num_params=3     world_size=8     mixed=False   Param size: 1.049 GB    Copy bandwidth: 781.395 GB/s (gpu ms/iter: 1.342, cpu ms/iter 0.081)
num_params=9     world_size=8     mixed=False   Param size: 1.711 GB    Copy bandwidth: 789.156 GB/s (gpu ms/iter: 2.169, cpu ms/iter 0.116)
num_params=150   world_size=128   mixed=False   Param size: 0.038 GB    Copy bandwidth: 517.056 GB/s (gpu ms/iter: 0.073, cpu ms/iter 0.632)
num_params=54    world_size=128   mixed=False   Param size: 0.963 GB    Copy bandwidth: 684.246 GB/s (gpu ms/iter: 1.407, cpu ms/iter 0.294)
num_params=54    world_size=128   mixed=False   Param size: 0.283 GB    Copy bandwidth: 680.593 GB/s (gpu ms/iter: 0.416, cpu ms/iter 0.286)
num_params=50    world_size=128   mixed=False   Param size: 0.151 GB    Copy bandwidth: 682.197 GB/s (gpu ms/iter: 0.221, cpu ms/iter 0.255)
num_params=3     world_size=128   mixed=False   Param size: 0.655 GB    Copy bandwidth: 759.470 GB/s (gpu ms/iter: 0.863, cpu ms/iter 0.074)
num_params=9     world_size=128   mixed=False   Param size: 0.634 GB    Copy bandwidth: 765.694 GB/s (gpu ms/iter: 0.829, cpu ms/iter 0.094)
num_params=3     world_size=128   mixed=False   Param size: 1.049 GB    Copy bandwidth: 766.535 GB/s (gpu ms/iter: 1.368, cpu ms/iter 0.075)
num_params=9     world_size=128   mixed=False   Param size: 1.711 GB    Copy bandwidth: 787.608 GB/s (gpu ms/iter: 2.173, cpu ms/iter 0.105)
num_params=150   world_size=1024  mixed=False   Param size: 0.122 GB    Copy bandwidth: 640.203 GB/s (gpu ms/iter: 0.191, cpu ms/iter 0.668)
num_params=54    world_size=1024  mixed=False   Param size: 1.000 GB    Copy bandwidth: 713.947 GB/s (gpu ms/iter: 1.401, cpu ms/iter 0.274)
num_params=54    world_size=1024  mixed=False   Param size: 0.318 GB    Copy bandwidth: 642.855 GB/s (gpu ms/iter: 0.494, cpu ms/iter 0.276)
num_params=50    world_size=1024  mixed=False   Param size: 0.185 GB    Copy bandwidth: 643.297 GB/s (gpu ms/iter: 0.288, cpu ms/iter 0.262)
num_params=3     world_size=1024  mixed=False   Param size: 0.671 GB    Copy bandwidth: 690.626 GB/s (gpu ms/iter: 0.972, cpu ms/iter 0.078)
num_params=9     world_size=1024  mixed=False   Param size: 0.645 GB    Copy bandwidth: 754.431 GB/s (gpu ms/iter: 0.855, cpu ms/iter 0.109)
num_params=3     world_size=1024  mixed=False   Param size: 1.074 GB    Copy bandwidth: 769.985 GB/s (gpu ms/iter: 1.395, cpu ms/iter 0.080)
num_params=9     world_size=1024  mixed=False   Param size: 1.711 GB    Copy bandwidth: 766.337 GB/s (gpu ms/iter: 2.233, cpu ms/iter 0.103)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117203
Approved by: https://github.com/albanD, https://github.com/awgu
ghstack dependencies: #118512
2024-02-01 18:23:01 +00:00
CaoE
bacbad5bc9 add GradScaler on CPU (#109993)
Step 2 of https://github.com/pytorch/pytorch/issues/111559.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109993
Approved by: https://github.com/jgong5, https://github.com/ezyang
2024-01-29 23:42:35 +00:00
Edward Z. Yang
46712b019d Enable local_partial_types (#118467)
When using dmypy, this setting is enabled and cannot be turned off. Force it for regular mypy too.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118467
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418, #118432
2024-01-28 13:38:22 +00:00
Mikayla Gawarecki
41a56f7828 Fix swap_tensors to swap PyObjects associated with TensorImpl (#116955)
This PR intends to fix the following issue when swapping two tensors

```python
>>> import torch
>>> torch.manual_seed(5)
>>> t1 = torch.randn(2)
>>> t2 = torch.randn(3)
>>> t1
tensor([-0.4868, -0.6038])
>>> t2
tensor([-0.5581,  0.6675, -0.1974])
>>> torch.utils.swap_tensors(t1, t2)
>>> t1
tensor([-0.5581,  0.6675, -0.1974])
>>> t2
tensor([-0.4868, -0.6038])
>>> t1.fill_(0.5) # t1 back to its unswapped state :o
tensor([-0.4868, -0.6038])
```

What happens here is that in `THPVariable_Wrap` (which is used when going back from C++ --> Python), we check if the TensorImpl of the tensor to be returned already has a pointer to a PyObject in its PyObject slot. If this is the case then this object is returned.

57491d2046/torch/csrc/autograd/python_variable.cpp (L271-L292)

When we run any operation that returns the same TensorImpl (e.g. inplace op, `t.to(dtype=t.dtype)`, etc.), although `t1` now has `t2`'s TensorImpl, `t2`'s TensorImpl still has a reference to `t2`, so when we do the op on `t1` and `THPVariable_Wrap` attempts to return the pointer to the TensorImpl's PyObject, we return a pointer to `t2` instead.

The TensorImpl should have the PyObjects in their PyObjectSlots swapped as well in `swap_tensors`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116955
Approved by: https://github.com/albanD
2024-01-24 01:40:18 +00:00
Kurt Mohler
cd084c4909 Add TensorIteratorConfig::add_const_input to avoid COW materialize (#118053)
Part of #97856

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118053
Approved by: https://github.com/ezyang
2024-01-23 22:32:39 +00:00
Oguz Ulgen
3b38f7b266 Remove skips for passing tests (#118000)
These tests were already passing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118000
Approved by: https://github.com/yanboliang
2024-01-23 16:11:38 +00:00
PyTorch MergeBot
bb28965924 Revert "Remove skips for passing tests (#118000)"
This reverts commit 3c339b5b21.

Reverted https://github.com/pytorch/pytorch/pull/118000 on behalf of https://github.com/oulgen due to test passing on diff but failing on hud... ([comment](https://github.com/pytorch/pytorch/pull/118000#issuecomment-1905351752))
2024-01-23 06:10:25 +00:00
Oguz Ulgen
3c339b5b21 Remove skips for passing tests (#118000)
These tests were already passing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118000
Approved by: https://github.com/yanboliang
2024-01-23 03:41:23 +00:00
haozhe.zhu@intel.com
0ae952db76 enable mkldnn bf32 matmul (#116015)
### Testing
FP32 matmul vs. mkldnn BF32 matmul  on SPR

single core:

Input | BF32   / ms | FP32  /   ms | Speed up
-- | -- | -- | --
M: 128, N: 128, K: 128, trans_a: False, trans_b: False | 32.842 | 38.279 | 1.165
M: 128, N: 256, K: 128, trans_a: False, trans_b: False | 38.590 | 73.967 | 1.917
M: 8192, N: 768, K: 768, trans_a: False, trans_b: False | 18456.267 | 74588.002 | 4.041

56 cores:
Input | BF32   / ms | FP32 /   ms | Speed up
-- | -- | -- | --
M: 8192, N: 768, K: 768, trans_a: False, trans_b: False | 1199.400 | 1715.548 | 1.430
M: 8192, N: 768, K: 768, trans_a: False, trans_b: True |1129.204 | 1708.912 |  1.513
M: 8192, N: 768, K: 3072, trans_a: False, trans_b: False | 3655.915  | 7992.877 | 2.186
M: 8192, N: 768, K: 3072, trans_a: False, trans_b: True | 3707.993 |  8026.191 | 2.165
Batch: 768, M: 128, N: 64, K: 128  | 1296.419 | 1308.411 | 1.009

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116015
Approved by: https://github.com/jgong5, https://github.com/ezyang
2024-01-20 09:30:23 +00:00
CaoE
29516bd2a0 add _amp_foreach_non_finite_check_and_unscale_cpu_ and _amp_update_scale_cpu_ kernels on CPU (#109281)
Step1 of https://github.com/pytorch/pytorch/issues/111559.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109281
Approved by: https://github.com/jgong5, https://github.com/ezyang
2024-01-16 15:25:08 +00:00
Edward Z. Yang
2200118f59 Enable some uint{16,32,64} tests that are working (#116809)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116809
Approved by: https://github.com/albanD
2024-01-15 02:25:21 +00:00
Edward Z. Yang
edec54b9de Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):
* __->__ #113397
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
2024-01-11 01:32:44 +00:00
Edward Z. Yang
8bcdde5058 Support uint{16,32,64} deterministic empty fill and scalar Python binding handling (#116807)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116807
Approved by: https://github.com/albanD
ghstack dependencies: #116805, #116806
2024-01-10 02:17:23 +00:00
Edward Z. Yang
43a23a704a Support uint{16,32,64} copy (#116806)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116806
Approved by: https://github.com/albanD
ghstack dependencies: #116805
2024-01-10 02:17:23 +00:00
Edward Z. Yang
2e983fcfd3 Support unsigned int for randint, item, equality, fill, iinfo, tensor (#116805)
These are some basic utilities that are often used for testing.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116805
Approved by: https://github.com/albanD
2024-01-10 02:17:23 +00:00
Aaron Gokaslan
3fe437b24b [BE]: Update flake8 to v6.1.0 and fix lints (#116591)
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
  - `assert(a == b)` -> `assert a == b`
  - `if(x > y or y < z):`->`if x > y or y < z:`
  - And `return('...')` -> `return '...'`

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
2024-01-03 06:04:44 +00:00
Aaron Gokaslan
bd10fea79a [BE]: Enable F821 and fix bugs (#116579)
Fixes #112371

I tried to fix as many of the bugs as I could, a few I could not figure out what the proper fix for them was though and so I left them with noqas.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116579
Approved by: https://github.com/ezyang
2024-01-01 08:40:46 +00:00
Yanbo Liang
f657b2b1f8 [Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
  - The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
2023-12-27 18:47:05 +00:00
PyTorch MergeBot
3b709d7c1e Revert "[Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)"
This reverts commit 015bd0e0a1.

Reverted https://github.com/pytorch/pytorch/pull/116312 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/116312#issuecomment-1869825506))
2023-12-26 23:47:15 +00:00
Yanbo Liang
015bd0e0a1 [Dynamo][10/N] Remove TorchVariable and is_allowed (#116312)
After this refactor:
* ```TorchVariable``` definition and all references are removed.
* All ```is_allowed``` references except one are removed.
  - The only left one is in ```torch/_dynamo/decorators:_disallow_in_graph_helper```. It was called when users put ```disallow_in_graph``` decorator on a function. Since we use the lists in ```trace_rules``` to decide the function's trace rule, so the decorator would only be used as customer function rather than torch functions. I'll defer this to a separate decorator refactor PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116312
Approved by: https://github.com/jansel
2023-12-23 09:44:09 +00:00