# Motivation
This PR moves the implementation of `torch.cuda.memory._set_allocator_settings` to `torch._C._accelerator_setAllocatorSettings`.
Since the original API was intended as a temporary/internal utility, I am not exposing the new function as a public API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156175
Approved by: https://github.com/albanD
ghstack dependencies: #149601, #157908, #150312, #156165
Now instead of erroring out on `empty_cache` call during graph capture or under mempool context, we will just silently do nothing. This used to be the behavior for mempools, cudagraphs used to error out, but it's fine to just ignore the call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158152
Approved by: https://github.com/zou3519, https://github.com/eqy
Otherwise it turns test into a trivial one(that always succeeds), as following example demonstrates
```python
import torch
from torch.testing._internal.common_utils import serialTest, run_tests, TestCase
class MegaTest(TestCase):
@serialTest
def test_foo(self):
if hasattr(self.test_foo, "pytestmark"):
print("foo has attr and it is", self.test_foo.pytestmark)
print("foo")
@serialTest()
def test_bar(self):
if hasattr(self.test_bar, "pytestmark"):
print("bar has attr and it is", self.test_bar.pytestmark)
print("bar")
if __name__ == "__main__":
run_tests()
```
That will print
```
test_bar (__main__.MegaTest.test_bar) ... bar has attr and it is [Mark(name='serial', args=(), kwargs={})]
bar
ok
test_foo (__main__.MegaTest.test_foo) ... ok
----------------------------------------------------------------------
Ran 2 tests in 0.013s
```
Added assert that arg is boolean in the decorator to prevent such silent skips in the future
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157388
Approved by: https://github.com/clee2000
Based on the [conversation](https://github.com/pytorch/pytorch/issues/121791), we plan to drop the "highest, high, medium" to represent fp32 internal computation data types . Instead, we will directly use the algorithm to represent it.
### Design Choice: Directly use algorithms name like "TF32", "BF16".
#### Pros
- The names are more informative. 'tf32' is more informative than a simple "high".
- Easier to extend new algorithm like `tf32x3`
#### Cons
- "HIGHEST, HIGH, MEDIUM" indicated the relative precision between different algorithms. However, we can have more documents to discuss them.
### We provide a layered structure for backends/operators.
('f32' is short for 'fp32_precision')

### We provide 3 fp32 compute precision can be set:
- **"ieee"**: Not allowed to use any other internal computation data types .
- **"tf32"**: Allowed to use tf32 as internal computation data types.
- **"bf16"**: Allowed to use bf16 as internal computation data types.
- **"none"**: Precision's are not set. Can be override by its father node.
### Overriding Precision Settings
Child node can be override by its father node if it is set to default.
For current default settings:
```
backend = generic, op = all, precision setting = none
backend = cuda, op = all, precision setting = none
backend = cuda, op = conv, precision setting = tf32
backend = cuda, op = rnn, precision setting = tf32
backend = cuda, op = matmul, precision setting = none
backend = matmul, op = all, precision setting = none
backend = matmul, op = conv, precision setting = none
backend = matmul, op = rnn, precision setting = none
backend = matmul, op = matmul, precision setting = none
```
- If the user set `torch.backends.mkldnn.fp32_precision="bf16"`, his child nodes `torch.backends.mkldnn.matmul.fp32_precision` / `torch.backends.mkldnn.conv.fp32_precision` / `torch.backends.mkldnn.rnn.fp32_precision` will also be override to "bf16".
- If the user set `torch.backends.fp32_precision="bf16"`, `torch.backends.mkldnn.fp32_precision` and his child nodes will also we override to "bf16".
### Backward Compatible
Since new API allow user to have more fine-grained control. There will be some conflict. For example, previous `torch.backends.cudnn.allow_tf32` are not enough to represent the status for `torch.backends.cudnn.rnn.fp32_precision="ieee"` and `torch.backends.cudnn.conv.fp32_precision="tf32"`. Therefore, our goal for backward compatible is
- If the user only uses previous APIs, it will work as previous expectations.
- If the user use **new** API to change the status to an **un-representable** status for old API, and try to access the status by **old** API. We will raise Runtime Error and point the document for user.
### Test Plan
```
python test/test_cuda.py -k test_fp32_precision_with_tf32
python test/test_cuda.py -k test_fp32_precision_with_float32_matmul_precision
python test/test_cuda.py -k test_invalid_status_for_legacy_api
python test/test_mkldnn.py -k test_mlkdnn_get_set
python test/test_mkldnn.py -k test_generic_precision
python test/test_mkldnn.py -k test_invalid
python test/test_mkldnn.py -k test_default_use_parent
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125888
Approved by: https://github.com/jgong5, https://github.com/albanD
Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
There are a few considerations here:
1. A user might want to modify the cudaGraph_t either during the stream capture or after the stream capture (but before instantiation). This draft implements modification after stream capture only, though support could be added for modification during stream capture by applying
https://github.com/pytorch/pytorch/pull/140979/files#diff-d7302d133bb5e0890fc94de9aeea4d9d442555a3b40772c9db10edb5cf36a35cR391-R404
2. Previously, the cudaGraph_t would be destroyed before the end of capture_end() unless the user had previously called enable_debug_mode(). There is no way to implement this correctly without removing this restriction, or forcing the user to always call enable_debug_mode(). However, enable_debug_mode() is a confusing API (despite being an instance method, it would modify a static global variable; thus, putting one CUDAGraph object into debug mode puts all of them into debug mode, which is not acceptable in my opinion). Therefore, I made enable_debug_mode() into a no-op. This means that the CPU memory usage will increase after this change. I think this is likely to be fine.
3. No python bindings yet. These should be easy to add. It is probably worthwhile to take some time to make sure that the returned cudaGraph_t can be converted into the cuda-python cudaGraph_t in a reasonable, hopefully type-safe, manner (but without making cuda-python a dependency of pytorch), since I imagine most users will use the pip cuda-python package to make modifications.
4. There are two foot guns:
a. The cudaGraph_t returned by raw_cuda_graph() is not owned by the user, so it will be destroyed once the owning CUDAGraph is destroyed (or calls reset()).
b. The following seuquence won't work as intended:
```
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
foo()
g.replay()
raw_graph = g.raw_cuda_graph()
modify(raw_graph)
g.replay()
```
This won't work because the user must call instantiate() again after modifying cudaGraph_t. You could add a "safety" mechanism by traversing the cudaGraph_t to create a hash and seeing if the hash changes between calls to replay(), but this is likely way too expensive.
I think these two foot guns are probably okay given that this a bit of an experts' API.
Fixes#155106
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155164
Approved by: https://github.com/ngimel
These are created by the user passing cudaEventRecordExternal and
cudaEventWaitExternal to cudaEventRecordWithFlags() and
cudaStreamWaitEvent() respectively.
We do this by allowing the user to specify external=True when
constructing a torch.cuda.Event().
If external=False, the cudaEventRecord and cudaStreamWaitEvent API's
have a different meaning described here:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cross-stream-dependencies-and-events
In short, they will be used to experess fork and join operations in
the graph if external=False.
External events can be used for expressing a fine-grained dependency
on the outcome of some nodes in a cuda graph (rather than all
nodes). They can also be used for timing parts of a cuda graph's
execution, rather than timing the entire graph's execution.
Finishes #146145
I'm a dummy and don't know how to use ghstack at this time. The first commit is a bug fix for _CudaKernel, which would previously always launch work on the NULL stream, rather than the user-passed stream.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155372
Approved by: https://github.com/ngimel
Fixes#136849
## Test Result
```python
>>> import torch
>>> device = torch.cuda.device_count() + 1
>>> torch.cuda.current_stream(device) # INTERNAL ASSERT FAILED
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/zong/code/pytorch/torch/cuda/__init__.py", line 1083, in current_stream
streamdata = torch._C._cuda_getCurrentStream(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Device index value 3 is out of index range [0, 2)
>>> torch.cuda.default_stream(device) # INTERNAL ASSERT FAILED
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/zong/code/pytorch/torch/cuda/__init__.py", line 1101, in default_stream
streamdata = torch._C._cuda_getDefaultStream(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Device index value 3 is out of index range [0, 2)
>>> torch.cuda.set_per_process_memory_fraction(0.5, device) # INTERNAL ASSERT FAILED
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/zong/code/pytorch/torch/cuda/memory.py", line 193, in set_per_process_memory_fraction
torch._C._cuda_setMemoryFraction(fraction, device)
RuntimeError: Allocator not initialized for device : did you call init?
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155318
Approved by: https://github.com/albanD
Which inherits from `RuntimeError` and contains `error_code`, which in case of CUDA should contain error returned by `cudaGetLastError`
`torch::detail::_new_accelerator_error_object(c10::AcceleratorError&)` follows the pattern of CPython's [`PyErr_SetString`](cb8a72b301/Python/errors.c (L282)), namely
- Convert cstr into Python string with `PyUnicode_FromString`
- Create new exception object using `PyObject_CallOneArg` just like it's done in [`_PyErr_CreateException`](cb8a72b301/Python/errors.c (L32))
- Set `error_code` property using `PyObject_SetAttrString`
- decref all temporary references
Test that it works and captures CPP backtrace (in addition to CI) by running
```python
import os
os.environ['TORCH_SHOW_CPP_STACKTRACES'] = '1'
import torch
x = torch.rand(10, device="cuda")
y = torch.arange(20, device="cuda")
try:
x[y] = 2
print(x)
except torch.AcceleratorError as e:
print("Exception was raised", e.args[0])
print("Captured error code is ", e.error_code)
```
which produces following output
```
Exception was raised CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
Exception raised from c10_cuda_check_implementation at /home/ubuntu/pytorch/c10/cuda/CUDAException.cpp:41 (most recent call first):
C++ CapturedTraceback:
#4 std::_Function_handler<std::shared_ptr<c10::LazyValue<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > const> (), c10::SetStackTraceFetcher(std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>)::{lambda()#1}>::_M_invoke(std::_Any_data const&) from Logging.cpp:0
#5 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#6 c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) [clone .cold] from CUDAException.cpp:0
#7 void at::native::gpu_kernel_impl<at::native::AbsFunctor<float> >(at::TensorIteratorBase&, at::native::AbsFunctor<float> const&) [clone .isra.0] from tmpxft_000191fc_00000000-6_AbsKernel.cudafe1.cpp:0
#8 at::native::abs_kernel_cuda(at::TensorIteratorBase&) from ??:0
#9 at::Tensor& at::native::unary_op_impl_with_complex_to_float_out<at::native::abs_stub_DECLARE_DISPATCH_type>(at::Tensor&, at::Tensor const&, at::native::abs_stub_DECLARE_DISPATCH_type&, bool) [clone .constprop.0] from UnaryOps.cpp:0
#10 at::(anonymous namespace)::(anonymous namespace)::wrapper_CUDA_out_abs_out(at::Tensor const&, at::Tensor&) from RegisterCUDA_0.cpp:0
#11 at::_ops::abs_out::call(at::Tensor const&, at::Tensor&) from ??:0
#12 at::native::abs(at::Tensor const&) from ??:0
#13 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeExplicitAutograd__abs>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeExplicitAutograd_0.cpp:0
#14 at::_ops::abs::redispatch(c10::DispatchKeySet, at::Tensor const&) from ??:0
#15 torch::autograd::VariableType::(anonymous namespace)::abs(c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#16 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&), &torch::autograd::VariableType::(anonymous namespace)::abs>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&> >, at::Tensor (c10::DispatchKeySet, at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from VariableType_1.cpp:0
#17 at::_ops::abs::call(at::Tensor const&) from ??:0
#18 at::native::isfinite(at::Tensor const&) from ??:0
#19 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (at::Tensor const&), &at::(anonymous namespace)::(anonymous namespace)::wrapper_CompositeImplicitAutograd__isfinite>, at::Tensor, c10::guts::typelist::typelist<at::Tensor const&> >, at::Tensor (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) from RegisterCompositeImplicitAutograd_0.cpp:0
#20 at::_ops::isfinite::call(at::Tensor const&) from ??:0
#21 torch::autograd::THPVariable_isfinite(_object*, _object*, _object*) from python_torch_functions_2.cpp:0
#22 PyObject_CallFunctionObjArgs from ??:0
#23 _PyObject_MakeTpCall from ??:0
#24 _PyEval_EvalFrameDefault from ??:0
#25 _PyObject_FastCallDictTstate from ??:0
#26 _PyStack_AsDict from ??:0
#27 _PyObject_MakeTpCall from ??:0
#28 _PyEval_EvalFrameDefault from ??:0
#29 _PyFunction_Vectorcall from ??:0
#30 _PyEval_EvalFrameDefault from ??:0
#31 _PyFunction_Vectorcall from ??:0
#32 _PyEval_EvalFrameDefault from ??:0
#33 _PyFunction_Vectorcall from ??:0
#34 _PyEval_EvalFrameDefault from ??:0
#35 PyFrame_GetCode from ??:0
#36 PyNumber_Xor from ??:0
#37 PyObject_Str from ??:0
#38 PyFile_WriteObject from ??:0
#39 _PyWideStringList_AsList from ??:0
#40 _PyDict_NewPresized from ??:0
#41 _PyEval_EvalFrameDefault from ??:0
#42 PyEval_EvalCode from ??:0
#43 PyEval_EvalCode from ??:0
#44 PyUnicode_Tailmatch from ??:0
#45 PyInit__collections from ??:0
#46 PyUnicode_Tailmatch from ??:0
#47 _PyRun_SimpleFileObject from ??:0
#48 _PyRun_AnyFileObject from ??:0
#49 Py_RunMain from ??:0
#50 Py_BytesMain from ??:0
#51 __libc_init_first from ??:0
#52 __libc_start_main from ??:0
#53 _start from ??:0
Captured error code is 710
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152023
Approved by: https://github.com/eqy, https://github.com/mradmila, https://github.com/ngimel
ghstack dependencies: #154436
Removes MemPoolContext from custom user mempools. The ground truth for which pool should be used is in graph_pools active pool, and MemPoolContext just introduced an opportunity for the pool pointed to by MemPoolContext and active pool in graph_pools to go out of sync (see all the asserts in the code to make sure that happens, and yet it still could happen in a multithread scenario, see my recent PRs (#153990).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154042
Approved by: https://github.com/albanD, https://github.com/syed-ahmed
Fixes#152008
This PR fixes a segmentation fault that occurred when exiting the program due to improper background thread management in CachingHostAllocator.
Previously, the background thread continued running and called process_events() even after the allocator object was destroyed, leading to a crash on exit.
f12d8d60b1/aten/src/ATen/core/CachingHostAllocator.h (L218)
```cpp
// Launch the background thread and process events in a loop.
static bool background_thread_flag [[maybe_unused]] = [this] {
getBackgroundThreadPool()->run([&]() {
while (true) {
process_events(); // <-- This line may cause segfault on exit
std::this_thread::sleep_for(std::chrono::microseconds(100));
}
});
return true;
}();
```
The fix adds a mechanism to signal the background thread to exit before the object is destructed, ensuring the thread stops safely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154117
Approved by: https://github.com/ngimel, https://github.com/cyyever
Summary:
To add PT2 information to memory snapshot we piggyback off of the Kineto implementation using record_function similar to adding the user annotations. To do this we add the following:
1. Stack implementation that we instantiate to keep track of which compile context stack we are currently in (top element of the stack). The stack will be per device and thread-local since different threads of a process can be in different compile contexts at a given time. For this reason, we do not need to add mutexes to our stack impl since no two threads will touch a given stack
2. RecordFunction hooks to properly pipe the correct events to the compile context stack. These hooks are similar to the annotation ones in the fact that we just register them lazily and DO NOT unregister them. This is done out of convenience. In the future, we should save the handles and unregister them to minimize overhead after profiling is finished. As of now, we are registering this at the FUNCTION scope which is wide; however, we treat any function that does not start with "Torch-Compiled Region" as a no-op so we anticipate the difference in performance to be negligible during and after profiling. We also hide this feature behind a flag set to off on default so existing jobs will be unaffected
3. Piping for compile context to pickle output
Test Plan:
In D74039793, we add CompileContext to the visualizer and we see the following {F1977654658}
Differential Revision: D74028214
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152707
Approved by: https://github.com/eqy
Based on the [conversation](https://github.com/pytorch/pytorch/issues/121791), we plan to drop the "highest, high, medium" to represent fp32 internal computation data types . Instead, we will directly use the algorithm to represent it.
### Design Choice: Directly use algorithms name like "TF32", "BF16".
#### Pros
- The names are more informative. 'tf32' is more informative than a simple "high".
- Easier to extend new algorithm like `tf32x3`
#### Cons
- "HIGHEST, HIGH, MEDIUM" indicated the relative precision between different algorithms. However, we can have more documents to discuss them.
### We provide a layered structure for backends/operators.
('f32' is short for 'fp32_precision')

### We provide 3 fp32 compute precision can be set:
- **"ieee"**: Not allowed to use any other internal computation data types .
- **"tf32"**: Allowed to use tf32 as internal computation data types.
- **"bf16"**: Allowed to use bf16 as internal computation data types.
- **"none"**: Precision's are not set. Can be override by its father node.
### Overriding Precision Settings
Child node can be override by its father node if it is set to default.
For current default settings:
```
backend = generic, op = all, precision setting = none
backend = cuda, op = all, precision setting = none
backend = cuda, op = conv, precision setting = tf32
backend = cuda, op = rnn, precision setting = tf32
backend = cuda, op = matmul, precision setting = none
backend = matmul, op = all, precision setting = none
backend = matmul, op = conv, precision setting = none
backend = matmul, op = rnn, precision setting = none
backend = matmul, op = matmul, precision setting = none
```
- If the user set `torch.backends.mkldnn.fp32_precision="bf16"`, his child nodes `torch.backends.mkldnn.matmul.fp32_precision` / `torch.backends.mkldnn.conv.fp32_precision` / `torch.backends.mkldnn.rnn.fp32_precision` will also be override to "bf16".
- If the user set `torch.backends.fp32_precision="bf16"`, `torch.backends.mkldnn.fp32_precision` and his child nodes will also we override to "bf16".
### Backward Compatible
Since new API allow user to have more fine-grained control. There will be some conflict. For example, previous `torch.backends.cudnn.allow_tf32` are not enough to represent the status for `torch.backends.cudnn.rnn.fp32_precision="ieee"` and `torch.backends.cudnn.conv.fp32_precision="tf32"`. Therefore, our goal for backward compatible is
- If the user only uses previous APIs, it will work as previous expectations.
- If the user use **new** API to change the status to an **un-representable** status for old API, and try to access the status by **old** API. We will raise Runtime Error and point the document for user.
### Test Plan
```
python test/test_cuda.py -k test_fp32_precision_with_tf32
python test/test_cuda.py -k test_fp32_precision_with_float32_matmul_precision
python test/test_cuda.py -k test_invalid_status_for_legacy_api
python test/test_mkldnn.py -k test_mlkdnn_get_set
python test/test_mkldnn.py -k test_generic_precision
python test/test_mkldnn.py -k test_invalid
python test/test_mkldnn.py -k test_default_use_parent
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125888
Approved by: https://github.com/jgong5, https://github.com/albanD
Co-authored-by: Jiang, Yanbing <yanbing.jiang@intel.com>
I tried `beginAllocateToPool` instead of `_cuda_beginAllocateCurrentStreamToPool` and the error in #151199 does not happen any more.
However, this approach is unsafe for multithreading. When multiple run_eager happens concurrently, we expect memory allocation to different mem_pool. Since beginAllocateToPool does not check stream, these memory allocation may happen on the same mem_pool.
So, I use `_cuda_beginAllocateCurrentThreadToPool` to direct all memory allocation on the same thread to a given mem_pool. In particular, `_cuda_beginAllocateCurrentThreadToPool` records the launching thread id, and during runtime checks if the current thread id matches the launching thread id.
Fixes#151199
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152472
Approved by: https://github.com/eellison, https://github.com/ngimel
Seems there was a typo where `set_device` was called when the intent was to use `current_device`
As-is the test will fail on multigpu systems with
`TypeError: set_device() missing 1 required positional argument: 'device'`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152474
Approved by: https://github.com/Skylion007
Although torch.cuda.Event and torch.xpu.Event have cuda_event and sycl_event fields respectively, the event_id exposed from the base class torch.Event is always 0, which can confuse users.
The memory of torch.Event is not useful to torch.cuda.Event and torch.xpu.Event, but we still need to inherit from torch.Event because CPython will check it.
Repro with cuda:
```
>>> import torch
>>> event = torch.cuda.Event()
>>> event.cuda_event
0
>>> event.event_id
0
>>> event.record()
>>> event.cuda_event
127982096
>>> event.event_id
0
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151226
Approved by: https://github.com/albanD, https://github.com/guangyey
ghstack dependencies: #151404, #151221, #151411
MemPool is a separate pool of memory handled by the caching allocator. This PR adds the option let the caching allocator try to use this pool as a last resort instead of OOMing by associating a use_on_oom bool with each MemPool.
Usage:
Users can optionally specify a ``use_on_oom`` bool (which is False by default) during MemPool creation. If true, then the CUDACachingAllocator will be able to use memory in this pool as a last resort instead of OOMing.
```
pool = torch.cuda.MemPool(allocator, use_on_oom=True)
with torch.cuda.use_mem_pool(pool):
a = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
del a
# at the memory limit, this will succeed by using pool's memory in order to avoid the oom
b = torch.randn(40 * 1024 * 1024, dtype=torch.uint8, device="cuda")
```
Testing:
```
python test/test_cuda.py -k test_mempool_limited_memory_with_allocator
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151487
Approved by: https://github.com/eqy, https://github.com/syed-ahmed, https://github.com/ngimel
# Motivation
We propose adding support for the Python with statement on `torch.accelerator.device_index` to enable device switching functionality. This enhancement would simplify writing device-agnostic code and provide benefits across all accelerators. Its device-specific counterparts include [`torch.cuda.device`](00199acdb8/torch/cuda/__init__.py (L482)) and [`torch.cuda._DeviceGuard`](00199acdb8/torch/cuda/__init__.py (L469)).
**Design Philosophy**
It accepts either an `Int` or `None` as input. When `None` is passed, no device switch is performed. Supporting `None` is important for compatibility, as it's possible to encounter `None` values from `torch.device.index`.
Therefore, with this PR, we can do like this
```python
src = 0
dst = 1
# Set src to current device
torch.accelerator.set_device_index(src)
with torch.accelerator.device_index(dst):
# Inside with statement, we set dst to current device
assert torch.accelerator.get_device_index() == dst
# Here the current device should be src
assert torch.accelerator.get_device_index() == src
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148864
Approved by: https://github.com/albanD
Followup work on top https://github.com/pytorch/pytorch/pull/149480
Wrapper on top of nvrtc inspired by https://gist.github.com/malfet/2c9a25976dd7396430c38af603f791da from @malfet
Compiling toy kernels with this setup takes 0.01s vs 90s using `load_inline()` on my local H100. This was primarily motivated by the timeouts I was seeing in the popcorn leaderboard but would also be useful to integrate into KernelBench
This PR is in the same spirit as https://github.com/pytorch/pytorch/pull/148972 which was a similar UX for Metal
For now we are planning on landing this as a private function because we expect to iterate both on the user facing API and the internals implementation, will open up a seperate issue to discuss the path towards making this work public and give a broader overview of the state of custom cuda kernel authoring in PyTorch
Future work, as a prereq to making the work public
* divup primitive
* support multiple kernels
* Expose _get_nvrtc_version from native code
* interop with torch.compile
* AMD support
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151484
Approved by: https://github.com/malfet
Although torch.cuda.Event and torch.xpu.Event have cuda_event and sycl_event fields respectively, the event_id exposed from the base class torch.Event is always 0, which can confuse users.
The memory of torch.Event is not useful to torch.cuda.Event and torch.xpu.Event, but we still need to inherit from torch.Event because CPython will check it.
Repro with cuda:
```
>>> import torch
>>> event = torch.cuda.Event()
>>> event.cuda_event
0
>>> event.event_id
0
>>> event.record()
>>> event.cuda_event
127982096
>>> event.event_id
0
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151226
Approved by: https://github.com/albanD
The cpp contexts are only supported on x86 Linux.
The tests requiring them are skipped on non-Linux but not if the architecture is not x86.
In most places it is checked for ARM64 which is not enough as a check for x86 is required instead.
Fix the test decorators and factor out a common one in test_cuda.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148445
Approved by: https://github.com/eellison
Add a couple of Jetson skips for oom tests in test/test_cuda.py due to failures in nvidia CI. Jetson not having full nvml support is a known issue so this is mostly a test side fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149587
Approved by: https://github.com/eqy
PYNVML related tests in test/test_cuda.py are failing in nvidia internal CI for Jetson devices because Jetson devices don't fully support nvml (it exists as a stub library). In addition to skipping PYNVML tests for Jetson, this PR also reworks the TEST_PYNVML logic a bit to be more consistent with the rest of TEST_{something} conditions in test/test_cuda.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149578
Approved by: https://github.com/janeyx99, https://github.com/eqy
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
Tests fail in NVIDIA internal CI since we do not support nvml on Jetson, but nvml is required for OOM reporting to work properly, so we are skipping the failing tests for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148134
Approved by: https://github.com/eqy
This is an initial attempt to provide some statistics for the pinned host memory allocations flowing through CachingHostAllocator. Many times in the past we have had inexplicable slowdowns that would be much easier to diagnose if we had some host memory characteristics.
This change tries very hard not to disrupt the initial design of the allocator, and it uses existing locking mechanism, whenever possible, to gather statistics "for free". Only deviation from that is on the "slow path" where we incur CUDA calls anyway, so taking a short lock is not going to hurt the performance much, especially in the steady state where most allocations will come from cache.
As mentioned before, this is the first PR, to introduce the concept and to see if it fits the right paradigm. We can always add more later.
Metrics that would require more involved changes to the code base and locks, like requested memory, have been punted for now. I also tried to reuse the Stat structure used in CUDA caching allocator, in order to maintain symmetry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147660
Approved by: https://github.com/ngimel
This PR does two main things (they are in a single PR to show how the newly added APIs are used).
- Add isBuilt and isAvailable APIs to the AcceleratorHook interface. See inline doc for their exact semantic
- Use the newly added isBuilt for accelerator check to ensure it does not poison fork
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146098
Approved by: https://github.com/ngimel, https://github.com/malfet, https://github.com/EikanWang
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
A rewrite of #138964
In addition to rewriting the conditions for using copy2d, this PR fixes a few other problems with #138964:
1) gpu-gpu copies when peer access is disabled shouldn't rely on copy2d
2) copy2d should record even for the host pinned memory, like the regular copy does
3) copy2d shouldn't pretend that it's synchronizing (for the purposes of cuda sanitizer tracer) when it's non-blocking
In this PR copy2d behaves in exactly the same way as copy does wrt to those additional syncs, except it calls a different underlying cuda call.
Tests for multiple cases going through copy2d and avoiding copy2d pattern due to unsatisfied conditions are added.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146256
Approved by: https://github.com/eqy, https://github.com/malfet
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
### **Pull Request: Optimized Non-Contiguous Tensor Copy for CPU to GPU in PyTorch**
#### **Summary**
This PR addresses the performance issue identified in [#111570](https://github.com/pytorch/pytorch/issues/111570), where non-contiguous tensors took significantly longer to transfer from CPU to GPU. Through detailed tracing of the call flow, we identified that PyTorch was creating temporary contiguous buffers for non-contiguous tensor transfers, which introduced unnecessary overhead.
#### **Tracing the Issue**
To pinpoint the cause of the slowdown, we followed the call flow from Python’s `tensor.cuda()` method through PyTorch’s backend, ultimately identifying `copy_kernel_cuda` as the key function responsible for CPU-to-GPU tensor transfers. Here’s a summary of the tracing process:
1. **Python Call: `tensor.cuda()`**
- Starting from Python, the `cuda()` method initiates the tensor transfer to the GPU.
2. **`TensorBody.h: cuda()`**
- The `cuda()` method calls `to()`, specifying the target device as CUDA.
3. **`Tensor.cpp: TensorBase::to()`**
- The `to()` function prepares device and data type options before invoking `_ops::to_dtype_layout::call()`.
4. **Operator Call: `_ops::to_dtype_layout::call()`**
- This operator dispatches the request to the backend-specific function responsible for managing the transfer.
5. **`Copy.cpp: copy_()`**
- The `copy_()` function performs preliminary checks (e.g., zero-tensor immutability) and proceeds to call `copy_impl()`.
6. **`Copy.cpp: copy_impl()`**
- This function sets up a tensor iterator and dispatches the copy operation to the appropriate backend through `copy_stub`.
7. **Dispatch to CUDA: `copy_stub`**
- The dispatch mechanism routes the call to the CUDA-specific function, `copy_kernel_cuda`.
8. **`Copy.cu: copy_kernel_cuda()`**
- Here, we identified that PyTorch was creating temporary contiguous buffers for 1D and 2D non-contiguous tensors, which slowed down the copy process. This behavior is managed by the `copy_requires_temporaries()` function.
#### **Solution**
To address this, we modified `copy_kernel_cuda` to handle non-contiguous 1D and 2D tensors directly by using `cudaMemcpy2DAsync`, which allows efficient, stride-aware memory transfers without temporary buffers. Here’s why this approach improves performance:
- **Efficiency of `cudaMemcpy2DAsync`**: This CUDA function is optimized for pitched (stride-based) memory transfers, allowing it to handle non-contiguous data layouts effectively by specifying memory strides for source and destination tensors.
- **Reduction of Overhead**: By directly copying non-contiguous tensors without intermediate buffers, we eliminate extra memory allocation and achieve faster CPU-to-GPU transfers.
- **Asynchronous Execution**: `cudaMemcpy2DAsync` enables asynchronous transfer on the CUDA stream, further improving performance by taking advantage of CUDA's optimized memory handling for non-contiguous layouts.
#### **Performance Results**
In my testing, I created tensors of size `327680 x 2000` and used slices for transfer performance measurements. The tests show that the average time for transferring a non-contiguous slice (e.g., rows 10,000 to 50,000) from CPU to GPU now closely matches the contiguous case. This improvement indicates that the updated implementation effectively addresses the performance discrepancy. Below are the measured times and validation checks:
```plaintext
Average time for contiguous slice (rows 10,000-50,000): 66 ms
Average time for non-contiguous slice (rows 10,000-50,000): 66 ms
Validation of contiguous and non-contiguous tensor copies:
✅ PASS: Tensor shapes match.
✅ PASS: Tensor contiguity matches.
✅ PASS: Tensor contents match.
✅ PASS: Tensor data types match.
✅ Success: Both contiguous and non-contiguous tensors were copied correctly to the GPU.
```
#### **Conclusion**
This PR resolves the identified performance issue by eliminating the need for temporary buffers in non-contiguous 1D and 2D tensor transfers, ensuring faster and more efficient copies from CPU to GPU. Future optimizations could further enhance performance for higher-dimensional non-contiguous tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138964
Approved by: https://github.com/jeffdaily
Co-authored-by: Natalia Gimelshein <ngimel@gmail.com>
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
…s_pinned if device is not initialized
Do not land
RFC
potential fix for #144687
Now `.is_pinned(device="cuda")` does not initialize device and thus doesn't poison the fork (but it complains about `device` arg being deprecated). To not need `device=` arg we'd need to fix get_accelerator to not initialize device.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145752
Approved by: https://github.com/albanD
Co-authored-by: albanD <albandes@fb.com>
gfx12 passes the condition `torch.cuda.get_device_capability() >= (9, 4)` and uses `default_workspace_size=128MB`, but it required only for MI300
Fix condition to use `("gfx94" in gcn_arch)` instead of `torch.cuda.get_device_properties()` to detect MI300.
Now `default_workspace_size=32MB` is used for gfx12 and the test passes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145227
Approved by: https://github.com/jeffdaily, https://github.com/eqy
# Motivation
We propose to support Python with statement on `torch.Stream`. This is a benefit for all accelerators when writing device-agnostic code. The device-specific stream will also be supported because they are generally derived from `torch.Stream`.
With this PR, we can do like this
```python
s1= torch.Stream()
# Set s1 to the current stream
torch.accelerator.set_stream(s1)
with torch.Stream() as s2:
# Inside with statement, we set s2 to the current stream
assert torch.accelerator.current_stream() == s2
# Here the current stream should be s1
assert torch.accelerator.current_stream() == s1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140138
Approved by: https://github.com/albanD
This PR
* makes changes to the workflow files and scripts so we can run CI workflows on the MI300 runners
* skips and fixes several tests, failed on MI300, observed in https://github.com/pytorch/pytorch/pull/140989
Skipped due to unsupported Float8_e4m3fn data type on MI300 (need to update test code to use datatypes supported by MI300):
- distributed.tensor.parallel.test_micro_pipeline_tp.py::MicroPipelineTPTest::test_fuse_all_gather_scaled_matmul_A_dims_\*_gather_dim_\* (24 tests across inductor/distributed configs)
- distributed.tensor.parallel.test_micro_pipeline_tp.py::test_fuse_scaled_matmul_reduce_scatter_A_dims_\*_scatter_dim_\* (12 tests across inductor/distributed configs))
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_cast_and_t
- inductor.test_loop_ordering::LoopOrderingTest::test_fp8_pattern_2
Skipped due to AssertionError on MI300:
- inductor.test_mkldnn_pattern_matcher.py::test_qconv2d_int8_mixed_bf16
- distributed._tools.test_sac_ilp::TestSACILP::test_sac_ilp_case1
Skipped:
- test_cuda.py::TestCudaMallocAsync::test_clock_speed
- test_cuda.py::TestCudaMallocAsync::test_power_draw
- test_torch.py::TestTorchDeviceTypeCUDA::test_deterministic_cumsum_cuda
Skipped flaky tests on MI300:
- distributed.test_c10d_gloo.py::ProcessGroupGlooTest::test_gather_stress_cuda
- inductor.test_cpu_repro::CPUReproTests::test_lstm_packed_unbatched_False* (256 tests)
Fixed:
- test_matmul_cuda.py::TestFP8MatmulCudaCUDA::test_float8_basics_cuda
Features:
- inductor/test_fp8.py - declare a new function to convert FP8 datatypes to ROCm supported FP8 datatypes. It keeps test names for CUDA and ROCm and allows to enable Inductor FP8 tests on CPU
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143673
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/pruthvistony
Co-authored-by: saienduri <saimanas.enduri@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>