Commit Graph

2 Commits

Author SHA1 Message Date
Edward Yang
23ed26a0c3 Guard include of cuda-only header comm.h (#9656)
Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9656

Reviewed By: colesbury

Differential Revision: D8941361

Pulled By: ezyang

fbshipit-source-id: c18cb0e606ae0608e5892040192b8792ae542b74
2018-07-20 19:46:36 -07:00
Peter Goldsborough
b770156a7a Functional DataParallel (#9234)
Summary:
This PR adds the functional version of `DataParallel` (i.e. `data_parallel`) to the C++ frontend.

For this, I had to:
1. Add "differentiable" versions of scatter and gather, which perform their inverse operation in the backward pass, to C++. I've added them under `torch/csrc/autograd/functions/comm.{h,cpp}`. I had to move some utilities from `VariableType.cpp` into `torch/csrc/autograd/functions/utils.h`, and changed them a bit to fix the `const_cast`s for which there were `TODO`s,
2. Implement the `replicate`, `parallel_apply` and the combining `data_parallel` functions in C++.

`replicate` is implemented based on our existing `clone()` interface, along with the ability to set the current device via `at::OptionsGuard` (so nice).

`parallel_apply` is implemented using `at::parallel_for` (CC cpuhrsch) and [follows the code from PyTorch](https://github.com/pytorch/pytorch/blob/master/torch/nn/parallel/parallel_apply.py).

Added lots of tests for these things.

apaszke ezyang ebetica colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9234

Differential Revision: D8865182

Pulled By: goldsborough

fbshipit-source-id: 4f1fecf2b3f3bc1540c071dfb2d23dd45de433e4
2018-07-19 16:12:04 -07:00