Commit Graph

1596 Commits

Author SHA1 Message Date
lezcano
b46c89d950 Add linalg.solve_triangular (#63568)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63568

This PR adds the first solver with structure to `linalg`. This solver
has an API compatible with that of `linalg.solve` preparing these for a
possible future merge of the APIs. The new API:
- Just returns the solution, rather than the solution and a copy of `A`
- Removes the confusing `transpose` argument and replaces it by a
correct handling of conj and strides within the call
- Adds a `left=True` kwarg. This can be achieved via transposes of the
inputs and the result, but it's exposed for convenience.

This PR also implements a dataflow that minimises the number of copies
needed before calling LAPACK / MAGMA / cuBLAS and takes advantage of the
conjugate and neg bits.

This algorithm is implemented for `solve_triangular` (which, for this, is
the most complex of all the solvers due to the `upper` parameters).
Once more solvers are added, we will factor out this calling algorithm,
so that all of them can take advantage of it.

Given the complexity of this algorithm, we implement some thorough
testing. We also added tests for all the backends, which was not done
before.

We also add forward AD support for `linalg.solve_triangular` and improve the
docs of `linalg.solve_triangular`. We also fix a few issues with those of
`torch.triangular_solve`.

Resolves https://github.com/pytorch/pytorch/issues/54258
Resolves https://github.com/pytorch/pytorch/issues/56327
Resolves https://github.com/pytorch/pytorch/issues/45734

cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano

Test Plan: Imported from OSS

Reviewed By: jbschlosser

Differential Revision: D32588230

Pulled By: mruberry

fbshipit-source-id: 69e484849deb9ad7bb992cc97905df29c8915910
2021-11-22 12:41:06 -08:00
Vansh Sharma
ff125a3624 Minor changes in documentation (#68557)
Summary:
Fixed some small typos

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68557

Reviewed By: mruberry

Differential Revision: D32538749

Pulled By: ngimel

fbshipit-source-id: 09a9cd4031463b6a40d7307bd8fcb7d364444ac3
2021-11-18 17:57:16 -08:00
Masaki Kozuki
9ce3c630ba [Docs] Mention torch.bfloat16 in torch.finfo (#68496)
Summary:
https://pytorch.org/docs/master/type_info.html#torch.torch.finfo seems to miss `torch.bfloat16`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68496

Reviewed By: mruberry

Differential Revision: D32538806

Pulled By: ngimel

fbshipit-source-id: 1296b3eb34d024cfc7d85cf53efe771ee9f98ea2
2021-11-18 17:52:41 -08:00
Jane Xu
9f4e004abd Revert D32283178: Add linalg.solve_triangular
Test Plan: revert-hammer

Differential Revision:
D32283178 (0706607abc)

Original commit changeset: deb672e6e52f

fbshipit-source-id: d2a3421292147426cc61c2f063b721acf9004755
2021-11-18 14:46:10 -08:00
lezcano
0706607abc Add linalg.solve_triangular (#63568)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63568

This PR adds the first solver with structure to `linalg`. This solver
has an API compatible with that of `linalg.solve` preparing these for a
possible future merge of the APIs. The new API:
- Just returns the solution, rather than the solution and a copy of `A`
- Removes the confusing `transpose` argument and replaces it by a
correct handling of conj and strides within the call
- Adds a `left=True` kwarg. This can be achieved via transposes of the
inputs and the result, but it's exposed for convenience.

This PR also implements a dataflow that minimises the number of copies
needed before calling LAPACK / MAGMA / cuBLAS and takes advantage of the
conjugate and neg bits.

This algorithm is implemented for `solve_triangular` (which, for this, is
the most complex of all the solvers due to the `upper` parameters).
Once more solvers are added, we will factor out this calling algorithm,
so that all of them can take advantage of it.

Given the complexity of this algorithm, we implement some thorough
testing. We also added tests for all the backends, which was not done
before.

We also add forward AD support for `linalg.solve_triangular` and improve the
docs of `linalg.solve_triangular`. We also fix a few issues with those of
`torch.triangular_solve`.

Resolves https://github.com/pytorch/pytorch/issues/54258
Resolves https://github.com/pytorch/pytorch/issues/56327
Resolves https://github.com/pytorch/pytorch/issues/45734

cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano

Test Plan: Imported from OSS

Reviewed By: zou3519, JacobSzwejbka

Differential Revision: D32283178

Pulled By: mruberry

fbshipit-source-id: deb672e6e52f58b76536ab4158073927a35e43a8
2021-11-18 09:45:51 -08:00
Rok
952ca25daa Sparse CSR: add convert_indices_from_csr_to_coo (#66774)
Summary:
This PR adds conversion from CSR to COO.

Fixes https://github.com/pytorch/pytorch/issues/56959

cc nikitaved pearu cpuhrsch IvanYashchuk gchanan mruberry

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66774

Reviewed By: zou3519

Differential Revision: D32288415

Pulled By: cpuhrsch

fbshipit-source-id: 683ba658dc46835fdf3c0e24645c0c2bb243b968
2021-11-17 22:28:30 -08:00
frgfm
693fe2fd9b docs: Added Union to supported types in documentation (#68435)
Summary:
This PR simply updates the documentation following up on https://github.com/pytorch/pytorch/pull/64234, by adding `Union` as a supported type.

Any feedback is welcome!

cc ansley albanD gmagogsfm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68435

Reviewed By: davidberard98

Differential Revision: D32494271

Pulled By: ansley

fbshipit-source-id: c3e4806d8632e1513257f0295568a20f92dea297
2021-11-17 10:26:31 -08:00
Saketh Are
86399d8e0c Add histogramdd to torch.rst (#68273)
Summary:
The `torch.histogramdd` operator is documented in `torch/functional.py` but does not appear in the generated docs because it is missing from `docs/source/torch.rst`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68273

Reviewed By: cpuhrsch

Differential Revision: D32470522

Pulled By: saketh-are

fbshipit-source-id: a23e73ba336415457a30bae568bda80afa4ae3ed
2021-11-16 11:55:40 -08:00
Thomas Metcalfe
ba16b1eca7 [numpy] Alias arctan2 to atan2 (#67010)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/65906

Adds an alias `arctan2` to improve numpy compatibility

cc mruberry rgommers

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67010

Reviewed By: anjali411

Differential Revision: D32378998

Pulled By: mruberry

fbshipit-source-id: 424c5c10c12b49c20ee83ccd109325c480b5b6cf
2021-11-16 09:41:09 -08:00
Anirudh Dagar
b07a11929d Array API: Add torch.linalg.cross (#63285)
Summary:
### Create `linalg.cross`

Fixes https://github.com/pytorch/pytorch/issues/62810

As discussed in the corresponding issue, this PR adds `cross` to the `linalg` namespace (**Note**: There is no method variant) which is slightly different in behaviour compared to `torch.cross`.

**Note**: this is NOT an alias as suggested in mruberry's [https://github.com/pytorch/pytorch/issues/62810 comment](https://github.com/pytorch/pytorch/issues/62810#issuecomment-897504372) below
> linalg.cross being consistent with the Python Array API (over NumPy) makes sense because NumPy has no linalg.cross. I also think we can implement linalg.cross without immediately deprecating torch.cross, although we should definitely refer users to linalg.cross. Deprecating torch.cross will require additional review. While it's not used often it is used, and it's unclear if users are relying on its unique behavior or not.

The current default implementation of `torch.cross` is extremely weird and confusing. This has also been reported multiple times previously. (See https://github.com/pytorch/pytorch/issues/17229, https://github.com/pytorch/pytorch/issues/39310, https://github.com/pytorch/pytorch/issues/41850, https://github.com/pytorch/pytorch/issues/50273)

- [x] Add `torch.linalg.cross` with default `dim=-1`
- [x] Add OpInfo and other tests for `torch.linalg.cross`
- [x] Add broadcasting support to `torch.cross` and `torch.linalg.cross`
- [x] Remove out skip from `torch.cross` OpInfo
- [x] Add docs for `torch.linalg.cross`. Improve docs for `torch.cross` mentioning `linalg.cross` and the difference between the two. Also adds a warning to `torch.cross`, that it may change in the future (we might want to deprecate it later)

 ---

### Additional Fixes to `torch.cross`
- [x] Fix Doc for Tensor.cross
- [x] Fix torch.cross in `torch/overridres.py`

While working on `linalg.cross` I noticed these small issues with `torch.cross` itself.

[Tensor.cross docs](https://pytorch.org/docs/stable/generated/torch.Tensor.cross.html) still mentions `dim=-1` default which is actually wrong. It should be `dim=None` after the behaviour was updated in PR https://github.com/pytorch/pytorch/issues/17582 but the documentation for the `method` or `function` variant wasn’t updated. Later PR https://github.com/pytorch/pytorch/issues/41850 updated the documentation for the `function` variant i.e `torch.cross` and also added the following warning about the weird behaviour.
> If `dim` is not given, it defaults to the first dimension found with the size 3. Note that this might be unexpected.

But still, the `Tensor.cross` docs were missed and remained outdated. I’m finally fixing that here. Also fixing `torch/overrides.py` for `torch.cross` as well now, with `dim=None`.

To verify according to the docs the default behaviour of `dim=-1` should raise, you can try the following.

```python
a = torch.randn(3, 4)
b = torch.randn(3, 4)
b.cross(a)  # this works because the implementation finds 3 in the first dimension and the default behaviour as shown in documentation is actually not true.
>>> tensor([[ 0.7171, -1.1059,  0.4162,  1.3026],
        [ 0.4320, -2.1591, -1.1423,  1.2314],
        [-0.6034, -1.6592, -0.8016,  1.6467]])

b.cross(a, dim=-1)  # this raises as expected since the last dimension doesn't have a 3
>>> RuntimeError: dimension -1 does not have size 3
```

Please take a closer look (particularly the autograd part, this is the first time I'm dealing with `derivatives.yaml`). If there is something missing, wrong or needs more explanation, please let me know. Looking forward to the feedback.

cc mruberry Lezcano IvanYashchuk rgommers

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63285

Reviewed By: gchanan

Differential Revision: D32313346

Pulled By: mruberry

fbshipit-source-id: e68c2687c57367274e8ddb7ef28ee92dcd4c9f2c
2021-11-11 12:49:41 -08:00
Kurt Mohler
db014b8529 Add set_deterministic_debug_mode and get_deterministic_debug_mode (#67778)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/67386

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67778

Reviewed By: ngimel

Differential Revision: D32310661

Pulled By: mruberry

fbshipit-source-id: 300129e96ca51c22fa711182ce6a9f4d4d2ce57f
2021-11-11 12:48:29 -08:00
eqy
790763b0fe Add an option to disable reduced precision reductions for FP16 GEMM (#67946)
Summary:
https://github.com/pytorch/pytorch/issues/67578 disabled reduced precision reductions for FP16 GEMMs. After benchmarking, we've found that this has substantial performance impacts for common GEMM shapes (e.g., those found in popular instantiations of multiheaded-attention) on architectures such as Volta. As these performance regressions may come as a surprise to current users, this PR adds a toggle to disable reduced precision reductions
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = `
rather than making it the default behavior.

CC ngimel ptrblck
stas00 Note that the behavior after the previous PR can be replicated with
`torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67946

Reviewed By: zou3519

Differential Revision: D32289896

Pulled By: ngimel

fbshipit-source-id: a1ea2918b77e27a7d9b391e030417802a0174abe
2021-11-09 17:27:20 -08:00
James Reed
eaf0457eef [distributed][docs] Delete distributed optimimzer section from RPC and add reference to namespace docs page (#68068)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68068

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang

Test Plan: Imported from OSS

Reviewed By: pritamdamania87

Differential Revision: D32286554

Pulled By: jamesr66a

fbshipit-source-id: a43fe1f0cfa74721f467b128f2e878bd02f32546
2021-11-09 15:01:54 -08:00
Xiaoyu Zhang
273f7ae9b3 fx: Update fx.rst (#68043)
Summary:
When I run this part of the code on the document with PyTorch version 1.10.0, I found some differences between the output and the document, as follows:

```python
import torch
import torch.fx as fx

class M(torch.nn.Module):
    def forward(self, x, y):
        return x + y

# Create an instance of `M`
m = M()

traced = fx.symbolic_trace(m)
print(traced)
print(traced.graph)
traced.graph.print_tabular()
```

I get the result:

```shell
def forward(self, x, y):
    add = x + y;  x = y = None
    return add

graph():
    %x : [#users=1] = placeholder[target=x]
    %y : [#users=1] = placeholder[target=y]
    %add : [#users=1] = call_function[target=operator.add](args = (%x, %y), kwargs = {})
    return add
opcode         name    target                   args    kwargs
-------------  ------  -----------------------  ------  --------
placeholder    x       x                        ()      {}
placeholder    y       y                        ()      {}
call_function  add     <built-in function add>  (x, y)  {}
output         output  output                   (add,)  {}
```

This pr modified the document。

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68043

Reviewed By: driazati

Differential Revision: D32287178

Pulled By: jamesr66a

fbshipit-source-id: 48ebd0e6c09940be9950cd57ba0c03274a849be5
2021-11-09 14:00:45 -08:00
James Reed
3f048c637f [distributed] Render torch.distributed.optim members (#67885)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67885

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D32191952

Pulled By: jamesr66a

fbshipit-source-id: a9ed52da8e89b3491eab2e691f5571338f83e8e3
2021-11-08 16:20:55 -08:00
jcwchen
5b036d5f2b [Doc] [ONNX]Fix a broken url for ONNXRuntime custom op (#67944)
Summary:
**Description**
Update the broken url by a valid link https://onnxruntime.ai/docs/reference/operators/add-custom-op.html.

**Motivation**
Closes https://github.com/pytorch/pytorch/issues/67849. The url is broken.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67944

Reviewed By: NivekT

Differential Revision: D32252880

Pulled By: H-Huang

fbshipit-source-id: 400b0efa3d6f63e60b016c482fbbed1293c29806
2021-11-08 15:51:02 -08:00
andrewor
4a8f27445d [Quant] Add dynamic QAT Linear module (#67325)
Summary:
**Summary:** This commit adds the `torch.nn.qat.dynamic.modules.Linear`
module, the dynamic counterpart to `torch.nn.qat.modules.Linear`.
Functionally these are very similar, except the dynamic version
expects a memoryless observer and is converted into a dynamically
quantized module before inference.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67325

Test Plan:
`python3 test/test_quantization.py TestQuantizationAwareTraining.test_dynamic_qat_linear`

**Reviewers:** Charles David Hernandez, Jerry Zhang

**Subscribers:** Charles David Hernandez, Supriya Rao, Yining Lu

**Tasks:** 99696812

**Tags:** pytorch

Reviewed By: malfet, jerryzh168

Differential Revision: D32178739

Pulled By: andrewor14

fbshipit-source-id: 5051bdd7e06071a011e4e7d9cc7769db8d38fd73
2021-11-08 10:24:25 -08:00
Alban Desmaison
9cdd1d7e48 Docs module check (#67440)
Summary:
Add check to make sure we do not add new submodules without documenting them in an rst file.
This is especially important because our doc coverage only runs for modules that are properly listed.

temporarily removed "torch" from the list to make sure the failure in CI looks as expected. EDIT: fixed now

This is what a CI failure looks like for the top level torch module as an example:
![image](https://user-images.githubusercontent.com/6359743/139264690-01af48b3-cb2f-4cfc-a50f-975fca0a8140.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67440

Reviewed By: jbschlosser

Differential Revision: D32005310

Pulled By: albanD

fbshipit-source-id: 05cb2abc2472ea4f71f7dc5c55d021db32146928
2021-11-01 06:24:27 -07:00
kshitij12345
510e3026a9 [numpy] add torch.argwhere (#64257)
Summary:
Adds `torch.argwhere` as an alias to `torch.nonzero`

Currently, `torch.nonzero` is actually provides equivalent functionality to `np.argwhere`.

From NumPy docs,
> np.argwhere(a) is almost the same as np.transpose(np.nonzero(a)), but produces a result of the correct shape for a 0D array.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64257

Reviewed By: qihqi

Differential Revision: D32049884

Pulled By: saketh-are

fbshipit-source-id: 016e49884698daa53b83e384435c3f8f6b5bf6bb
2021-10-30 15:26:11 -07:00
Vasiliy Kuznetsov
99282126dc pytorch quantization: document the custom module APIs (#67449)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67449

Adds a description of what the current custom module API does
and API examples for Eager mode and FX graph mode to the main
PyTorch quantization documentation page.

Test Plan:
```
cd docs
make html
python -m http.server
// check the docs page, it renders correctly
```

Reviewed By: jbschlosser

Differential Revision: D31994641

Pulled By: vkuzo

fbshipit-source-id: d35a62947dd06e71276eb6a0e37950d3cc5abfc1
2021-10-29 05:22:17 -07:00
Kenichi Maehashi
6ed68f3f84 Document torch.jit.is_tracing() (#67326)
Summary:
This PR adds `torch.jit.is_tracing()` to the JIT API reference.
This function is widely used but left undocumented: https://github.com/search?q=torch.jit.is_tracing&type=code

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67326

Reviewed By: tugsbayasgalan

Differential Revision: D31985251

Pulled By: Krovatkin

fbshipit-source-id: 852b432b08d63df8bd7a7a02c9555e61f5f37978
2021-10-28 09:56:09 -07:00
albanD
6293e0ad61 update coverage ignore to not skip whole modules (#67395)
Summary:
This reduces the chance of a newly added functions to be ignored by mistake.

The only test that this impacts is the coverage test that runs as part of the python doc build. So if that one works, it means that the update to the list here is correct.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67395

Reviewed By: jbschlosser

Differential Revision: D31991936

Pulled By: albanD

fbshipit-source-id: 5b4ce7764336720827501641311cc36f52d2e516
2021-10-28 08:07:24 -07:00
Alban Desmaison
708f7b1209 Update extending doc to cover forward mode AD (#66962)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/66962

Reviewed By: VitalyFedyunin

Differential Revision: D31897782

Pulled By: albanD

fbshipit-source-id: 64164783a14a7ed4cedc17da28f1181d9807a499
2021-10-27 14:18:38 -07:00
Nikita Shulga
b18c298f24 ONNX: Delete or document skipped ORT tests (#64470) (#66143)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66143

Delete test_list_remove. There's no point in testing conversion of
this model since TorchScript doesn't support it.

Add a link to an issue tracking test_embedding_bag_dynamic_input.

[ONNX] fix docs (#65379)

Mainly fix the sphinx build by inserting empty before
bulleted lists.

Also some minor improvements:
Remove superfluous descriptions of deprecated and ignored args.
The user doesn't need to know anything other than that they are
deprecated and ignored.

Fix custom_opsets description.

Make indentation of Raises section consistent with Args section.

[ONNX] publicize func for discovering unconvertible ops (#65285)

* [ONNX] Provide public function to discover all unconvertible ATen ops

This can be more productive than finding and fixing a single issue at a
time.

* [ONNX] Reorganize test_utility_funs

Move common functionality into a base class that doesn't define any
tests.

Add a new test for opset-independent tests. This lets us avoid running
the tests repeatedly for each opset.

Use simple inheritance rather than the `type()` built-in. It's more
readable.

* [ONNX] Use TestCase assertions rather than `assert`

This provides better error messages.

* [ONNX] Use double quotes consistently.

[ONNX] Fix code block formatting in doc (#65421)

Test Plan: Imported from OSS

Reviewed By: jansel

Differential Revision: D31424093

fbshipit-source-id: 4ced841cc546db8548dede60b54b07df9bb4e36e
2021-10-22 13:46:16 -07:00
Nikita Shulga
7a78f715a6 [ONNX] Add warning for inplace updates on tensor.shape in tracing mode (#63170) (#66142)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66142

* Add warning

* Lint and clang fixes

* Remove duplicate comments

* Added pitfalls section

* Modify sections

* Minor modifications

* Add underline to avoid doc build failures

Test Plan: Imported from OSS

Reviewed By: jansel

Differential Revision: D31424092

fbshipit-source-id: c83195f3c66885ad1aecde13b3029c45dd171dbd
2021-10-22 13:46:14 -07:00
Natalia Gimelshein
f29e5220a6 Revert D31474901: [pytorch][PR] [numpy] add torch.argwhere
Test Plan: revert-hammer

Differential Revision:
D31474901

Original commit changeset: 335327a4986f

fbshipit-source-id: 534093e459762ff7a888c58d76e49e362015f2ba
2021-10-21 15:50:54 -07:00
kshitij12345
462f333c01 [numpy] add torch.argwhere (#64257)
Summary:
Adds `torch.argwhere` as an alias to `torch.nonzero`

Currently, `torch.nonzero` is actually provides equivalent functionality to `np.argwhere`.

From NumPy docs,
> np.argwhere(a) is almost the same as np.transpose(np.nonzero(a)), but produces a result of the correct shape for a 0D array.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64257

Reviewed By: dagitses

Differential Revision: D31474901

Pulled By: saketh-are

fbshipit-source-id: 335327a4986fa327da74e1fb8624cc1e56959c70
2021-10-21 14:02:11 -07:00
lezcano
a2e94b80fa Create linalg.matrix_exp (#62715)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62715

Fixes https://github.com/pytorch/pytorch/issues/61648

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D31641698

Pulled By: mruberry

fbshipit-source-id: 2e2965d14807b6b4fada4b809d539066dd0ba277
2021-10-19 09:07:15 -07:00
Yukio Siraichi
8854817f44 Implement Python Array API asarray function. (#60627)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60627

In this PR, the core of `frombuffer` and `fromDLPack` onto _tensor_new.cpp_. `asarray`
uses such refactored functions for interpreting the object as a tensor. We follow the
Python Array API standard found:

https://data-apis.org/array-api/latest/API_specification/creation_functions.html?highlight=asarray

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D31640510

Pulled By: mruberry

fbshipit-source-id: d0869e0d73cb50023d5866b001dac5d34ca30dfd
2021-10-16 21:11:31 -07:00
Vasiliy Kuznetsov
76f3b07caf quantization docs: remove erroneous rebase artifact (#66577)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66577

There was a rebase artifact erroneously landed to quantization docs,
this PR removes it.

Test Plan:
CI

Imported from OSS

Reviewed By: soulitzer

Differential Revision: D31651350

fbshipit-source-id: bc254cbb20724e49e1a0ec6eb6d89b28491f9f78
2021-10-14 11:30:47 -07:00
Natalia Gimelshein
fdd9f49cf5 add a note on numerical accuracy (#65947)
Summary:
Per title
Fixes https://github.com/pytorch/pytorch/issues/54437

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65947

Reviewed By: albanD

Differential Revision: D31612445

Pulled By: ngimel

fbshipit-source-id: 5c155891a088aef3b9813f253d0dc1ee4d51ae1c
2021-10-13 12:43:55 -07:00
lezcano
82a216c45b Add tensor.{adjoint(),H,mT,mH} methods and properties (#64179)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64179

This PR follows the discussion in https://github.com/pytorch/pytorch/issues/45063#issuecomment-904431478

Fixes https://github.com/pytorch/pytorch/issues/45063

cc ezyang anjali411 dylanbespalko mruberry Lezcano nikitaved rgommers pmeier asmeurer leofang AnirudhDagar asi1024 emcastillo kmaehashi heitorschueroff

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D30730483

Pulled By: anjali411

fbshipit-source-id: 821d25083f5f682450f6812bf852dc96a1cdf9f2
2021-10-13 07:44:43 -07:00
Vasiliy Kuznetsov
565cf47abf Quantization docs: add pages for Numeric Suite (Eager and FX) (#66380)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66380

Description:
1. creates doc pages for Eager and FX numeric suites
2. adds a link from main quantization doc to (1)
3. formats docblocks in Eager NS to render well
4. adds example code and docblocks to FX numeric suite

Test Plan:
```
cd docs
make html
python -m http.server
// renders well
```

Reviewed By: jerryzh168

Differential Revision: D31543173

Pulled By: vkuzo

fbshipit-source-id: feb291bcbe92747495f45165f738631fa5cbffbd
2021-10-11 18:47:58 -07:00
Vasiliy Kuznetsov
8b1258698e Improve quantization API docs (#66379)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66379

Description:

Creates a quantization API reference and fixes all the docblock errors.

This is #66122 to #66210 squashed together

Test Plan:
```
cd docs
make html
python -m http.server
// open webpage, inspect it, looks good
```

Reviewed By: ejguan

Differential Revision: D31543172

Pulled By: vkuzo

fbshipit-source-id: 9131363d6528337e9f100759654d3f34f02142a9
2021-10-11 18:46:11 -07:00
Hong Xu
0348148725 Update link to qnnpack in quantization doc. (#66226)
Summary:
The old repo has been archived.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66226

Reviewed By: vkuzo

Differential Revision: D31534712

Pulled By: ezyang

fbshipit-source-id: 4d7f070c8547aeb25464c72b25ed21f209821bc2
2021-10-11 08:19:19 -07:00
Mike Ruberry
9971113340 Revert D31447612: Create a documentation page for FX graph mode quantization APIs
Test Plan: revert-hammer

Differential Revision:
D31447612 (a89ac3138e)

Original commit changeset: 07d0a6137f15

fbshipit-source-id: f2cba7d835011500580b4ab9cff72171280ee18b
2021-10-10 01:51:13 -07:00
Mike Ruberry
b85fd4c54f Revert D31447613: Create separate documentation pages for quantization observers and fake_quants
Test Plan: revert-hammer

Differential Revision:
D31447613 (f0fa3d1110)

Original commit changeset: 63b4cf518bad

fbshipit-source-id: 67de592d1e12a5149cdb22b0725caad063f94476
2021-10-10 01:51:11 -07:00
Mike Ruberry
10633460ce Revert D31447614: Create a documentation page for torch.ao.quantization.QConfig
Test Plan: revert-hammer

Differential Revision:
D31447614 (7332ed13ed)

Original commit changeset: 5d9dd2a4e864

fbshipit-source-id: 6ac15a956222ca61f7fbb75ed36bcc58b23f0f36
2021-10-10 01:51:09 -07:00
Mike Ruberry
037ac2330e Revert D31447616: Quantization docs: consilidate all API references on a single page
Test Plan: revert-hammer

Differential Revision:
D31447616 (fe86f0e068)

Original commit changeset: 2f9c4dac2b2f

fbshipit-source-id: 673368e87399f0a25441688bb9356de5a2f3e66e
2021-10-10 01:51:07 -07:00
Mike Ruberry
09c3e6002b Revert D31447615: Quantization docs: rewrite API reference to be more automated
Test Plan: revert-hammer

Differential Revision:
D31447615 (7d2526ab20)

Original commit changeset: 09874ad9629f

fbshipit-source-id: 0963c9f5118e243cd299f8cded2bf7b0848a7105
2021-10-10 01:51:05 -07:00
Mike Ruberry
df1858bea5 Revert D31447611: Quantization documentation: move backend section down
Test Plan: revert-hammer

Differential Revision:
D31447611 (309a8cf46c)

Original commit changeset: 537b146559bc

fbshipit-source-id: c400aef9a2ea5d18f8076879fe6354be7a6732f1
2021-10-10 01:51:03 -07:00
Mike Ruberry
ad0accdecd Revert D31447610: Quantization docs: add pages for Numeric Suite (Eager and FX)
Test Plan: revert-hammer

Differential Revision:
D31447610 (9539e6216b)

Original commit changeset: 441170c4a6c3

fbshipit-source-id: b49bff54405cdb8465397077e38506a36b277921
2021-10-10 01:49:19 -07:00
Vasiliy Kuznetsov
9539e6216b Quantization docs: add pages for Numeric Suite (Eager and FX) (#66222)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66222

Description:
1. creates doc pages for Eager and FX numeric suites
2. adds a link from main quantization doc to (1)
3. formats docblocks in Eager NS to render well
4. adds example code and docblocks to FX numeric suite

Test Plan:
```
cd docs
make html
python -m http.server
// renders well
```

Reviewed By: jerryzh168

Differential Revision: D31447610

Pulled By: vkuzo

fbshipit-source-id: 441170c4a6c3ddea1e7c7c5cc2f1e1cd5aa65f2f
2021-10-09 06:46:06 -07:00
Vasiliy Kuznetsov
309a8cf46c Quantization documentation: move backend section down (#66210)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66210

Description:

Moves the backend section of the quantization page further down,
to ensure that the API description and reference sections are closer
to the top.

Test Plan:
```
cd docs
make html
python -m server.http
// renders well
```

Reviewed By: jerryzh168

Differential Revision: D31447611

Pulled By: vkuzo

fbshipit-source-id: 537b146559bce484588b3c78e6b0cdb4c274e8dd
2021-10-09 06:46:04 -07:00
Vasiliy Kuznetsov
7d2526ab20 Quantization docs: rewrite API reference to be more automated (#66201)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66201

Description:

This PR switches the quantization API reference to use `autosummary`
for each section.  We define the sections and manually write a list
of modules/functions/methods to include, and sphinx does the rest.
A result is a single page where we have every quantization function
and module with a quick autogenerated blurb, and user can click
through to each of them for a full documentation page.

This mimics how the `torch.nn` and `torch.nn.functional` doc
pages are set up.

In detail, for each section before this PR:
* creates a new section using `autosummary`
* adds all modules/functions/methods which were previously in the manual section
* adds any additional modules/functions/methods which are public facing but not previously documented
* deletes the old manual summary and all links to it

Test Plan:
```
cd docs
make html
python -m http.server
// renders well, links work
```

Reviewed By: jerryzh168

Differential Revision: D31447615

Pulled By: vkuzo

fbshipit-source-id: 09874ad9629f9c00eeab79c406579c6abd974901
2021-10-09 06:46:02 -07:00
Vasiliy Kuznetsov
fe86f0e068 Quantization docs: consilidate all API references on a single page (#66198)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66198

Consolidates all API reference material for quantization on a single
page, to reduce duplication of information.

Future PRs will improve the API reference page itself.

Test Plan:
```
cd docs
make html
python -m http.server
// renders well
```

Reviewed By: jerryzh168

Differential Revision: D31447616

Pulled By: vkuzo

fbshipit-source-id: 2f9c4dac2b2fb377568332aef79531d1f784444a
2021-10-09 06:46:00 -07:00
Vasiliy Kuznetsov
7332ed13ed Create a documentation page for torch.ao.quantization.QConfig (#66129)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66129

Adds a documentation page for `torch.ao.quantization.QConfig`. It is useful
for this to have a separate page since it shared between Eager and FX graph
mode quantization.

Also, ensures that all important functions and module attributes in this
module have docstrings, so users can discover these without reading the
source code.

Test Plan:
```
cd docs
make html
python -m http.server
// open webpage, inspect it, renders correctly
```

Reviewed By: jerryzh168

Differential Revision: D31447614

Pulled By: vkuzo

fbshipit-source-id: 5d9dd2a4e8647fa17b96cefbaae5299adede619c
2021-10-09 06:45:58 -07:00
Vasiliy Kuznetsov
f0fa3d1110 Create separate documentation pages for quantization observers and fake_quants (#66125)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66125

Before this PR, the documentation for observers and fake_quants was inlined in the
Eager mode quantization page.  This was hard to discover, especially
since that page is really long, and we now have FX graph mode quantization reusing
all of this code.

This PR moves observers and fake_quants into their own documentation pages. It also
adds docstrings to all user facing module attributes such as the default observers
and fake_quants, so people can discover them from documentation without having
to inspect the source code.

For now, enables autoformatting (which means all public classes, functions, members
with docstrings will get docs).  If we need to exclude something in these files from
docs in the future, we can go back to manual docs.

Test Plan:
```
cd docs
make html
python -m server.http
// inspect docs on localhost, renders correctly
```

Reviewed By: dagitses

Differential Revision: D31447613

Pulled By: vkuzo

fbshipit-source-id: 63b4cf518badfb29ede583a5c2ca823f572c8599
2021-10-09 06:45:56 -07:00
Vasiliy Kuznetsov
a89ac3138e Create a documentation page for FX graph mode quantization APIs (#66122)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66122

Description:

Adds a documentation page for FX graph mode quantization APIs which
reads from the docstrings in `quantize_fx`, and links it from the main
quantization documentation page.

Also, updates the docstrings in `quantize_fx` to render well with reStructuredText.

Test Plan:
```
cd docs
make html
python -m http.server
// open webpage, inspect it, looks good
```

Reviewed By: dagitses

Differential Revision: D31447612

Pulled By: vkuzo

fbshipit-source-id: 07d0a6137f1537af82dce0a729f9617efaa714a0
2021-10-09 06:44:38 -07:00
Edward Yang
11bc435622 Allow registration of custom symbolics for prim namespace (#64460) (#66139)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66139

[ONNX] Add prim::PythonOp check back in export.cpp (#64944)

Add prim::PythonOp check back in export.cpp

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D31424102

fbshipit-source-id: 6d2eef767fab846ed79ea509e97b714072bac9f4

Co-authored-by: jiafatom <jiafa@microsoft.com>
2021-10-08 07:41:06 -07:00
Peter Bell
2213c463ba C++ API and docs for hfftn (#66127)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66127

cc mruberry peterbell10

Test Plan: Imported from OSS

Reviewed By: dagitses

Differential Revision: D31450216

Pulled By: mruberry

fbshipit-source-id: 2878aee294aa7d74482b66d536258bac0541408d
2021-10-07 12:48:36 -07:00
Thiago Crepaldi
8d435877d5 Fix typos at ONNX docs (#66090)
Summary:
This PR fixes small typos at ONNX docs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66090

Reviewed By: albanD

Differential Revision: D31385765

Pulled By: ezyang

fbshipit-source-id: f4879069a2acf9c8adaa81c26a6a5014634761f5
2021-10-05 21:11:47 -07:00
Michael Suo
ad889d0b5e Revert D30634700: [pytorch][PR] Fix typo in tensor docs
Test Plan: revert-hammer

Differential Revision:
D30634700 (d937473709)

Original commit changeset: e8952be20966

fbshipit-source-id: b18694e332023abcdf17ec1900b81b00d21f1014
2021-10-01 15:23:38 -07:00
Akshit Khurana
d937473709 Fix typo in tensor docs (#64160)
Summary:
Remove extra character from `torch.qfint32`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64160

Test Plan: Docs

Reviewed By: jerryzh168

Differential Revision: D30634700

Pulled By: axitkhurana

fbshipit-source-id: e8952be20966b9a3f9d62d9957ae255d5d4889bb
2021-10-01 14:57:55 -07:00
kshitij12345
c1447f06a8 [special] special alias for softmax (#62251)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62251

Reviewed By: H-Huang

Differential Revision: D31141834

Pulled By: mruberry

fbshipit-source-id: aecaf62af248e9034ef589159ce0fb325c729493
2021-10-01 03:55:32 -07:00
BowenBao
89cbe6229d [ONNX] Update doc and error message for indexing export (#64290) (#64579)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64579

Added suggested workarounds into indexing section of onnx export documentation.
Update indexing export warning message with link to documentation.

Test Plan: Imported from OSS

Reviewed By: jansel

Differential Revision: D30919603

Pulled By: malfet

fbshipit-source-id: 7fe65cb5aa7de4f7d93ff05011ba22f5adb27811

Co-authored-by: BowenBao <bowbao@microsoft.com>
2021-09-30 21:08:56 -07:00
Kiuk Chung
3900509b7d (torchelastic) make --max_restarts explicit in the quickstart and runner docs (#65838)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65838

closes https://github.com/pytorch/pytorch/pull/65675

The default `--max_restarts` for `torch.distributed.run` was changed to `0` from `3` to make things backwards compatible with `torch.distributed.launch`. Since the default `--max_restarts` used to be greater than `0` we never documented passing `--max_restarts` explicitly in any of our example code.

Test Plan: N/A doc change only

Reviewed By: d4l3k

Differential Revision: D31279544

fbshipit-source-id: 98b31e6a158371bc56907552c5c13958446716f9
2021-09-29 19:29:01 -07:00
Michael Suo
cd2656a2e5 [package] add some docs describing how to debug dependencies (#65704)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65704

As title.

Test Plan: Imported from OSS

Reviewed By: tugsbayasgalan

Differential Revision: D31209866

Pulled By: suo

fbshipit-source-id: 4c8ec1d5418ea75b71c4b9a498b86f0ef5383544
2021-09-27 12:14:23 -07:00
Yi Wang
7f25c3e666 Update distributed.rst to show that CUDA send/recv on GPU is supported (#65601)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65601

I believe this feature was supported one year ago:
https://github.com/pytorch/pytorch/pull/44921

#Closes: https://github.com/pytorch/pytorch/issues/65525
ghstack-source-id: 138918961

Test Plan: N/A

Reviewed By: pritamdamania87, mingzhe09088

Differential Revision: D31163535

fbshipit-source-id: 9321a0a5137a3e265e2b54bd78730ac28c7acd55
2021-09-24 12:30:10 -07:00
BowenBao
9323ea2195 [ONNX] minor doc improvements and cleanup (#62514) (#64373)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64373

* Fix some bad formatting and clarify things in onnx.rst.
* In `export_to_pretty_string`:
    * Add documentation for previously undocumented args.
    * Document that `f` arg is ignored and mark it deprecated.
    * Update tests to stop setting `f`.
    * Warn if `_retain_param_name` is set.
* Use double quotes for string literals in test_operators.py.

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D30905271

Pulled By: malfet

fbshipit-source-id: 3627eeabf40b9516c4a83cfab424ce537b36e4b3
2021-09-23 22:20:44 -07:00
Tingting Markstrum
2a0208f4dc fixed comments referring fairscale master branch (#65531)
Summary:
replace comments referring fairscale master branch with main branch

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65531

Test Plan:
buck build

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang gcramer23

Reviewed By: H-Huang, anj-s

Differential Revision: D31132552

Pulled By: tmarkstrum

fbshipit-source-id: d3ee8920ab5cccad99f640934c21e8eee022e9b9
2021-09-23 14:37:58 -07:00
Rodrigo Berriel
7e772e7685 Update link to tutorial on defining NN modules (#65534)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/65527. Please, see my comment in the issue: https://github.com/pytorch/pytorch/issues/65527#issuecomment-925863193. The file was renamed in ce58d5904c (diff-e5ef486bd89eb38de15752211d9437953681b8caa8f44d7c86bb820d13151df2), but the link in this repository was not updated.

It doesn't change the fact that the old link is still working, but I guess this has to be fixed in [pytorch/tutorials](https://github.com/pytorch/tutorials) instead of here.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65534

Reviewed By: soulitzer

Differential Revision: D31144269

Pulled By: H-Huang

fbshipit-source-id: f70744a21113b7dc84510e2992d87f0fed793985
2021-09-23 11:26:50 -07:00
Rodrigo Berriel
11ca641491 [docs] Add images to some activation functions (#65415)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/65368. See discussion in the issue.

cc mruberry SsnL jbschlosser soulitzer

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65415

Reviewed By: soulitzer

Differential Revision: D31093303

Pulled By: albanD

fbshipit-source-id: 621c74c7a2aceee95e3d3b708c7f1a1d59e59b93
2021-09-22 11:05:29 -07:00
Rodrigo Berriel
00b732e98b Remove orphan from cuDNN persistent note (#65160)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/60009.

As the document is properly [included](https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/rnn.py#L799), and [`:orphan:` doesn't need to be used in included documents](https://github.com/sphinx-doc/sphinx/issues/6787#issuecomment-549256840), and no warning is emitted in my local build when removing it, I think it can be removed.

The artifact reported in https://github.com/pytorch/pytorch/issues/60009 can be seen in 3 pages: [torch.nn.RNN](https://pytorch.org/docs/stable/generated/torch.nn.RNN.html#torch.nn.RNN), [torch.nn.LSTM](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html#torch.nn.LSTM), and [torch.nn.GRU](https://pytorch.org/docs/stable/generated/torch.nn.GRU.html#torch.nn.GRU).

cc ezyang suo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65160

Reviewed By: bdhirsh

Differential Revision: D31020280

Pulled By: ezyang

fbshipit-source-id: 6c3541e5a856a91cf1ce1d2db4d04f5d13118ee4
2021-09-21 11:09:47 -07:00
Rodrigo Berriel
f0ada4bd54 [docs] Remove .data from some docs (#65358)
Summary:
Related to https://github.com/pytorch/pytorch/issues/30987. Fix the following task:

- [ ] Remove the use of `.data` in all our internal code:
  - [ ] ...
  - [x] `docs/source/scripts/build_activation_images.py` and `docs/source/notes/extending.rst`

In `docs/source/scripts/build_activation_images.py`, I used `nn.init` because the snippet already assumes `nn` is available (the class inherits from `nn.Module`).

cc albanD

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65358

Reviewed By: malfet

Differential Revision: D31061790

Pulled By: albanD

fbshipit-source-id: be936c2035f0bdd49986351026fe3e932a5b4032
2021-09-21 06:32:31 -07:00
Michael Carilli
e3210ca184 [CUDA graphs] Beta, not prototype (#65247)
Summary:
Powers have decided this API should be listed as beta.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65247

Reviewed By: malfet

Differential Revision: D31057940

Pulled By: ngimel

fbshipit-source-id: 137b63cbd2c7409fecdc161a22135619bfc96bfa
2021-09-20 13:32:36 -07:00
albanD
473e55d5b2 Use classmethods for overrides (#64841)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64841

Test Plan: Imported from OSS

Reviewed By: heitorschueroff

Differential Revision: D30991424

Pulled By: albanD

fbshipit-source-id: 551e2119768f3a4292713f3bfa83930f5506adbd
2021-09-17 08:32:49 -07:00
Jane Xu
4c4c03124b Remove old references to 9.2 in documentation (#65059)
Summary:
Removes references in .rst and README.md and comments in the Dockerfile

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65059

Reviewed By: malfet

Differential Revision: D30961110

Pulled By: janeyx99

fbshipit-source-id: 702a9a81bf08125ec4ac38bc656fc2c128c30018
2021-09-16 13:24:05 -07:00
BowenBao
6512838fab [ONNX] Enhance shape (two changes merged) (#64585)
Summary:
Enhanced shape inference by introducing typeReliableMap.
[ONNX] exporter changes for torch hub models (https://github.com/pytorch/pytorch/issues/62856)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64585

Reviewed By: ezyang

Differential Revision: D30870418

Pulled By: msaroufim

fbshipit-source-id: 87a294799cb87d649d1d13b6114a5cfbac9be15c

Co-authored-by: jiafatom <jiafa@microsoft.com>
2021-09-15 13:02:19 -07:00
Michael Carilli
36cac2be4d [CUDA graphs] moves memory sharing intro paragraph (#64996)
Summary:
Puts memory sharing intro under Sharing memory... header, where it should have been all along.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64996

Reviewed By: mruberry

Differential Revision: D30948619

Pulled By: ngimel

fbshipit-source-id: 5d9dd267b34e9d3fc499d4738377b58a22da1dc2
2021-09-14 17:53:43 -07:00
Xiaoyu Zhang
d932ddd24b fix quantization.rst doc (#64802)
Summary:
RT。

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64802

Reviewed By: jbschlosser

Differential Revision: D30887210

Pulled By: vkuzo

fbshipit-source-id: 0267883d3065d724ea654a28db78f5fe5702ef06
2021-09-13 07:19:54 -07:00
Heitor Schueroff
b37503e452 Initial implementation of nanmean (#62671)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62671

Very crude first implementation of `torch.nanmean`. The current reduction kernels do not have good support for implementing nan* variants. Rather than implementing new kernels for each nan* operator, I will work on new reduction kernels with support for a `nan_policy` flag and then I will port `nanmean` to use that.

**TODO**

- [x] Fix autograd issue

Test Plan: Imported from OSS

Reviewed By: malfet

Differential Revision: D30515181

Pulled By: heitorschueroff

fbshipit-source-id: 303004ebd7ac9cf963dc4f8e2553eaded5f013f0
2021-09-13 05:53:58 -07:00
Ilqar Ramazanli
2b41bf40c5 To add SequentialLR to PyTorch Core Schedulers (#64037)
Summary:
Partially resolves https://github.com/pytorch/vision/issues/4281

In this PR we are proposing a new scheduler --SequentialLR-- which enables list of different schedulers called in different periods of the training process.

The main motivation of this scheduler is recently gained popularity of warming up phase in the training time. It has been shown that having a small steps in initial stages of training can help convergence procedure get faster.

With the help of SequentialLR we mainly enable to call a small constant (or linearly increasing) learning rate followed by actual target learning rate scheduler.

```PyThon
scheduler1 = ConstantLR(optimizer, factor=0.1, total_iters=2)
scheduler2 = ExponentialLR(optimizer, gamma=0.9)
scheduler = SequentialLR(optimizer, schedulers=[scheduler1, scheduler2], milestones=[5])

for epoch in range(100):
    train(...)
    validate(...)
    scheduler.step()
```

which this code snippet will call `ConstantLR` in the first 5 epochs and will follow up with `ExponentialLR` in the following epochs.

This scheduler could be used to provide call of any group of schedulers next to each other. The main consideration we should make is every time we switch to a new scheduler we assume that new scheduler starts from the beginning- zeroth epoch.

We also add Chained Scheduler to `optim.rst` and `lr_scheduler.pyi` files here.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64037

Reviewed By: albanD

Differential Revision: D30841099

Pulled By: iramazanli

fbshipit-source-id: 94f7d352066ee108eef8cda5f0dcb07f4d371751
2021-09-09 09:36:32 -07:00
kshitij12345
2c351c76e0 [special] Alias igamma, igammac to special.gammaninc, special.gammaincc (#61902)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/50345

Also added relevant OpInfo

TODO:
* [x] Check rendered docs gammainc : https://docs-preview.pytorch.org/61902/special.html#torch.special.gammainc
* [x] Check rendered docs gammaincc: https://docs-preview.pytorch.org/61902/special.html#torch.special.gammaincc

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61902

Reviewed By: ngimel

Differential Revision: D30761428

Pulled By: mruberry

fbshipit-source-id: 06a16432873357958d53364f12a4e91c29779d26
2021-09-07 15:31:26 -07:00
Anirudh Dagar
337c71be05 Array API: Add torch.linalg.matmul alias to torch.matmul (#63227)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/62811

Add `torch.linalg.matmul` alias to `torch.matmul`. Note that the `linalg.matmul` doesn't have a `method` variant.

Also cleaning up `torch/_torch_docs.py` when formatting is not needed.

cc IvanYashchuk Lezcano mruberry rgommers

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63227

Reviewed By: mrshenli

Differential Revision: D30770235

Pulled By: mruberry

fbshipit-source-id: bfba77dfcbb61fcd44f22ba41bd8d84c21132403
2021-09-07 12:35:32 -07:00
Ilqar Ramazanli
f767cf6683 To change WarmUp Scheduler with ConstantLR and LinearLR (#64395)
Summary:
Partially unblocks https://github.com/pytorch/vision/issues/4281

Previously we have added WarmUp Schedulers to PyTorch Core in the PR : https://github.com/pytorch/pytorch/pull/60836 which had two mode of execution - linear and constant depending on warming up function.

In this PR we are changing this interface to more direct form, as separating linear and constant modes to separate Schedulers. In particular

```Python
scheduler1 = WarmUpLR(optimizer, warmup_factor=0.1, warmup_iters=5, warmup_method="constant")
scheduler2 = WarmUpLR(optimizer, warmup_factor=0.1, warmup_iters=5, warmup_method="linear")
```

will look like

```Python
scheduler1 = ConstantLR(optimizer, warmup_factor=0.1, warmup_iters=5)
scheduler2 = LinearLR(optimizer, warmup_factor=0.1, warmup_iters=5)
```

correspondingly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64395

Reviewed By: datumbox

Differential Revision: D30753688

Pulled By: iramazanli

fbshipit-source-id: e47f86d12033f80982ddf1faf5b46873adb4f324
2021-09-07 08:42:31 -07:00
Anirudh Dagar
1a1fb31cfa Support torch.concat alias, add cat OpInfo & remove OpInfo test_out skips {cat, stack, hstack, vtack, dstack} (#62560)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/61767

## Changes

- [x] Add `torch.concat` alias to `torch.cat`
- [x] Add OpInfo for `cat`/`concat`
- [x] Fix `test_out` skips (Use `at::native::resize_output` or `at::native::resize_output_check`)
  - [x] `cat`/`concat`
  - [x] `stack`
  - [x] `hstack`
  - [x] `dstack`
  - [x] `vstack`/`row_stack`
- [x] Remove redundant tests for `cat`/`stack`

~I've not added `cat`/`concat` to OpInfo `op_db` yet, since cat is a little more tricky than other OpInfos (should have a lot of tests) and currently there are no OpInfos for that. I can try to add that in a subsequent PR or maybe here itself, whatever is suggested.~
**Edit**: cat/concat OpInfo has been added.

**Note**: I've added the named tensor support for `concat` alias as well, maybe that's out of spec in `array-api` but it is still useful for consistency in PyTorch.

Thanks to krshrimali for guidance on my first PR :))

cc mruberry rgommers pmeier asmeurer leofang AnirudhDagar asi1024 emcastillo kmaehashi heitorschueroff krshrimali

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62560

Reviewed By: saketh-are

Differential Revision: D30762069

Pulled By: mruberry

fbshipit-source-id: 6985159d1d9756238890488a0ab3ae7699d94337
2021-09-06 23:57:18 -07:00
Chris Cai
008bf6689b Back out "D30740897 Add fusion enabled apis" (#64500)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64500

D30740897 (39aeb3bf63) broke caffe2/torch/fb/module_factory/optimizers/tests:test_full_sync_optimizer_needed_coverage (https://fburl.com/test/mb46jxon) and blocked training_platform_unit_tests

{F660271297}

multsect results confirms

```
multisect --config FBCODE_TEST bisect 844424966128796 --workers 16 revisions --begin 09629edc --end fc86b434
D30740897 (39aeb3bf63)

````

{F660271232}

Test Plan:
```
buck test mode/opt //caffe2/torch/fb/module_factory/optimizers/tests:test_full_sync_optimizer_needed_coverage

Started reporting to test run: https://www.internalfb.com/intern/testinfra/testrun/4785074671474181
    ✓ Pass: caffe2/torch/fb/module_factory/optimizers/tests:test_full_sync_optimizer_needed_coverage - main (3.729)
Summary
  Pass: 1

```

Differential Revision: D30753916

fbshipit-source-id: 302fd4113ef1f3069846be03edc2300d82b66719
2021-09-04 20:55:58 -07:00
Ansley Ussery
6831d8e379 Support Union in TorchScript (#64234)
Summary:
This PR is created to replace https://github.com/pytorch/pytorch/pull/53180 PR stack, which has all the review discussions. Reason for needing a replacement is due to a messy Sandcastle issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64234

Reviewed By: gmagogsfm

Differential Revision: D30656444

Pulled By: ansley

fbshipit-source-id: 77536c8bcc88162e2c72636026ca3c16891d669a
2021-09-03 06:12:24 -07:00
Elias Ellison
39aeb3bf63 Add fusion enabled apis (#64429)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64429

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D30740897

Pulled By: eellison

fbshipit-source-id: 446aa63b5d763f1cfffea62547db7294368e3438
2021-09-02 22:19:09 -07:00
Elias Ellison
7031fbdc63 update optimize_for_inference docs (#64428)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64428

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D30740898

Pulled By: eellison

fbshipit-source-id: b94d2c3deb661a6ba048f19e8c1d5e1799667eeb
2021-09-02 22:17:58 -07:00
Edward Yang
71e149834b Add a warning about DataLoader num_workers > 0 "memory leak" (#64337)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64337

See https://github.com/pytorch/pytorch/issues/13246

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D30690320

Pulled By: ezyang

fbshipit-source-id: 2751aca05a94e63d25162599f458855988516fad
2021-09-01 21:49:41 -07:00
Yi Wang
778af56504 [DDP Comm Hook] Add debugging communication hooks to ddp_comm_hooks.rst (#64352)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64352

as title
ghstack-source-id: 137246253

Test Plan: N/A

Reviewed By: rohan-varma

Differential Revision: D30694089

fbshipit-source-id: a78110b11d59bb0718f43c99ede23f2fd8ab21d0
2021-09-01 17:37:19 -07:00
Yi Wang
a8f9aab840 [DDP Comm Hook] Add bf16 gradient compression to ddp_comm_hooks.rst (#64346)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64346

as title
ghstack-source-id: 137170288

Test Plan: N/A

Reviewed By: rohan-varma

Differential Revision: D30693513

fbshipit-source-id: 8c64b8404ff3b0322e1bbbd93f6ef051ea91307d
2021-09-01 16:34:00 -07:00
Michael Carilli
8d08b103be [CUDA graphs] Prototype API and documentation (#63269)
Summary:
RFC: https://github.com/pytorch/pytorch/issues/61880

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63269

Reviewed By: mruberry

Differential Revision: D30596643

Pulled By: ngimel

fbshipit-source-id: b1f8061406364b667e2c2d4d30fbce1f0d8456be
2021-08-31 13:34:23 -07:00
Raghuraman Krishnamoorthi
347ef69529 [ao][docs] Clarify operator support for quantization (#63270)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63270

Add table to quantization main page showing supported modules
for static and dynamic quantization.
ghstack-source-id: 137087204

Test Plan: Imported from OSS

Reviewed By: HDCharles

Differential Revision: D30658654

fbshipit-source-id: a82c998e1db6370596d5b0ca4c7cc96c1c90f30e
2021-08-31 12:32:47 -07:00
Raghuraman Krishnamoorthi
b9275a4003 [ao][docs] Add description of qconfig and qengine to quantization page (#63582)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63582

Current quantization docs do not define qconfig and qengine. Added text to define these concepts before they are used.
ghstack-source-id: 137051719

Test Plan: Imported from OSS

Reviewed By: HDCharles

Differential Revision: D30658656

fbshipit-source-id: a45a0fcdf685ca1c3f5c3506337246a430f8f506
2021-08-31 10:33:07 -07:00
oleshp
93f1090267 Update contribution_guide.rst (#64142)
Summary:
Grammatical update.

Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64142

Reviewed By: mruberry

Differential Revision: D30639394

Pulled By: ezyang

fbshipit-source-id: cf1a4dfbd8e34b0772f1b09f5d820278e8ef8574
2021-08-30 19:26:59 -07:00
lezcano
f3e329cbec Implements the orthogonal parametrization (#62089)
Summary:
Implements an orthogonal / unitary parametrisation.

It does passes the tests and I have trained a couple models with this implementation, so I believe it should be somewhat correct. Now, the implementation is very subtle. I'm tagging nikitaved  and IvanYashchuk as reviewers in case they have comments / they see some room for optimisation of the code, in particular of the `forward` function.

Fixes https://github.com/pytorch/pytorch/issues/42243

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62089

Reviewed By: ezyang

Differential Revision: D30639063

Pulled By: albanD

fbshipit-source-id: 988664f333ac7a75ce71ba44c8d77b986dff2fe6
2021-08-30 13:12:07 -07:00
Kushashwa Ravi Shrimali
d37636901e [Doc] make_tensor to torch.testing module (#63925)
Summary:
This PR aims to add `make_tensor` to the `torch.testing` module in PyTorch docs.

TODOs:

* [x] Add examples

cc: pmeier mruberry brianjo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63925

Reviewed By: ngimel

Differential Revision: D30633487

Pulled By: mruberry

fbshipit-source-id: 8e5a1f880c6ece5925b4039fee8122bd739538af
2021-08-30 12:25:40 -07:00
Mike Ruberry
29ad84f252 Removes beta warning from the special module documentation (#64148)
Summary:
Updates documentation per feature review. torch.special is now stable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64148

Reviewed By: ngimel

Differential Revision: D30632049

Pulled By: mruberry

fbshipit-source-id: 8f6148ec7737e7b3a90644eeca23eb217eda513d
2021-08-29 19:38:46 -07:00
Joel Schlosser
196fd3ee7a Modules note v2 (#63963)
Summary:
This PR expands the [note on modules](https://pytorch.org/docs/stable/notes/modules.html) with additional info for 1.10.

It adds the following:
* Examples of using hooks
* Examples of using apply()
* Examples for ParameterList / ParameterDict
* register_parameter() / register_buffer() usage
* Discussion of train() / eval() modes
* Distributed training overview / links
* TorchScript overview / links
* Quantization overview / links
* FX overview / links
* Parametrization overview / link to tutorial

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63963

Reviewed By: albanD

Differential Revision: D30606604

Pulled By: jbschlosser

fbshipit-source-id: c1030b19162bcb5fe7364bcdc981a2eb6d6e89b4
2021-08-27 11:30:18 -07:00
Can Balioglu
65e6194aeb Introduce the torchrun entrypoint (#64049)
Summary:
This PR introduces a new `torchrun` entrypoint that simply "points" to `python -m torch.distributed.run`. It is shorter and less error-prone to type and gives a nicer syntax than a rather cryptic `python -m ...` command line. Along with the new entrypoint the documentation is also updated and places where `torch.distributed.run` are mentioned are replaced with `torchrun`.

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse agolynski SciPioneer H-Huang mrzzd cbalioglu gcramer23

Pull Request resolved: https://github.com/pytorch/pytorch/pull/64049

Reviewed By: cbalioglu

Differential Revision: D30584041

Pulled By: kiukchung

fbshipit-source-id: d99db3b5d12e7bf9676bab70e680d4b88031ae2d
2021-08-26 20:17:48 -07:00
Kiuk Chung
9d95d48567 (torch.distributed) Add torch.distributed.is_torchelastic_launched() util method + make init_method=tcp:// compatible with torchelastic (#63910)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63910

Addresses the current issue that `init_method=tcp://` is not compatible with `torch.distributed.run` and `torch.distributed.launch`. When running with a training script that initializes the process group with `init_method=tcp://localhost:$port` as such:

```
$ python -u -m torch.distributed.run --max_restarts 0 --nproc_per_node 1 --nnodes 1 --master_addr $(hostname) --master_port 6000 ~/tmp/test.py
```

An `Address in use` error is raised since the training script tries to create a TCPStore on port 6000, which is already taken since the elastic agent is already running a TCPStore on that port.

For details see: https://github.com/pytorch/pytorch/issues/63874.

This change does a couple of things:

1. Adds `is_torchelastic_launched()` check function that users can use in the training scripts to see whether the script is launched via torchelastic.
1. Update the `torch.distributed` docs page to include the new `is_torchelastic_launched()` function.
1. Makes `init_method=tcp://` torchelastic compatible by modifying `_tcp_rendezvous_handler` in `torch.distributed.rendezvous` (this is NOT the elastic rendezvous, it is the old rendezvous module which is slotted for deprecation in future releases) to check `is_torchelastic_launched()` AND `torchelastic_use_agent_store()` and if so, only create TCPStore clients (no daemons, not even for rank 0).
1. Adds a bunch of unittests to cover the different code paths

NOTE: the issue mentions that we should fail-fast with an assertion on `init_method!=env://` when `is_torchelastic_launched()` is `True`. There are three registered init_methods in pytorch: env://, tcp://, file://. Since this diff makes tcp:// compatible with torchelastic and I've validated that file is compatible with torchelastic. There is no need to add assertions. I did update the docs to point out that env:// is the RECOMMENDED init_method. We should probably deprecate the other init_methods in the future but this is out of scope for this issue.

Test Plan: Unittests.

Reviewed By: cbalioglu

Differential Revision: D30529984

fbshipit-source-id: 267aea6d4dad73eb14a2680ac921f210ff547cc5
2021-08-25 22:57:43 -07:00
Joseph Spisak
b629ea4620 Update persons_of_interest.rst (#63907)
Summary:
Fixes #{issue number}

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63907

Reviewed By: jspisak

Differential Revision: D30534972

Pulled By: dzhulgakov

fbshipit-source-id: ba726fc53e292a362c387cc8b5f7776ca2a2544c
2021-08-25 22:50:54 -07:00
Jithun Nair
730ce29baf Add note on ifdefing based on CUDA_VERSION for ROCm path (#62850)
Summary:
CUDA_VERSION and HIP_VERSION follow very unrelated versioning schemes, so it does not make sense to use CUDA_VERSION to determine the ROCm path. This note explicitly addresses it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62850

Reviewed By: mruberry

Differential Revision: D30547562

Pulled By: malfet

fbshipit-source-id: 02990fa66a88466c2330ab85f446b25b78545150
2021-08-25 15:02:03 -07:00
Jithun Nair
726fd26b3e Update ROCm PyTorch persons of interest (#55206)
Summary:
cc jeffdaily sunway513

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55206

Reviewed By: VitalyFedyunin

Differential Revision: D30296584

Pulled By: dzhulgakov

fbshipit-source-id: 6e5c610cc6b7c7fd58b80fa3f9de31f269341a88
2021-08-22 22:31:09 -07:00
Victor Quach
b95ce1591d Add docs describing saved tensor hooks (#62362)
Summary:
Add section to the Autograd mechanics docs to describe the recently
exposed saved tensors (https://github.com/pytorch/pytorch/issues/52451), how to register packing / unpacking
hooks (https://github.com/pytorch/pytorch/issues/60975) and how to use default hooks (https://github.com/pytorch/pytorch/issues/61834)

Sister PR: https://github.com/pytorch/pytorch/issues/62361 (will add a link from autograd.rst to notes/autograd in whatever PR does not land first)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62362

Reviewed By: soulitzer

Differential Revision: D30453177

Pulled By: Varal7

fbshipit-source-id: f5759977b069ff0ef36a47b08856d297691a6caa
2021-08-20 11:10:51 -07:00
Philip Meier
99203580a9 Updates internal assert_allclose callsites in favor of assert_close (#61841)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61841

Redo of #60863.

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D30408145

Pulled By: mruberry

fbshipit-source-id: 0b34ebc7f23ba38ecd89640b61d8aca59b7eab58
2021-08-19 12:50:41 -07:00
Michael Dagitses
feba6806c9 clarify that torch.finfo.tiny is the smallest normal number (#63241)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63241

This is a common source of confusion, but it matches the NumPy
behavior.

Fixes #44010
Fixes #59526

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D30307646

Pulled By: dagitses

fbshipit-source-id: d848140ba267560387d83f3e7acba8c3cdc53d82
2021-08-18 13:44:52 -07:00