Summary:
- When a user specify `TORCHINDUCTOR_MAX_AUTOTUNE=1` env variable, we add `config.max_autotune=True` to the generated minifier_launcher
- We should do this to other inductor configs as well in a followup Diff
Currently in dynamo and aoti minifier, if a config is overwritten by an env variable, the config will not show up in the config list in the minifier_launcher.py file. As a result, when running the minifier_launcher, they need to re-apply the same env variable.
This is:
1) not convenient for the users
2) if they copy-paste the minifier_launcher.py to us without including the env variable, we could be confused and not able to reproduce the error.
Underlying implementation change:
- Add `env_default` parameter to `codegen_config()`. If set, configs overriden by the env are not considered default.
Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:utils -- -r test_codegen_config
```
Differential Revision: D67299312
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143330
Approved by: https://github.com/jansel, https://github.com/eellison
Fixes#130559
* Intro
This PR adds support for `@contextmanager` in Dynamo. We chose to limit the
scope of this work to only `@contextmanager` and plan to handle generators fully
in #141055 (still in draft).
* Motivation
Dynamo lacks support for generator functions. When it encounters one, it traces
it as if it were a regular function. This is problematic because it can lead to
incorrect behavior. To illustrate, consider the test case below:
```python
import torch
import contextlib
@contextlib.contextmanager
def set_default_dtype(dtype):
old_dtype = torch.get_default_dtype()
try:
torch.set_default_dtype(dtype)
yield
finally:
torch.set_default_dtype(old_dtype)
@torch.compile(backend="eager", fullgraph=True)
def fn():
with set_default_dtype(torch.float64):
x = torch.tensor([3.0, 3.0 + 5.0j])
return x
```
Before this work, Dynamo would not stop at the `yield`, and the graph produced
would contain both calls to `set_default_dtype` executed one after the other.
This is incorrect because the context manager should execute code before and
after the `yield`.
* List of changes
`YIELD_VALUE` now raises an exception (`YieldValueOp`) to signal that control
flow must be suspended and returned to the caller. Additionally, `RETURN_VALUE`
behaves differently in a generator function. Unlike regular functions, where
`RETURN_VALUE` indicates the final result, in generators it signifies that the
generator is exhausted and implicitly raises `StopIteration`.
A new `VariableTracker` named `FunctionDecoratedByContextlibContextManagerVariable`
was introduced to handle `@contextmanager`. This variable tracker acts not just
as a wrapper for the original function but also maintains an internal `tx`
(InstructionTranslator) object to suspend and return control flow to the parent
tracer when a `yield` is encountered.
* Corner cases
Returning a context manager from a compiled function is not supported. This
would require PyTorch to synchronize the generator state between Dynamo and the
interpreter. Any attempt to return it will result in an `IncorrectUsage`
exception.
Graph breaks require special handling as well. In the event of a graph break,
the frame associated with the context manager is skipped, and the context
manager runs in eager mode.
* This PR is breaking my code
There is a configuration flag (`enable_trace_contextlib`) that can be set to
`False` to disable tracing context managers. If this still causes crashes,
please revert this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136033
Approved by: https://github.com/zou3519
Summary:
Support garbage collection after pt2 compilation.
Add jk to control the global rollout / rollback of this functionality
Add env var to control individual job's rollout
Test Plan:
Test the model training job with / without this changes
Reviewers:
@yuxihu @ezyang , @Yuzhen11 ,
Subscribers:
Tasks:
Tags:
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143364
Approved by: https://github.com/ezyang
Implements https://github.com/pytorch/pytorch/issues/93753 - move frame local guard accessors to C++.
Before, we used dict accessors on a Python dict representing the frame's fastlocals that we manually build. We move this accessor to C++ and additionally use the fastlocal index whenever possible.
Some implementation notes:
- `FrameLocalsMapping` is now initialized as a C++ vector of `PyObject`s. We do not just use the frame's localsplus/fastlocals buffer because we also unbox cells.
- `FrameLocalsMapping` can still be converted into a Python dict representing the frame's fastlocals, but it is done lazily.
- We update `LeafGuard`, `GuardAccessor`, and `GuardManager`'s `check_nopybind` methods to accept `FrameLocalsMapping`. By default, we convert the `FrameLocalsMapping` to a Python dict and run the original `check_nopybind` on it, but in some cases, conversion is not needed.
- We add a new guard accessor `FrameLocalsGuardAccessor`, which is similar to `DictGetItemGuardAccessor` but has special handling for `FrameLocalsMapping`. We create a separate class to emphasize different use cases, but we could probably combine these two (can do in a follow up)
dynamo_guard_eval.py microbenchmark update:
- 713.2us -> 630.0us (3.10)
- 598.8us -> 530.7us (3.12)
Other followups:
- Add `FrameLocalsMapping` version for `check_verbose_nopybind` in order to match behavior between `check_nopybind` and `check_verbose_nopybind`. This can prevent difficult debugging situations where guards fail (`check_nopybind` returns false) but no guard error message is generated (`check_verbose_nopybind` succeeds).
- Rewrite the `SHAPE_ENV` guard into C++ - it is a fairly common guard that results in `FrameLocalsMapping` needing to convert to a dict
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140063
Approved by: https://github.com/jansel
ghstack dependencies: #142117, #142430
Resolves issue #140464 by adding an option to not specialize int from nn.Modules (False by default to maintain existing behavior).
Test Plan: `buck2 test mode/opt caffe2/test/dynamo:test_dynamo -- test_modules.py::NNModuleTests::test_nn_module_unspec_int_attr`
Differential Revision: D66837042
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142829
Approved by: https://github.com/ezyang, https://github.com/yanboliang
This adds an option to cause automatic dynamic shapes to trigger
unbacked SymInts rather than backed SymInts. This can potentially
help if you are still seeing recompilations from 0/1 specialization
but it also might just cause your program to fail with
GuardOnDataDependent errors.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141415
Approved by: https://github.com/bobrenjc93
This PR implements graph region tracking for later extraction into common subgraphs. The algorithm is as follows:
`GraphRegionTracker` tracks each node added to the output graph and generates a key based on the source location, instruction pointer, input shapes, and global state at the time the node is inserted into the graph. Nodes with the same key are grouped together in a list of identical nodes.
Once graph capture is complete, these nodes are organized into region groups. A region group looks like this:
[[IdenticalNode1], [IdenticalNode2], [IdenticalNode3]] and each sublist is called a region. For each region group (starting at the topologically latest region group), the inner regions are gradually expanded one node at time from args and kwargs of the node in each region provided that for all regions in the group, the nodes being added are also identical (ie have the same key computed above). The `get_identical_regions` function is the main entry point which will be used by the graph replacement algorithm in #141383
Edge cases to add more testing for in future PRs (in progress):
* ~~multiple nodes on the same line~~ (implemented)
* ~~dynamic shapes checking (need to verify symbolic inputs are the same across subgraphs)~~ (implemented)
* ensure we don't expand regions where it will create a cycle during subgraph replacement
* ensure outputs are always tensors (or tuples of tensors iirc)
* ~~out of order kwargs, unevenly nested kwargs~~ (implemented)
* input aliasing - TBD, we may add support for this in `invoke_subgraph` or reuse the aliasing analysis here to not form regions with these properties
* ~~all global state~~ (implemented)
Other followups:
* consolidate global state checking across all caching infra
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141381
Approved by: https://github.com/zou3519
This is a bug on the main exposed by https://github.com/pytorch/pytorch/issues/139476
We have dict tag optimization where if the dict tag does not change, we
skip guards on all the items of the dict that are "immutable". We
considered tensors as immutable in such scenarios. This is critical for
guard eval performance, because generally users dont change their
parameters.
If I try to remove this optimization, we see slowdowns, e.g, 3.03x to
2.95x on conv_mixer TIMM benchamrk.
So, I am adding a flag which keeps the current state but allows the
users to remove this optimization. Not ideal, but given how serious guard eval perf has to be,
we are in the gray are of unsoundness vs performance tradeoff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139560
Approved by: https://github.com/jansel
This is a bug on the main exposed by https://github.com/pytorch/pytorch/issues/139476
We have dict tag optimization where if the dict tag does not change, we
skip guards on all the items of the dict that are "immutable". We
considered tensors as immutable in such scenarios. This is critical for
guard eval performance, because generally users dont change their
parameters.
If I try to remove this optimization, we see slowdowns, e.g, 3.03x to
2.95x on conv_mixer TIMM benchamrk.
So, I am adding a flag which keeps the current state but allows the
users to remove this optimization. Not ideal, but given how serious guard eval perf has to be,
we are in the gray are of unsoundness vs performance tradeoff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139560
Approved by: https://github.com/jansel
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen