Commit Graph

152 Commits

Author SHA1 Message Date
Michael Suo
20143e5f27 Revert D21245094: [resubmit] Enable global observers API
Test Plan: revert-hammer

Differential Revision:
D21245094

Original commit changeset: 595e41b18206

fbshipit-source-id: 90344b361857d76ce5db75438c949dad1f5f186b
2020-04-27 16:19:46 -07:00
Wanchao Liang
1039b95ff0 [autograd] add documentation about multithread autograd (#37020)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37020

Add multithread autograd documentation to the doc note.

Test Plan: Imported from OSS

Differential Revision: D21260996

Pulled By: wanchaol

fbshipit-source-id: 91d523560268ae62d4c6d773121b282ba837a561
2020-04-27 15:53:21 -07:00
Ilia Cherniavskii
5fab4c30dd [resubmit] Enable global observers API (#37292)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37292

After adding c10::DispatchKey::Profiler the behavior of RecordFunction
observers is also controlled by the dispatch key,
this PR moves the logic outside of the profiler into the record function

Reviewed By: jamesr66a

Differential Revision: D21245094

fbshipit-source-id: 595e41b18206d2ba4cf639cb320f630907868b3f
2020-04-27 14:24:51 -07:00
Ilia Cherniavskii
856e8cf028 Revert D21213786: Enable global observers API
Test Plan: revert-hammer

Differential Revision:
D21213786

Original commit changeset: e618254da74a

fbshipit-source-id: 425ea5d44fa55655ec0dd586c5075996b926177b
2020-04-25 00:59:24 -07:00
Ilia Cherniavskii
6e659e928b Enable global observers API (#37195)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37195

After adding c10::DispatchKey::Profiler the behavior of RecordFunction
observers is also controlled by the dispatch key,
this PR moves the logic outside of the profiler into the record function

Reviewed By: ngimel

Differential Revision: D21213786

fbshipit-source-id: e618254da74a4f1ce16c51a3869bbd75a4f561ad
2020-04-24 23:49:28 -07:00
Alban Desmaison
3799d1d74a Fix many doc issues (#37099)
Summary:
Fix https://github.com/pytorch/pytorch/issues/35643 https://github.com/pytorch/pytorch/issues/37063 https://github.com/pytorch/pytorch/issues/36307 https://github.com/pytorch/pytorch/issues/35861 https://github.com/pytorch/pytorch/issues/35299 https://github.com/pytorch/pytorch/issues/23108 https://github.com/pytorch/pytorch/issues/4661

Just a bunch of small updates on the doc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37099

Differential Revision: D21185713

Pulled By: albanD

fbshipit-source-id: 4ac06d6709dc0da6109a6ad3daae75667ee5863e
2020-04-23 10:01:03 -07:00
Michael Carilli
e6bc34f549 Amp gradient accumulation example (#36601)
Summary:
Several people have asked me about proper Amp usage with gradient accumulation.  In particular, it's [unclear to people](https://github.com/NVIDIA/apex/issues/439#issuecomment-610351482) that you should only call `scaler.unscale_()` (if desired) and `scaler.update()` in iterations where you actually plan to step.  This PR adds a minimal accumulation example.

I built the docs locally and it looks free from sphinx errors, at least.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36601

Differential Revision: D21082295

Pulled By: ngimel

fbshipit-source-id: b2faa6c02b9f7e1972618a0f1d5360a03f0450ac
2020-04-17 09:56:36 -07:00
Jessica Lin
ac950bb9c8 Update docs for master to remove Python 2 references (#36336)
Summary:
Fix compile error from original PR in jit_language_references.rst: https://github.com/pytorch/pytorch/pull/36114

Full details in task: https://our.intern.facebook.com/intern/tasks/?t=64776265

With pytroch 1.5+ we remove python2 support from PyTorch. All documentation under docs/ and on the pytorch.org website needs to remove Python 2 references.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36336

Differential Revision: D21057507

Pulled By: jlin27

fbshipit-source-id: 993a763f1ecb16dad859bc02a07625ddc023645d
2020-04-16 10:15:48 -07:00
Edward Yang
6016f694c0 Revert D20901746: [pytorch][PR] Update docs for master to remove Python 2 references
Test Plan: revert-hammer

Differential Revision:
D20901746

Original commit changeset: 07f8dc8e6fab

fbshipit-source-id: 13c55597f9f79b8473210cf35a5a0f1fb34bae39
2020-04-08 14:49:11 -07:00
Jessica Lin
43234be525 Update docs for master to remove Python 2 references (#36114)
Summary:
Full details in task: https://our.intern.facebook.com/intern/tasks/?t=64776265

With pytroch 1.5+ we remove python2 support from PyTorch. All documentation under docs/ and on the pytorch.org website needs to remove Python 2 references.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36114

Differential Revision: D20901746

Pulled By: jlin27

fbshipit-source-id: 07f8dc8e6fab0b232e5048a63079cab0c433c85f
2020-04-07 16:13:18 -07:00
Rohan Varma
1f06db2579 Refactored rpc docs (#35109)
Summary:
Reorganize as per jlin27 's comments. Screenshots added in comments.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35109

Differential Revision: D20788774

Pulled By: rohan-varma

fbshipit-source-id: 7d64be70ef76ed6ff303d05d39c338293c234766
2020-04-01 02:01:34 -07:00
Ilia Cherniavskii
bc6bd0bb1a Debug Information Guard
Summary: This diff fixes the issues with current handling of debug information passed along the execution of the model. (For example, it is possible that multiple calls to the debug guard may override each other)

Test Plan: CI test/cpp/jit

Reviewed By: dzhulgakov

Differential Revision: D20602775

fbshipit-source-id: 4683957954028af81a1a0f1f12b243650230c9bb
2020-04-01 01:55:29 -07:00
Ilia Cherniavskii
800d5617c0 Recording of TorchScript functions (#34710)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34710

Extending RecordFunction API to support new recording scopes (such as TorchScript functions), as well as giving more flexibility to set sampling rate.

Test Plan: unit test (test_misc.cpp/testRecordFunction)

Reviewed By: gdankel, dzhulgakov

Differential Revision: D20158523

fbshipit-source-id: a9e0819d21cc06f4952d92d43246587c36137582
2020-03-31 00:33:23 -07:00
pinzhenx
bd604cb5b7 Upgrade MKL-DNN to DNNL v1.2 (#32422)
Summary:
## Motivation

This PR upgrades MKL-DNN from v0.20 to DNNL v1.2 and resolves https://github.com/pytorch/pytorch/issues/30300.

DNNL (Deep Neural Network Library) is the new brand of MKL-DNN, which improves performance, quality, and usability over the old version.

This PR focuses on the migration of all existing functionalities, including minor fixes, performance improvement and code clean up. It serves as the cornerstone of our future efforts to accommodate new features like OpenCL support, BF16 training, INT8 inference, etc. and to let the Pytorch community derive more benefits from the Intel Architecture.

<br>

## What's included?

Even DNNL has many breaking changes to the API, we managed to absorb most of them in ideep. This PR contains minimalist changes to the integration code in pytorch. Below is a summary of the changes:

<br>

**General:**

1. Replace op-level allocator with global-registered allocator

```
// before
ideep::sum::compute<AllocForMKLDNN>(scales, {x, y}, z);

// after
ideep::sum::compute(scales, {x, y}, z);
```

The allocator is now being registeted at `aten/src/ATen/native/mkldnn/IDeepRegistration.cpp`. Thereafter all tensors derived from the `cpu_engine` (by default) will use the c10 allocator.

```
RegisterEngineAllocator cpu_alloc(
  ideep::engine::cpu_engine(),
  [](size_t size) {
    return c10::GetAllocator(c10::DeviceType::CPU)->raw_allocate(size);
  },
  [](void* p) {
    c10::GetAllocator(c10::DeviceType::CPU)->raw_deallocate(p);
  }
);
```
------

2. Simplify group convolution

We had such a scenario in convolution where ideep tensor shape mismatched aten tensor: when `groups > 1`, DNNL expects weights tensors to be 5-d with an extra group dimension, e.g. `goihw` instead of `oihw` in 2d conv case.

As shown below, a lot of extra checks came with this difference in shape before. Now we've completely hidden this difference in ideep and all tensors are going to align with pytorch's definition. So we could safely remove these checks from both aten and c2 integration code.

```
// aten/src/ATen/native/mkldnn/Conv.cpp

if (w.ndims() == x.ndims() + 1) {
  AT_ASSERTM(
      groups > 1,
      "Only group _mkldnn_conv2d weights could have been reordered to 5d");
  kernel_size[0] = w.get_dim(0) * w.get_dim(1);
  std::copy_n(
      w.get_dims().cbegin() + 2, x.ndims() - 1, kernel_size.begin() + 1);
} else {
  std::copy_n(w.get_dims().cbegin(), x.ndims(), kernel_size.begin());
}
```

------

3. Enable DNNL built-in cache

Previously, we stored DNNL jitted kernels along with intermediate buffers inside ideep using an LRU cache. Now we are switching to the newly added DNNL built-in cache, and **no longer** caching buffers in order to reduce memory footprint.

This change will be mainly reflected in lower memory usage from memory profiling results. On the code side, we removed couple of lines of `op_key_` that depended on the ideep cache before.

------

4. Use 64-bit integer to denote dimensions

We changed the type of `ideep::dims` from `vector<int32_t>` to `vector<int64_t>`. This renders ideep dims no longer compatible with 32-bit dims used by caffe2. So we use something like `{stride_.begin(), stride_.end()}` to cast parameter `stride_` into a int64 vector.

<br>

**Misc changes in each commit:**

**Commit:** change build options

Some build options were slightly changed, mainly to avoid name collisions with other projects that include DNNL as a subproject. In addition, DNNL built-in cache is enabled by option `DNNL_ENABLE_PRIMITIVE_CACHE`.

Old | New
-- | --
WITH_EXAMPLE | MKLDNN_BUILD_EXAMPLES
WITH_TEST | MKLDNN_BUILD_TESTS
MKLDNN_THREADING | MKLDNN_CPU_RUNTIME
MKLDNN_USE_MKL | N/A (not use MKL anymore)

------

**Commit:** aten reintegration

- aten/src/ATen/native/mkldnn/BinaryOps.cpp

    Implement binary ops using new operation `binary` provided by DNNL

- aten/src/ATen/native/mkldnn/Conv.cpp

    Clean up group convolution checks
    Simplify conv backward integration

- aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp

    Simplify prepacking convolution weights

- test/test_mkldnn.py

    Fixed an issue in conv2d unit test: it didn't check conv results between mkldnn and aten implementation before. Instead, it compared the mkldnn with mkldnn as the default cpu path will also go into mkldnn. Now we use `torch.backends.mkldnn.flags` to fix this issue

- torch/utils/mkldnn.py

    Prepack weight tensor on module `__init__` to achieve better performance significantly

------

**Commit:** caffe2 reintegration

- caffe2/ideep/ideep_utils.h

    Clean up unused type definitions

- caffe2/ideep/operators/adam_op.cc & caffe2/ideep/operators/momentum_sgd_op.cc

   Unify tensor initialization with `ideep::tensor::init`. Obsolete `ideep::tensor::reinit`

- caffe2/ideep/operators/conv_op.cc & caffe2/ideep/operators/quantization/int8_conv_op.cc

    Clean up group convolution checks
    Revamp convolution API

- caffe2/ideep/operators/conv_transpose_op.cc

    Clean up group convolution checks
    Clean up deconv workaround code

------

**Commit:** custom allocator

- Register c10 allocator as mentioned above

<br><br>

## Performance

We tested inference on some common models based on user scenarios, and most performance numbers are either better than or on par with DNNL 0.20.

ratio: new / old | Latency (batch=1 4T) | Throughput (batch=64 56T)
-- | -- | --
pytorch resnet18 | 121.4% | 99.7%
pytorch resnet50 | 123.1% | 106.9%
pytorch resnext101_32x8d | 116.3% | 100.1%
pytorch resnext50_32x4d | 141.9% | 104.4%
pytorch mobilenet_v2 | 163.0% | 105.8%
caffe2 alexnet | 303.0% | 99.2%
caffe2 googlenet-v3 | 101.1% | 99.2%
caffe2 inception-v1 | 102.2% | 101.7%
caffe2 mobilenet-v1 | 356.1% | 253.7%
caffe2 resnet101 | 100.4% | 99.8%
caffe2 resnet152 | 99.8% | 99.8%
caffe2 shufflenet | 141.1% | 69.0% †
caffe2 squeezenet | 98.5% | 99.2%
caffe2 vgg16 | 136.8% | 100.6%
caffe2 googlenet-v3 int8 | 100.0% | 100.7%
caffe2 mobilenet-v1 int8 | 779.2% | 943.0%
caffe2 resnet50 int8 | 99.5% | 95.5%

_Configuration:
Platform: Skylake 8180
Latency Test: 4 threads, warmup 30, iteration 500, batch size 1
Throughput Test: 56 threads, warmup 30, iteration 200, batch size 64_

† Shufflenet is one of the few models that require temp buffers during inference. The performance degradation is an expected issue since we no longer cache any buffer in the ideep. As for the solution, we suggest users opt for caching allocator like **jemalloc** as a drop-in replacement for system allocator in such heavy workloads.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32422

Test Plan:
Perf results: https://our.intern.facebook.com/intern/fblearner/details/177790608?tab=Experiment%20Results

10% improvement for ResNext with avx512, neutral on avx2

More results: https://fb.quip.com/ob10AL0bCDXW#NNNACAUoHJP

Reviewed By: yinghai

Differential Revision: D20381325

Pulled By: dzhulgakov

fbshipit-source-id: 803b906fd89ed8b723c5fcab55039efe3e4bcb77
2020-03-26 22:07:59 -07:00
Michael Carilli
0f0271e255 [RELAND2] Eager autocasting, out-of-place ops only (with MSVC 2017 fix) (#35102)
Summary:
This is the second reland attempt for https://github.com/pytorch/pytorch/pull/32140.

The first reland attempt https://github.com/pytorch/pytorch/pull/35011 failed due a [small incompatible change](https://github.com/pytorch/pytorch/pull/35011#issuecomment-601754216) in recent master (`skipIfRocm` was removed from `test_data_parallel.py`).

The present PR restores skipIfRocm.

Description from first reland attempt https://github.com/pytorch/pytorch/pull/35011:

> https://github.com/pytorch/pytorch/pull/32140 was approved and merged, but [reverted](d0577e19f0) because it broke builds with versions of Visual Studio older than 15.8 that were not represented in public CI.  The build failures were caused by a [known VS bug](https://developercommunity.visualstudio.com/content/problem/27729/allow-function-with-internal-linkage-as-template-n.html), fixed in versions 15.8 and newer.
>
> The present PR reverts the revert (restoring https://github.com/pytorch/pytorch/pull/32140 's diffs) and adds a workaround to enable compilation with VS < 15.8.  The workaround isn't pretty, but it's guarded by macros such that it's only used when compiling with VS < 15.8.  All other builds compile with the same code/control flow as was merged in https://github.com/pytorch/pytorch/pull/32140.
>
> Original description of https://github.com/pytorch/pytorch/pull/32140:
> > Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
> Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081
>
> > In-place ops and ops with user-supplied out=... can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/issues/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests. Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35102

Differential Revision: D20596918

Pulled By: ezyang

fbshipit-source-id: 60caa279bb0ce4a9bb0b28c1d585d42cf1cc7e50
2020-03-24 09:08:04 -07:00
Peter Bell
bd0ef784e0 FAQ: Add note about recovering from OOM (#35214)
Summary:
Closes https://github.com/pytorch/pytorch/issues/18853

This documents the workaround needed to solve the issues in https://github.com/pytorch/pytorch/issues/18853
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35214

Differential Revision: D20604877

Pulled By: ezyang

fbshipit-source-id: 71ed13cfa567d8e88fa9f18180a171cd174fb528
2020-03-23 20:22:46 -07:00
Xiang Gao
df8d6eeb19 Update docs about DP and DDP for CUDA (#35063)
Summary:
We should recommend DDP instead of DP. Hope we can also cherry-pick this for 1.5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35063

Differential Revision: D20549621

Pulled By: ngimel

fbshipit-source-id: 86b1b2134664065cc6070ea4212895f993eaf543
2020-03-20 20:06:37 -07:00
Mike Ruberry
fe276d541e Revert D20541921: [pytorch][PR] [RELAND] Eager autocasting, out-of-place ops only (with MSVC 2017 fix)
Test Plan: revert-hammer

Differential Revision:
D20541921

Original commit changeset: abb5488dca86

fbshipit-source-id: d2c6038978f80e5429632f8b49107090a8a247f4
2020-03-19 22:39:12 -07:00
Michael Carilli
991b97277a [RELAND] Eager autocasting, out-of-place ops only (with MSVC 2017 fix) (#35011)
Summary:
https://github.com/pytorch/pytorch/pull/32140 was approved and merged, but [reverted](d0577e19f0) because it broke builds with versions of Visual Studio older than 15.8 that were not represented in public CI.  The build failures were caused by a [known VS bug](https://developercommunity.visualstudio.com/content/problem/27729/allow-function-with-internal-linkage-as-template-n.html), fixed in versions 15.8 and newer.

The present PR reverts the revert (restoring https://github.com/pytorch/pytorch/pull/32140 's diffs) and adds a workaround to enable compilation with VS < 15.8.  The workaround isn't pretty, but it's guarded by macros such that it's only used when compiling with VS < 15.8.  All other builds compile with the same code/control flow as was merged in https://github.com/pytorch/pytorch/pull/32140.

Original description of https://github.com/pytorch/pytorch/pull/32140:
> Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081

> In-place ops and ops with user-supplied out=... can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/issues/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests. Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35011

Differential Revision: D20541921

Pulled By: ezyang

fbshipit-source-id: abb5488dca8620b0daac4306ebf2bb47fc36e4f5
2020-03-19 20:18:18 -07:00
Edward Yang
d0577e19f0 Revert D20346700: [pytorch][PR] Eager autocasting, out-of-place ops only
Test Plan: revert-hammer

Differential Revision:
D20346700

Original commit changeset: 12d77b391731

fbshipit-source-id: 108d72bf24232f443c0be293ec932c0c478d6a60
2020-03-18 11:42:51 -07:00
Michael Carilli
aaa8f02156 Eager autocasting, out-of-place ops only (#32140)
Summary:
Initial integration of eager autocasting, supporting out-of-place ops only for easier review.
Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081

In-place ops and ops with user-supplied `out=...` can certainly be supported as well (my initial WIP https://github.com/pytorch/pytorch/pull/29552 handled many) but require substantially more complex special casing in the autocasting backend and tests.  Support for these ops (much of which has already been written) will be broken into later PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32140

Differential Revision: D20346700

Pulled By: ezyang

fbshipit-source-id: 12d77b3917310186fbddf11c59b2794dc859131f
2020-03-18 10:28:21 -07:00
Shen Li
800bdcf000 Removing experimental tag in for RPC and adding experimental tag for RPC+TorchScript (#34887)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34887

Test Plan: Imported from OSS

Differential Revision: D20491409

Pulled By: mrshenli

fbshipit-source-id: ce79c9706eb70a3a52a4032de4f0bd538b694332
2020-03-17 17:43:42 -07:00
Hameer Abbasi
6b701de130 Add types argument to __torch_function__ (#34303)
Summary:
This PR adds the `types` argument to `__torch_function__` as per RFC 0001: https://github.com/pytorch/rfcs/pull/3
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34303

Differential Revision: D20474992

Pulled By: ezyang

fbshipit-source-id: cdd40b3b38f3bda4ece8812a629f5db87e919d01
2020-03-17 13:32:00 -07:00
Rohan Varma
fd35596585 [docs][1.5] Update distributed autograd note (#34657)
Summary:
- Update API calls `backward` and `optim.step` now that we require `context_id`
- Add notes to clarify purpose of distributed autograd context (this was a source of confusion in some feedback)
- Add note that details why optimizer requires context_id
- Clearly specify that we don't have SMART mode yet
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34657

Differential Revision: D20427667

Pulled By: rohan-varma

fbshipit-source-id: 5f8a3539ccf648a78e9e9a0dfdfe389c678b1606
2020-03-12 22:56:32 -07:00
Nathan Goldbaum
3f1ba3c465 Redo of "Add API for listing functions overridable by __torch_function__" (#34240)
Summary:
This is a redo of https://github.com/pytorch/pytorch/pull/33791, which was reverted because it introduced a flaky test. The test was flaky and only flaky on Python3.5 because of dict order randomization.

I've fixed the issue with tests clobbering each other in b539fec and removed the override tests for `torch.nn.functional.tanh` and `torch.nn.functional.sigmoid`, which are deprecated and shouldn't be overridable in e0d7402. I also verified that no more test clobbering is happening.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34240

Differential Revision: D20252442

Pulled By: cpuhrsch

fbshipit-source-id: 069568e342a41c90e1dc76cbf85ba4aed47f24be
2020-03-12 10:33:17 -07:00
Michael Suo
c235be42dd [jit] kill script namespace (#34515)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34515

Once upon a time we thought this was necessary. In reality it is not, so
removing it.

For backcompat, our public interface (defined in `api/`) still has
typedefs to the old `script::` names.

There was only one collision: `Pass` as a `Stmt` and `Pass` as a graph
transform. I renamed one of them.

Test Plan: Imported from OSS

Differential Revision: D20353503

Pulled By: suo

fbshipit-source-id: 48bb911ce75120a8c9e0c6fb65262ef775dfba93
2020-03-11 23:32:48 -07:00
Duncan Riach
516a587438 Enhance reproducibility documentation (#33795)
Summary:
Improves explanation of non-determinism when running on GPUs. Adds info about `torch.nn.BCELoss` operating non-deterministically on GPUs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33795

Differential Revision: D20284880

Pulled By: ngimel

fbshipit-source-id: d543959636d261a80c234150304344b19a37ba5d
2020-03-06 15:32:04 -08:00
Shen Li
ac6e75a165 Revert D20195053: [pytorch][PR] Add API for listing functions overridable by __torch_function__
Test Plan: revert-hammer

Differential Revision:
D20195053

Original commit changeset: 1585f4e405f5

fbshipit-source-id: 3c1aab9c60e3138d40d200ae4238bda0cddf8896
2020-03-04 10:13:54 -08:00
peter
5f4a01b2ea Update MAGMA to 2.5.2 for Windows (#34205)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34205

Differential Revision: D20248224

Pulled By: soumith

fbshipit-source-id: f5e0fe06aa8f8ee551abe45db1d55d06e95ab928
2020-03-04 08:28:09 -08:00
Nathan Goldbaum
ad2825a2c9 Add API for listing functions overridable by __torch_function__ (#33791)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33182

This adds private API functions that developers of types that implement `__torch_function__` can use to ensure full coverage of the subset of the PyTorch API that can be overrided.

I've refactored some of the code in the tests into a new `torch._overrides.get_overridable_functions` function. I've also changed `TENSOR_LIKE_TORCH_OVERRIDES` into `torch._overrides.get_testing_overrides` and `IGNORED_TORCH_FUNCTIONS` into `torch._overrides.get_ignored_functions`. Making these two static global variables in the tests into functions should allow rewriting their implementation to construct their return values instead of just statically defining the return value as is done here. Currently that is blocked on not being able to inspect function signatures of compiled kernels in PyTorch (see https://github.com/pytorch/pytorch/issues/28233). See the docs I've added for usage examples of these new functions. I also refactored the existing override tests to make use of these new functions, which should be a good forcing function to make sure they're kept up-to-date.

Finally, while working on this I discovered that `TestTorchFunctionOverrides.test_mean` and `TestTorchFunctionOverrides.test_mm` weren't ever being run because they were getting clobbered by the other dynamically generated override tests. I fixed that by renaming the tests and then fixing the actual test code. I've verified that all the subclassing semantics is correct and that the updated test answers are correct. I'm happy to put the fixes to the existing tests in as a separate pull request if that would be easier to review.

ping cpuhrsch since the feature request originally came from them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33791

Differential Revision: D20195053

Pulled By: cpuhrsch

fbshipit-source-id: 1585f4e405f5223932b410eae03a288dc8eb627e
2020-03-03 12:40:34 -08:00
Omkar Salpekar
24dd800e6a [Dist Autograd] Functional API for Dist Autograd and Dist Optimizer (#33711)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33711

Fixed #33480

This makes `dist_autograd.backward` and `dist_optimizer.step` functional by making the user explicitly pass in the `context_id` as opposed to relying on the confusing thread_local context_id.

This diff incorporates these API changes and all places where these functions are called.

More concretely, this code:

```
with dist_autograd.context():
    # Forward pass.
    dist_autograd.backward([loss.sum()])
    dist_optim.step()
```

should now be written as follows:

```
with dist_autograd.context() as context_id:
    # Forward pass.
    dist_autograd.backward(context_id, [loss.sum()])
    dist_optim.step(context_id)
```

Test Plan: Ensuring all existing dist_autograd and dist_optimizer tests pass with the new API. Also added a new test case for input checking.

Differential Revision: D20011710

fbshipit-source-id: 216e12207934a2a79c7223332b97c558d89d4d65
2020-02-26 19:08:28 -08:00
Michael Carilli
fc6a153688 [WIP] Reanimate gradient scaling API with original scale update heuristic (#33366)
Summary:
Also, windows memory failures responsible for the earlier reversion have been fixed.

This PR (initially) contains 2 commits:
* a revert of the revert
* all changes to implement the original Apex scale update heuristic, squashed into a single commit for easier diff review
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33366

Differential Revision: D20099026

Pulled By: ngimel

fbshipit-source-id: 339b9b6bd5134bf055057492cd1eedb7e4461529
2020-02-25 19:00:34 -08:00
peter
adbe289870 Update MKL to 2020.0.166 for Windows (#33690)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33690

Differential Revision: D20089300

Pulled By: ezyang

fbshipit-source-id: 887c006fbdb2c837f0a1c607a196811f44f1fb35
2020-02-24 22:43:34 -08:00
Edward Yang
ae53f8dd25 Revert D19859905: [pytorch][PR] Gradient scaling API
Test Plan: revert-hammer

Differential Revision:
D19859905

Original commit changeset: bb8ae6966214

fbshipit-source-id: 28f1c93e8a00e3a4bbe8cc981499b15468f0b970
2020-02-14 11:03:27 -08:00
Michael Carilli
40246fa63c Gradient scaling API (#26512)
Summary:
This PR implements the gradient scaling API that mruberry, jjsjann123, ngimel, zdevito, gchanan and I have been discussing.  Relevant issue/RFC: https://github.com/pytorch/pytorch/issues/25081.

Volume-wise, this PR is mostly documentation and tests.  The Python API (found entirely in `torch/cuda/amp/amp_scaler.py`) is lightweight .  The exposed functions are intended to make the implementation and control flow of gradient scaling convenient, intuitive, and performant.

The API is probably easiest to digest by looking at the documentation and examples. `docs/source/amp.rst` is the homepage for the Automatic Mixed Precision package.  `docs/source/notes/amp_examples.rst` includes several examples demonstrating common but not-immediately-obvious use cases.  Examples are backed by tests in `test_cuda.py` (and thankfully the tests pass :P).

Two small utility kernels have been added in `native/cuda/AmpKernels.cu` to improve performance and avoid host-device synchronizations wherever possible.

Existing optimizers, both in the wild and in Pytorch core, do not need to change to use the scaling API.

However, the API was also designed to establish a contract between user scripts and optimizers such that writers of _new_ custom optimizers have the control points they need to implement fast, optionally sync-free updates.  User scripts that obey the scaling API can drop such custom optimizers in and reap performance benefits without having to change anything aside from the optimizer constructor itself.  [I know what the contract with custom optimizers should be](35829f24ef/torch/cuda/amp/amp_scaler.py (L179-L184)), but I'm waiting for review on the rest of the API before I go about documenting it (it will be given a dedicated section in `docs/source/notes/amp_examples.rst`.

Currently, the gradient scaling examples do not include the auto-casting API as discussed in https://github.com/pytorch/pytorch/issues/25081.  The gradient scaling API is intended to be orthogonal/modular relative to autocasting.  Without auto-casting the gradient scaling API is fully use-_able_, but not terribly use-_ful_, so it's up to you guys whether you want to wait until auto-casting is ready before merging the scaling API as well.

### Todo
- [ ] How do I get c10 registered status for my two custom kernels?  They're very simple.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26512

Differential Revision: D19859905

Pulled By: mruberry

fbshipit-source-id: bb8ae6966214718dfee11345db824389e4286923
2020-02-13 11:06:06 -08:00
Ilia Cherniavskii
04829e924a Update CPU threading doc (#33083)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33083

Added more recommendations, some notes and warning

Test Plan: cd docs ; make html

Differential Revision: D19829133

Pulled By: ilia-cher

fbshipit-source-id: b9fbd89f5875b3ce35cc42ba75a3b44bb132c506
2020-02-11 14:13:51 -08:00
Brian Wignall
f326045b37 Fix typos, via a Levenshtein-type corrector (#31523)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos, with https://github.com/bwignall/typochecker to help automate the checking.

Uses an updated version of the tool used in https://github.com/pytorch/pytorch/pull/30606 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31523

Differential Revision: D19216749

Pulled By: mrshenli

fbshipit-source-id: 7fd489cb9a77cd7e4950c1046f925d57524960ea
2020-01-17 16:03:19 -08:00
Shen Li
322f34b245 Adding DDP Design Note
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/32158

Test Plan: Imported from OSS

Differential Revision: D19405980

Pulled By: mrshenli

fbshipit-source-id: 808ef1c71b637546f8872375bf1828967b1a5a60
2020-01-15 14:10:45 -08:00
Vamshi Chowdary
05088da8e9 [pytorch][PR] Fixed error in sample code of documentation (#31682)
Summary:
"in_features" and "out_features" are not defined. Possibly a typo. They should be "input_features" and "output_features" instead
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31682

Differential Revision: D19251685

Pulled By: zou3519

fbshipit-source-id: ac9e524e792a1853a16e8876d76b908495d8f35e
2020-01-15 10:34:07 -08:00
Rohan Varma
a561a8448b minor doc tweak to use mp.spawn in example (#30381)
Summary:
Per pietern's comment in https://github.com/pytorch/pytorch/issues/30022, we can make this example launcher a bit simpler by using `torch.multiprocessing`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30381

Differential Revision: D19292080

Pulled By: rohan-varma

fbshipit-source-id: 018ace945601166ef3af05d8c3e69d900bd77c3b
2020-01-06 22:19:01 -08:00
Nathan Goldbaum
9d3402e4cb Add the __torch_function__ API override mechanism (#30730)
Summary:
This is a re-do of https://github.com/pytorch/pytorch/issues/27064, which was reverted (b8792c0438). This was landed at the same time as other work that added new operators to the `torch` namespace so the check for whether the `torch` namespace is exhaustively checked for overridability was triggering test failures.

I've temporarily disabled that check and added an explanatory comment that the check will be re-enabled in a future PR that will be merged during a time when the commit velocity on PyTorch is lower.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30730

Differential Revision: D18813270

Pulled By: ezyang

fbshipit-source-id: 70477c4656dca8fea6e7bc59259555041fcfbf68
2019-12-04 13:19:07 -08:00
Edward Yang
b8792c0438 Revert D18645954: add __torch_function__ API override mechanism
Test Plan: revert-hammer

Differential Revision:
D18645954

Original commit changeset: 54b5e4344d7a

fbshipit-source-id: 4a7aebb483e6b001130d6f384ccc53c5a808ab13
2019-12-04 07:41:47 -08:00
Prasun Anand
d12786b24f add __torch_function__ API override mechanism (#27064)
Summary:
Closes https://github.com/pytorch/pytorch/issues/24015 (see description of that issue for more details).

For a toy example, see the `DiagonalTensor` and `SubDiagonalTensor` class in test/test_overrides.py.

This PR currently contains:

* tests for `__torch_function__` behavior
* modification to `gen_python_functions` and `parse` function signatures and dispatched to correct overloaded argument.

This feature is inspired by and analogous to NumPy's `__array_function__` protocol ([see NumPy Enhancement Proposal 18](https://numpy.org/neps/nep-0018-array-function-protocol.html#trying-array-function-methods-until-the-right-one-works)).

### Benchmarks:
See Nathan's comment below: https://github.com/pytorch/pytorch/pull/27064#issuecomment-554601189
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27064

Differential Revision: D18645954

Pulled By: ezyang

fbshipit-source-id: 54b5e4344d7afdbcf996bb57191b0bdadc7b1767
2019-12-04 05:56:46 -08:00
peterjc123
6deb41c88d Update magma to 2.5.1 for Windows and switch CUDA in CI to 9.2
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30513

Differential Revision: D18764184

Pulled By: ezyang

fbshipit-source-id: 4992869fd6a89471a5d25eb6a9b44ad8eceb480f
2019-12-02 11:56:10 -08:00
Rohan Varma
1350b99de4 Add local shutdown to process group agent (#30330)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30330

This is now possible due to previous changes made in `gloo` and `ProcessGroupGloo`. We `abort` the listener thread that is waiting for a message, and join all other threads. The API is changed so that the previous `wait_all_workers` does not destroy the agent, and this is now done in a new `shutdown` method. All callsites are updated appropriately.

ghstack-source-id: 94673884
ghstack-source-id: 94673884

Test Plan: Unit tests pass.

Reviewed By: mrshenli

Differential Revision: D18661775

fbshipit-source-id: 5aaa7c14603e18253394224994f6cd43234301c2
2019-11-27 22:34:08 -08:00
Rohan Varma
5c6705e62c add default arg for init_method (#30208)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30208

Adds default arg for init_method so users don't have to pass this in,
and moves it to `RpcBackendOptions` struct. Removes `init_method` arg from rpc.init_rpc. Also fixes some docs.
ghstack-source-id: 94500475

Test Plan: Unit tests pass.

Reviewed By: mrshenli

Differential Revision: D18630074

fbshipit-source-id: 04b7dd7ec96f4c4da311b71d250233f1f262135a
2019-11-25 14:52:48 -08:00
Shen Li
a9f3f48f88 Revert D5578006: Add local shutdown to process group agent
Test Plan: revert-hammer

Differential Revision:
D5578006

Original commit changeset: 6258879fb44c

fbshipit-source-id: 11b893b3a280a8383eeb20a0548626811616dca1
2019-11-22 11:31:04 -08:00
Rohan Varma
c478a92b93 Add local shutdown to process group agent (#30020)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30020
This is now possible due to previous changes made in `gloo` and `ProcessGroupGloo`. We `abort` the listener thread that is waiting for a message, and join all other threads. The destructor calls this same `localShutdown` method, but we ensure this is not called multiple times.

ghstack-source-id: 94415336

Test Plan: Unit tests pass.

Differential Revision: D5578006

fbshipit-source-id: 6258879fb44c9fca97fdfad64468c1488c16ac02
2019-11-22 10:03:00 -08:00
Shen Li
063e22b7c2 Fix RRef design doc warning (#30240)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30240

Get rid of the following warning when build docs:

```
/Users/shenli/Project/pytorch/docs/source/notes/rref.rst:184: WARNING: Error in "code" directive:
maximum 1 argument(s) allowed, 6 supplied.

.. code::
  import torch
  import torch.distributed.rpc as rpc

  # on worker A
  rref = rpc.remote('B', torch.add, args=(torch.ones(2), 1))
  # say the rref has RRefId 100 and ForkId 1
  rref.to_here()
```

Test Plan: Imported from OSS

Differential Revision: D18640016

Pulled By: mrshenli

fbshipit-source-id: d527827f01183411d4b4c73e0a976bdd7fccbf49
2019-11-21 16:22:39 -08:00
Shen Li
e0325011e4 Add link to RRef protocol in RPC doc
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30218

Test Plan: Imported from OSS

Differential Revision: D18638881

Pulled By: mrshenli

fbshipit-source-id: ca6fae6f8cea8cdcc33d275dd71a347fbb5dd45c
2019-11-21 16:22:35 -08:00