Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53973
Two parts to this PR; I had to put them together because adding support for X causes more test code to be exercised, which in turn may require a fix for Y.
The first part is restoring the concept of storage to meta tensors. Previously, meta tensors had a nullptr storage (e.g., `meta_tensor.storage()` is an error.) As I was increasing the coverage of meta tensors, I started running into test cases (specifically memory overlap tests) that were failing because not having storage meant I couldn't check for memory overlap. After some discussion, we decided that it would make sense for meta tensors to model this as well (we already model strides, so getting accurate view information also seems useful). This PR does that by:
* Rewrite all of the factory functions in MetaTensor.cpp to use the generic versions (which are very carefully written to not actually poke at the data pointer, so everything works out). The key idea here is we give meta tensors a special allocator, MetaAllocator, which always returns a nullptr even if you ask for a nonzero number of bytes. resize_ is also made generic; the normal variant can be used directly rather than having to instruct it to avoid resizing storage
* Turn on memory overlap checking in TensorIterator even for meta tensors
* Although meta tensors now have storage, the concept of meta storage is NOT exposed to Python land (as it would imply I would have to codegen MetaFloatStorage, MetaDoubleStorage, etc. classes). So `x.storage()` still raises an error and I have a cludge in `__deepcopy__` to break storage sharing upon deep copy (this is wrong, but no tests exercise this at the moment).
The second part is adding more support for the most used functions in the test suite.
* Inplace operations have very simple meta functions. I added `fill_`, `zero_`, `random_`, `uniform_` and `normal_`. In the case of random, I take advantage of pbelevich's templates for defining random kernels, so that I can reuse the common scaffolding, and then just register a noop stub that actually does the RNG. (Look, another structured kernels tiny variant!)
* `copy_` is now implemented. Copying into a meta tensor is always OK, but copying out of a meta tensor raises an error (as we don't know what the "correct" data to copy out is in this case)
* `empty_strided` usage from structured kernels now is implemented (TBH, this could have been done as soon as `empty_strided` was added)
* Meta was missing in a few places in TensorOptions/DispatchKey utility functions, so I added them
* Autograd engine now correctly homes meta tensors with CPU tensors (they have -1 device index so CUDA queues wouldn't work anyway)
* `apply_`, `map_` and `map2_` are special cased to no-op on meta tensor self. These count as inplace operations too but they are implemented a little differently.
Getting more meta function support triggers a number of bugs in the test suite, which I then fix:
- Linear algebra functions sometimes don't report NotImplementedError because they get swallowed by catch all try blocks. This is tracked in https://github.com/pytorch/pytorch/issues/53739
- dlpack obviously doesn't work with meta tensors, I just disabled the test
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D27036572
Test Plan: Imported from OSS
Reviewed By: agolynski, bdhirsh
Pulled By: ezyang
fbshipit-source-id: 7005ecf4feb92a643c37389fdfbd852dbf00ac78
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.
I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281
Differential Revision: D18830818
Pulled By: ezyang
fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17991
changes:
-Breaks bc: Tensor::type() now returns DeprecatedTypeProperties& rather than Type&.
-Added DeprecatedTypeProperties, it serves as a temporary replacement for Type as the return value of Tensor::type(). This contributes to making Type just for dispatch purposes so that we can make it dtype agnostic.
-Tensor::dispatch_type() now returns Type& like Tensor::type() used to do.
-Changed callsites of Tensor::type() appropriately.
Reviewed By: ezyang
Differential Revision: D14443117
fbshipit-source-id: 239ccb7a09626279a71d1a37f8f82e7f57bf7d9e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751
This was made more complicated by the fact that ivalue::IntList
is a thing. So I had to fix all of the sites where we referring
to IValue post facto.
The following codemods were run, in this order:
```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```
Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752
Reviewed By: dzhulgakov
Differential Revision: D13954363
fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10478
- Removed Backend constructor from Device, and fixed all
use-sites to use DeviceType::CPU instead of kCPU, or
use a new function backendToDeviceType to perform
the conversion.
- New method device_type() on Type; it gives you the
underlying device type, e.g., CPU for SparseCPU.
- We add backward compatibility for kCPU/kCUDA uses,
by introducing a new special type which is implicitly
convertible to both DeviceType and Backend. As long as
you don't define a function that's overloaded on both
DeviceType and Backend (but not on BackendOrDeviceType),
the implicit conversions will ensure that uses
of at::Device(at::kCPU) keep working. We fixed use-sites in
the library, but did NOT fix sites in the test code, so that
we can exercise this BC code.
Reviewed By: Yangqing
Differential Revision: D9301861
fbshipit-source-id: 9a9d88620500715c7b37e655b4fd761f6dd72716
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
* at::maybe_data_ptr and Check.h => TensorUtils.h
* THNN support for optional BN running_*
* ATen support for optional BN running_*
* Python nn.* support for optional BN running_*; Improve IN and BN doc
* Add tests for IN and BN new option
* Layer Norm
* Fix LRN doc
* functional interface for LN and IN
* Layer norm tests
* fix BN double backward returning undefined tensors
* fix jit test using wrong dim inputs for BN
* add/improve BN, IN and LN GPU tests with half type
* Udpate docs to be consistent with Conv notation
Fix onnx
Clarified onnx symbokic wrapper
* fix typo
* Address comments