**Overview**
This PR removes an outdated TODO:
```
# TODO (awgu): When exposing the original parameters, we need to also
# use this attribute to prevent re-synchronizing parameters.
```
**Justification**
We only pass `managed_params` to `_sync_module_params_and_buffers()`, where `managed_params` is defined as
```
managed_params = list(_get_orig_params(root_module, state._ignored_params))
```
This `_get_orig_params()` call excludes parameters already flattened by FSDP. Thus, `_sync_module_params_and_buffers()` will not re-sync already-synchronized parameters. Each parameter appears in `managed_params` for some FSDP instance exactly once and hence is only synchronized once.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89217
Approved by: https://github.com/mrshenli
**BC Breaking Change**
This renames `unwrapped_params` to `nonwrapped_numel`. I prefer `nonwrapped` over `unwrapped` because "unwrap" suggests that some wrapping has been undone. I prefer `numel` over `params` because that is unit of measurement; I think we should keep "params" to refer to `nn.Parameter`s themselves.
This only breaks anything that passes `unwrapped_params` as a keyword argument, but I did not see anything that did that (except the one internal benchmark file but that does not actually depend on our `pytorch` code).
In a follow-up, I want to rename `min_num_params` to `min_nonwrapped_numel` in `size_based_auto_wrap_policy`, which is also BC breaking. Again, this is to differentiate between "params" being `nn.Parameter`s and "numel" being the unit for `param.numel()`.
**Overview**
This PR introduces `ModuleWrapPolicy` as a lightweight layer over the existing `transformer_auto_wrap_policy`. The most common auto wrapping paradigm is:
```
module_classes: Set[Type[nn.Module]] = ...
auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls=module_classes,
)
fsdp_model = FSDP(model, auto_wrap_policy=auto_wrap_policy, ...)
```
Now, users can instead write:
```
auto_wrap_policy = ModuleWrapPolicy(module_classes)
fsdp_model = FSDP(model, auto_wrap_policy=auto_wrap_policy, ...)
```
This hides the unused arguments expected from the callable (`recurse` and `unwrapped_params`/`nonwrapped_numel`).
`ModuleWrapPolicy` inherits from an abstract base class `FSDPPolicy` that expects a `policy` property. This decouples the construct of such `FSDPPolicy` classes and their actual `policy`, which must abide by the `_recursive_wrap` interface. Any existing auto wrap policy can be rewritten as a class that inherits from `FSDPPolicy`, so this approach is fully backward compatible from a functionality perspective.
I call this base class `FSDPPolicy` to generalize over the cases where we may not want to actually perform any nested wrapping. In reality, the policy is meant for constructing `FlatParameter`s, which just happened to be induced by a nested wrapping before. Given this, I am changing the constructor argument in `fully_shard()` to simply `policy` instead of `auto_wrap_policy`.
This PR migrates usages of `transformer_auto_wrap_policy` within our unit test suite to `ModuleWrapPolicy` as much as possible.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88450
Approved by: https://github.com/zhaojuanmao
**What**
This PR completely removes the `FullyShardedDataParallel` dependency from `_state_dict_utils` -- `_state_dict_utils` now depends only on `_FSDPState` and all the utils modules.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88637
Approved by: https://github.com/awgu
This PR refactors and fixes `_cast_buffers()`.
**Before**
Buffers were not correctly cast back to their original dtypes for submodules when using buffer mixed precision.
- `_cast_buffers(recurse=False)` incorrectly casts all buffers, including those in submodules. This is because of this outer loop over `self.modules()`:
c40033be16/torch/distributed/fsdp/fully_sharded_data_parallel.py (L700)
- There was a unit test that checked that buffers were cast as expected (`test_mixed_precision_e2e_full_shard()`). The unit test _coincidentally_ passed because all modules shared the same buffer name `"buffer"`. In `_cast_buffers()`, the `dict` mapping buffer name to original dtype is populated lazily (during `_lazy_init()`). However, the keys are unprefixed:
c40033be16/torch/distributed/fsdp/fully_sharded_data_parallel.py (L712-L717)
- Thus, even though (1) `_cast_buffers(recurse=False)` was only called on the root and (2) `self._buffer_name_to_orig_dtype` had unprefixed names as keys, the unit test still passed because (1) `_cast_buffers()` still looped over all buffers despite `recurse=False` and (2) all submodules' buffers were named `"buffer"` and had the same original and low-precision dtypes and hence were cast correctly.
If we change each submodule to have its own distinct buffer name, then the unit test fails. This PR makes such a change to showcase the progression granted by this PR.
**After**
This PR separates `_cast_buffers()` into three methods: `_get_buffers_and_dtypes_for_computation()`, `_get_buffers_and_dtypes_for_checkpoint()`, and `_cast_buffers_to_dtype_and_device()`. This is to separate the different use cases (casting for computation and casting for checkpointing) and the corresponding code paths. Plus, the signature for `_cast_buffers_to_dtype_and_device()` makes it clear exactly what buffers are being cast and to what dtype.
Both `_get_...()` functions assume that they are called on the root only for now. This coincides with the construction of `_buffer_name_to_orig_dtype` in the FSDP constructor, which loops over all submodules. (This means that for non-root modules, their `_buffer_name_to_orig_dtype` is populated but not used.) The `dict`'s keys are clean since the buffer cast to original dtype happens in a `summon_full_params()` context, which cleans the names.
**Follow-Ups**
- We can try to move `_get_buffers_and_dtypes_for_checkpoint()` into `_state_dict_utils.py` in a follow-up.
- We may want to move to per-module buffer casting (i.e. do not have the root module cast for all submodules).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87935
Approved by: https://github.com/mrshenli
This PR introduces the composable FSDP API (with constructor semantics only) along with some further constructor refactoring. A notable contribution here is `_get_submodule_to_states()`, which performs auto wrapping without actually wrapping.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87924
Approved by: https://github.com/mrshenli
This PR makes a second pass over the constructor. The logic has been grouped into `_init_<...>` functions based on intent (e.g. `_init_prefetching_state()` or `_init_runtime_state()`). This makes the initialization code for composable FSDP much cleaner than having to re-write the same sequences of lower-level helper calls.
This PR also moves `_ExecOrderData` into its own file `_exec_order_utils.py`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87923
Approved by: https://github.com/mrshenli
The goal of this PR is to make one pass over the FSDP constructor and refactor each helper method call to not be `self.<...>`. Subsequent PRs will make further passes over the FSDP constructor.
This PR looks like a lot of lines of code change, but it is only reorganization. Methods are moved to `_init_utils.py` and `_common_utils.py`. This also marks the beginning of moving methods from `_utils.py` to `_common_utils.py` -- they will be coalesced eventually. I am only using `_common_utils.py` as a staging ground to include the methods that have been affected by the refactoring.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87921
Approved by: https://github.com/mrshenli