Commit Graph

11 Commits

Author SHA1 Message Date
PyTorch MergeBot
1d3bca40ed Revert "[BE][9/16] fix typos in torch/ (torch/csrc/) (#156319)"
This reverts commit a23ccaa847.

Reverted https://github.com/pytorch/pytorch/pull/156319 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](c95f7fa874) ([comment](https://github.com/pytorch/pytorch/pull/156313#issuecomment-2994171213))
2025-06-22 12:31:56 +00:00
Xuehai Pan
a23ccaa847 [BE][9/16] fix typos in torch/ (torch/csrc/) (#156319)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156319
Approved by: https://github.com/albanD
ghstack dependencies: #156313, #156314, #156315, #156316, #156317
2025-06-22 08:43:49 +00:00
PyTorch MergeBot
190f76fa31 Revert "Implement guard collectives (#155558)"
This reverts commit 5a5a05a6a3.

Reverted https://github.com/pytorch/pytorch/pull/155558 on behalf of https://github.com/malfet due to Hmm, may be I'm looking at the wrong metric, but c92f1075aa/1 shows that test started to pass after PR were reverted ([comment](https://github.com/pytorch/pytorch/pull/155558#issuecomment-2978337152))
2025-06-16 22:26:52 +00:00
Edward Z. Yang
5a5a05a6a3 Implement guard collectives (#155558)
When running a distributed job with compiler collectives enabled, if one rank recompiles while others do not, this leads to a deadlock (as not everyone will rendezvous with the compiler collective from the recompile). Although there aren't any convenient ways to cheaply solve this problem, if you are willing to force everyone to sync when evaluating guards, you can just force everyone to recompile if anyone requires a recompile. So the way guard collectives work is:

1. Perform compiled code lookup (evaluating guards)
2. Run a collective, communicating if you found a compiled code or not
3. If anyone requires recompile, force everyone to recompile

One current deficiency in the implementation is we can't conveniently track the time it takes to run this collective.

I need to test if we actually successfully are running the collective on a separate stream, or if we have to wait for user collectives to all finish.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155558
Approved by: https://github.com/Microve
2025-06-16 19:46:16 +00:00
PyTorch MergeBot
61b271e0f3 Revert "Implement guard collectives (#155558)"
This reverts commit 38e5e81e55.

Reverted https://github.com/pytorch/pytorch/pull/155558 on behalf of https://github.com/atalman due to Breaks CI, sorry: [GH job link](https://github.com/pytorch/pytorch/actions/runs/15683161593/job/44181274826) [HUD commit link](38e5e81e55) ([comment](https://github.com/pytorch/pytorch/pull/155558#issuecomment-2977871178))
2025-06-16 19:40:46 +00:00
Edward Z. Yang
38e5e81e55 Implement guard collectives (#155558)
When running a distributed job with compiler collectives enabled, if one rank recompiles while others do not, this leads to a deadlock (as not everyone will rendezvous with the compiler collective from the recompile). Although there aren't any convenient ways to cheaply solve this problem, if you are willing to force everyone to sync when evaluating guards, you can just force everyone to recompile if anyone requires a recompile. So the way guard collectives work is:

1. Perform compiled code lookup (evaluating guards)
2. Run a collective, communicating if you found a compiled code or not
3. If anyone requires recompile, force everyone to recompile

One current deficiency in the implementation is we can't conveniently track the time it takes to run this collective.

I need to test if we actually successfully are running the collective on a separate stream, or if we have to wait for user collectives to all finish.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155558
Approved by: https://github.com/Microve
2025-06-16 14:09:14 +00:00
cyyever
24ca7e91e6 [1/N] Use internal linkage in torch/csrc C++ files. (#150930)
Turn more functions and variables into static if they are not used outside the cpp files. Unused functions are removed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150930
Approved by: https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-04-11 02:19:31 +00:00
cyy
8fa81a6066 Enable misc-use-internal-linkage check and apply fixes (#148948)
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.

The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.

The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
2025-03-12 14:22:56 +00:00
William Wen
40b3e4a358 [dynamo] expose code execution strategy to python (#148020)
@anijain2305 this can be used to mark a code object to be skipped/run-only (recursively) while tracing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148020
Approved by: https://github.com/jansel
2025-02-28 21:59:12 +00:00
William Wen
63e8ad49b8 [dynamo] replace hardcoded eval frame control flags skip_code_recursive_flag/cache_limit_hit_flag (#146355)
This PR and the previous:
- Moves parts of `eval_frame.c` to C++.
- Reduces code duplication in `dynamo__custom_eval_frame` and makes the control flow more clear.
- Enables `convert_frame` to signal to `eval_frame.cpp` in a general manner how to evaluate this frame, recursive frames, and future frames with the same code object (default/compile, skip, run-only). e.g. this will allow us to change skipping/cache limit hit eval_frame behavior directly from convert_frame without requiring changes to C/C++.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146355
Approved by: https://github.com/jansel
ghstack dependencies: #145603
2025-02-18 21:37:12 +00:00
William Wen
75db0fd8a0 [dynamo] refactor dynamo__custom_eval_frame to C++, refactor SKIP_CODE[_RECURSIVE] (#145603)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145603
Approved by: https://github.com/jansel, https://github.com/anijain2305
2025-02-18 21:37:12 +00:00