Commit Graph

388 Commits

Author SHA1 Message Date
Brian Hirsh
af440c427b [draft for discussion] add per-dispatch key modes (#97052)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97052
Approved by: https://github.com/ezyang, https://github.com/zou3519
2023-03-21 23:45:45 +00:00
Rohan Gupta
b01d6f2cdb addmv decomp #2 (#96264)
Fixes #94617

Pull Request resolved: https://github.com/pytorch/pytorch/pull/96264
Approved by: https://github.com/ngimel, https://github.com/ezyang
2023-03-16 23:09:45 +00:00
Nikita Karetnikov
0d7c44096a Add baddbmm meta function (#96548)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96548
Approved by: https://github.com/ezyang
2023-03-11 19:09:24 +00:00
Nikita Karetnikov
8e0d5bf538 [primTorch] add meta implementation for aten.min.dim (#96442)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96442
Approved by: https://github.com/ngimel
2023-03-11 18:51:51 +00:00
Edward Z. Yang
98ff841a75 Use maxint to bound integers. (#96121)
We don't actually support arbitrary precision integers.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96121
Approved by: https://github.com/tugsbayasgalan, https://github.com/lezcano
2023-03-07 12:46:19 +00:00
Edward Z. Yang
680214ac11 SymIntify a few more relatively non-controversial schemas (#96100)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96100
Approved by: https://github.com/Skylion007
2023-03-06 23:12:40 +00:00
Jason Ansel
5dd52e250f [inductor] Add some simple decomps (#96039)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96039
Approved by: https://github.com/ngimel
2023-03-05 17:07:56 +00:00
Edward Z. Yang
027ebca4d7 Don't use guardless contiguity/stride-like implementations (#95733)
These prevent us from simplifying tests involving unbacked SymInts,
and then you end up with unbacked SymInt in guards, which is bad.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95733
Approved by: https://github.com/tugsbayasgalan
2023-03-03 21:56:41 +00:00
PyTorch MergeBot
4026c62174 Revert "Don't use guardless contiguity/stride-like implementations (#95733)"
This reverts commit deaf077de8.

Reverted https://github.com/pytorch/pytorch/pull/95733 on behalf of https://github.com/ezyang due to apparently this regresses executorch tests internally
2023-03-03 17:43:05 +00:00
Edward Z. Yang
deaf077de8 Don't use guardless contiguity/stride-like implementations (#95733)
These prevent us from simplifying tests involving unbacked SymInts,
and then you end up with unbacked SymInt in guards, which is bad.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95733
Approved by: https://github.com/tugsbayasgalan
2023-03-01 23:14:58 +00:00
Edward Z. Yang
e628a3e724 Don't generate guards that refer to unbacked SymInts (#95732)
This regresses unbacked batch resnet, but I have a plan to recover that
too.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95732
Approved by: https://github.com/tugsbayasgalan
2023-03-01 06:14:27 +00:00
Edward Z. Yang
d78274b759 Automatically guard when SymInt is converted to int (#95479)
During enablement, we disabled int() conversions because they were
any easy way to footgun guards.  We have enough of dynamic shapes
working now that this is now causing spurious errors; e.g., if you feed
a symbolic int to x.size(symint).  We now allow for implicit conversions
of SymInt to int here, posting a guard.  We expect guard provenance
to help people debug overspecialization.

Fixes https://github.com/pytorch/pytorch/issues/95328

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95479
Approved by: https://github.com/wconstab, https://github.com/voznesenskym, https://github.com/ngimel
2023-02-25 19:41:51 +00:00
Edward Z. Yang
8efe4fd590 Memoize repeated nonzero calls to the same fake tensor (#95399)
This removes the need to explicitly constrain_unify `x[mask]` and `y[mask]` when mask is a boolean tensor. It's very narrow but it seems to work in practice.

To invalidate the nonzero call when mutation occurs, I use version counter. I know there are ways to bypass this but I think it's good enough for now.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95399
Approved by: https://github.com/eellison
2023-02-24 00:27:45 +00:00
Edward Z. Yang
4833e47feb Add support for nonzero, some improvements to reduce guards (#95387)
This takes the strategy described in https://docs.google.com/document/d/1lFRYAJo5nrfxRhwIzGnfi2pbLpU6T4ytSRSuLJ5qebI/edit#

It is essentially https://github.com/pytorch/pytorch/pull/95222 but squashed and with changes that are unnecessary given that we assume nonzero returns > 1.

What's in the PR:

* nonzero now supports meta propagation. When `capture_dynamic_output_shape_ops`, it will return a tensor with an unbacked SymInt representing the size in question.
* The unbacked SymInt is UNSOUNDLY assumed to be not equal to 0/1. We will still error if you guard otherwise.
* PrimTorch pointwise operators are updated to use empty_permuted, to avoid guarding on unbacked SymInt from empty_strided (tested in `test_dynamic_pointwise_scalar`)
* Convolution is updated to skip backend selection if batch is unbacked, to avoid guarding on unbacked SymInt (tested in `test_unbacked_batch_resnet`)
* I kept the helper utilities like `definitely_true` for working with possibly unbacked SymInts. They're not used right now but maybe someone will find them useful.
* Added `constrain_unify` to let you specify two unbacked SymInts must have the same value

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95387
Approved by: https://github.com/voznesenskym
2023-02-24 00:27:45 +00:00
Edward Z. Yang
3758559a58 Reland "Introduce constrain_range; remove old expr_subs (#95063)" (#95209)
This reverts commit 4e88547c95.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95209
Approved by: https://github.com/albanD
2023-02-22 18:16:25 +00:00
PyTorch MergeBot
cf6e078c34 Revert "Reland "Introduce constrain_range; remove old expr_subs (#95063)" (#95209)"
This reverts commit f7bf31fff1.

Reverted https://github.com/pytorch/pytorch/pull/95209 on behalf of https://github.com/ezyang due to internal sympy is too old
2023-02-22 01:58:58 +00:00
Edward Z. Yang
f7bf31fff1 Reland "Introduce constrain_range; remove old expr_subs (#95063)" (#95209)
This reverts commit 4e88547c95.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95209
Approved by: https://github.com/albanD
2023-02-21 18:02:48 +00:00
Edward Z. Yang
ce950b412f Reland "Add torch.empty_permuted (#95069)" (#95208)
This reverts commit 92e03cd583.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95208
Approved by: https://github.com/albanD
2023-02-21 18:02:48 +00:00
PyTorch MergeBot
92e03cd583 Revert "Add torch.empty_permuted (#95069)"
This reverts commit bedeb1f014.

Reverted https://github.com/pytorch/pytorch/pull/95069 on behalf of https://github.com/jeanschmidt due to Breaking internal builds. More in https://fburl.com/phabricator/ztrxrroq
2023-02-21 12:05:20 +00:00
PyTorch MergeBot
4e88547c95 Revert "Introduce constrain_range; remove old expr_subs (#95063)"
This reverts commit 3711f7c59f.

Reverted https://github.com/pytorch/pytorch/pull/95063 on behalf of https://github.com/jeanschmidt due to Breaking internal builds, more details can be found: https://fburl.com/phabricator/fq5b6k8a
2023-02-21 10:43:39 +00:00
Natalia Gimelshein
286d821e61 Don't replace FloorDiv with floor in simplify, do simplifications for divisible exprs (#95076)
I don't see why `floor` is better than `FloorDiv` and solve with `FloorDiv` doesn't work anyway (the solution wouldn't be unique even if it worked).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95076
Approved by: https://github.com/jansel, https://github.com/malfet, https://github.com/nkaretnikov
2023-02-20 01:53:54 +00:00
Edward Z. Yang
bedeb1f014 Add torch.empty_permuted (#95069)
torch.empty_permuted is a generalized version of torch.empty(memory_format=...), where you can pass an arbitrary physical layout as a tuple of dims to allow you to setup dense, non-overlapping tensors with non-standard memory format. Check the docblock for a full description of semantics.

The initial motivation for this PR is with guard-less unbacked SymInts. Traditionally, the way we allocate dense tensors with arbitrary layout is with `empty_strided`. However, `empty_strided` does not know that the given strides are actually contiguous, and must test this manually to find out if it is the case. With `empty_permuted`, this is known statically to be the case and helps us skip some 0/1 guards.

However, I also think torch.empty_permuted is a useful API in its own right. It is technically possible to simulate this with an empty and a permute; however, there are some downsides:

* The manual incant is tricky to work out. To allocate an NHWC tensor, the invocation is `torch.empty(N, H, W, C).permute(0, 3, 1, 2)`; the permute call has to take NHWC to NCHW, and is the *inverse* of the permutation people are typically thinking of when they talk about NHWC (0, 2, 3, 1). Instead, torch.empty_permuted lets you say `torch.empty_permuted((N, C, H, W), (0, 2, 3, 1))`, letting you provide the intuitive permutation. It can be literally be read off as NHWC if you assign N=0, C=1, H=2, W=3.
* An empty(requires_grad=True).permute() is no longer a leaf tensor. You can force it to be a leaf with a detach(), but it is more straightforward and less error prone to allow directly allocating a tensor with the correct permutation.

It is also technically possible to simulate this with empty_strided. However, this requires the user to manually compute the contiguous output strides and is bad from a reduction of guards perspective. For what it's worth, this is one of the more common uses of as_strided in the wild, and it would be nice to get rid of it.

A nice enhancement of this feature would be to accept `physical_layout` anywhere `memory_format` is accepted. However, this would be a pretty involved change, so I'm doing the easy thing instead.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95069
Approved by: https://github.com/malfet, https://github.com/ngimel, https://github.com/albanD, https://github.com/dagitses
2023-02-20 00:23:10 +00:00
Edward Z. Yang
3711f7c59f Introduce constrain_range; remove old expr_subs (#95063)
This PR introduces a new `constrain_range` function which can be used to constrain the possible values a SymInt/SymFloat can take on. This knowledge can be then used to discharge potential guards (by running the range analysis, and then seeing if the guard must be true given the original range) without adding another guard.

The usage of ranges is very limited right now; ranges are only constrained when the user explicitly instructs the system so. However, we can also infer range constraints based on guards as well; this is left for future work.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95063
Approved by: https://github.com/eellison
2023-02-19 23:17:09 +00:00
Fabio Rocha
b652577d8e Change test_torchinductor_opinfo.py to mark skips/xfails in a better way (#94813)
With this change, expected failures will be correctly reported as such by pytest (instead of passes as before).
It was sometimes a little confusing to see operators you did not expect to work in inductor reported as passing their tests.

One downside is that expected failures/skips for test variants have now to be identified by tuples. I.e., `("max", "reduction_no_dim"): {f16},` instead of just `"max.reduction_no_dim": {f16}`. It seems to me it is worth it.

This change would also allow to simplify `TestInductorOpInfo` class a little, since it doesn't have to handle the skips/xfails anymore, but that might require dropping support for things like `PYTORCH_COLLECT_EXPECT` and `PYTORCH_FAIL_ON_SUCCESS` so I didn't do it.

Also couple of other minor changes:

 - Got rid of c32, c64, c128 in torchinductor_opinfo. We don't support complex numbers, so they shouldn't be necessary.
 - Renamed TestExpect Enum to ExpectedTestResult to get rid of a pytest warning that thinks it is a class that has tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94813
Approved by: https://github.com/lezcano, https://github.com/jansel
2023-02-16 18:57:01 +00:00
Edward Z. Yang
ef5de0a4cf Don't use PrimTorch decomposition for empty (#94512)
This PR removes the unnecessary == 0 guard when constructing empty tensors, by ensuring that when we create a contiguous tensor we go directly to the C++ torch.empty implementation (instead of indirecting through empty_strided), where we can bypass doing zero tests when computing the size of the storage. This probably also speeds up trace time.

When I did this, I found out that `empty_tensor_restride_symint` was flagrantly wrong (we had never exercised it before because we redirected to `empty_strided` in PrimTorch decomp, which doesn't hit this codepath.) The bugs:

* Stride computation was wrong (only `last_idx` was ever written to)
* Using set_sizes_and_strides with `sym_sizes` input doesn't work, because there is some sort of ordering problem where `clone_symvec` isn't safe when you clone a vector into itself. Probably should fix this.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94512
Approved by: https://github.com/ngimel
2023-02-16 16:04:41 +00:00
Edward Z. Yang
2f32fd7762 Introduce branchless implementations of TensorImpl bools (#94473)
This is the main payload of this diff stack. With it, we are able to construct a 1D tensor from unbacked SymInt with guards that are equivalent to asserting that the size is non-negative (which makes sense!) To get here, I had to arrange for all of the guards that occur when doing contiguity tests to be lazy. This was done by writing non-branching implementations of each of the tests in `sympy_is_contiguous` etc functions, and then using those implementations when we don't branch.

I also had to do some bug fixes for `is_non_overlapping_and_dense`, as unbacked SymInts were very untested previously (and that was the only time you would actually hit the Python version of the code.) In particular, we now consistently pass separate sizes/strides lists into each of the boolean computation functions (and only pack them into a single argument list when going to Sympy, which doesn't support lists of variables in custom functions.)

Finally, to actually test that this is doing something, I add a simple assumptions system from https://github.com/pytorch/pytorch/pull/90985 and use this to get the end to end test test_item_to_constructor passing. Soon, I intend to replace this with a range analysis system which will be used for assumptions in the short term. (We still might use Z3, but for all the stray assumptions I've seen range analysis will be good enough.)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94473
Approved by: https://github.com/albanD
2023-02-16 16:02:13 +00:00
Edward Z. Yang
89e16c4f18 Assume sympy is always installed (#94903)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94903
Approved by: https://github.com/Skylion007, https://github.com/malfet
2023-02-16 14:09:58 +00:00
PyTorch MergeBot
a049bbb100 Revert "Change test_torchinductor_opinfo.py to mark skips/xfails in a better way (#94813)"
This reverts commit bfc0d5e22c.

Reverted https://github.com/pytorch/pytorch/pull/94813 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but it causes failures on trunk bfc0d5e22c due to a landrace with b6df987671
2023-02-16 05:08:23 +00:00
Fabio Rocha
bfc0d5e22c Change test_torchinductor_opinfo.py to mark skips/xfails in a better way (#94813)
With this change, expected failures will be correctly reported as such by pytest (instead of passes as before).
It was sometimes a little confusing to see operators you did not expect to work in inductor reported as passing their tests.

One downside is that expected failures/skips for test variants have now to be identified by tuples. I.e., `("max", "reduction_no_dim"): {f16},` instead of just `"max.reduction_no_dim": {f16}`. It seems to me it is worth it.

This change would also allow to simplify `TestInductorOpInfo` class a little, since it doesn't have to handle the skips/xfails anymore, but that might require dropping support for things like `PYTORCH_COLLECT_EXPECT` and `PYTORCH_FAIL_ON_SUCCESS` so I didn't do it.

Also couple of other minor changes:

 - Got rid of c32, c64, c128 in torchinductor_opinfo. We don't support complex numbers, so they shouldn't be necessary.
 - Renamed TestExpect Enum to ExpectedTestResult to get rid of a pytest warning that thinks it is a class that has tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94813
Approved by: https://github.com/lezcano, https://github.com/jansel
2023-02-16 03:32:01 +00:00
min-jean-cho
b6df987671 [Inductor] Added aten.normal_ decomp (#91207)
Fixes #91085

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91207
Approved by: https://github.com/jgong5, https://github.com/jansel, https://github.com/lezcano
2023-02-15 21:21:46 +00:00
Edward Z. Yang
abf59f5703 Make _simplified kwarg private (#94782)
CR on https://github.com/pytorch/pytorch/pull/94404

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94782
Approved by: https://github.com/voznesenskym
2023-02-15 01:52:16 +00:00
Edward Z. Yang
f1f26fe8ec Streamlining guard expect tests (#94404)
Changes:
* Add `simplified` kwarg to let you only render guards that are nontrivial (excludes duck sizing)
* Make a list of strings valid for sources, if you just have some variable names you want to bind to
* Add test helper `show_guards` using these facilities, switch a few tests to it

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94404
Approved by: https://github.com/Chillee
2023-02-13 23:36:21 +00:00
Aaron Gokaslan
3d82d8d0ed [BE] Enable more flake8-comprehensions checks (#94601)
I applied some flake8 fixes and enabled checking for them in the linter. I also enabled some checks for my previous comprehensions PR.

This is a follow up to #94323 where I enable the flake8 checkers for the fixes I made and fix a few more of them.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94601
Approved by: https://github.com/ezyang
2023-02-10 23:40:29 +00:00
mingfeima
c620ece726 port sparse_mm.reduce to pytorch and optimize it on CPU (#83727)
### Motivation of this PR

This patch is to migrate `spmm_reduce` from `torch-sparse` (a 3rd party dependency for PyG) to `torch`, which is a response to the initial proposal for fusion of **Gather, Apply Scatter** in Message Passing of GNN inference/training. https://github.com/pytorch/pytorch/issues/71300

**GAS** is the major step for Message Passing, the behavior of **GAS** can be classified into 2 kinds depending on the storage type of `EdgeIndex` which records the connections of nodes:

* COO: the hotspot is `scatter_reduce`
* CSR: the hotspot is `spmm_reduce`

The reduce type can be choose from: "max", "mean", "max",  "min".

extend `torch.sparse.mm` with an `reduce` argument, maps to `torch.sparse_mm.reduce` internally.
`sparse_mm_reduce` is registered under the TensorTypeId of `SparseCsrCPU`, and this operator requires an internal interface `_sparse_mm_reduce_impl` which has dual outputs:
* `out` - the actual output
* `arg_out` - records output indices in the non zero elements if the reduce type is "max" or "min", this is only useful for training. So for inference, it will not be calculated.

### Performance

Benchmark on GCN for obgn-products on Xeon single socket, the workload is improved by `4.3x` with this patch.

Performance benefit for training will be bigger, the original backward impl for `sum|mean` is sequential; the original backward impl for `max|min` is not fused.

#### before:
```
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                         Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
       torch_sparse::spmm_sum        97.09%       56.086s        97.09%       56.088s        6.232s             9
                 aten::linear         0.00%      85.000us         1.38%     795.485ms      88.387ms             9
                 aten::matmul         0.00%      57.000us         1.38%     795.260ms      88.362ms             9
                     aten::mm         1.38%     795.201ms         1.38%     795.203ms      88.356ms             9
                   aten::relu         0.00%      50.000us         0.76%     440.434ms      73.406ms             6
              aten::clamp_min         0.76%     440.384ms         0.76%     440.384ms      73.397ms             6
                   aten::add_         0.57%     327.801ms         0.57%     327.801ms      36.422ms             9
            aten::log_softmax         0.00%      23.000us         0.10%      55.503ms      18.501ms             3
```

#### after
```
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
                         Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg    # of Calls
-----------------------------  ------------  ------------  ------------  ------------  ------------  ------------
               aten::spmm_sum        87.35%       11.826s        87.36%       11.827s        1.314s             9
                 aten::linear         0.00%      92.000us         5.87%     794.451ms      88.272ms             9
                 aten::matmul         0.00%      62.000us         5.87%     794.208ms      88.245ms             9
                     aten::mm         5.87%     794.143ms         5.87%     794.146ms      88.238ms             9
                   aten::relu         0.00%      53.000us         3.35%     452.977ms      75.496ms             6
              aten::clamp_min         3.35%     452.924ms         3.35%     452.924ms      75.487ms             6
                   aten::add_         2.58%     348.663ms         2.58%     348.663ms      38.740ms             9
                 aten::argmax         0.42%      57.473ms         0.42%      57.475ms      14.369ms             4
            aten::log_softmax         0.00%      22.000us         0.39%      52.605ms      17.535ms             3
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83727
Approved by: https://github.com/jgong5, https://github.com/cpuhrsch, https://github.com/rusty1s, https://github.com/pearu
2023-02-10 15:56:40 +00:00
albanD
496c0a207b Make segment_reduce properly private. (#93166)
I am attempting not to change the aten function to reduce the amount of BC issues on the torchscript side.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93166
Approved by: https://github.com/ngimel
2023-02-06 18:32:23 +00:00
Michael Voznesensky
60a3b7425d Small refactor of shape guards to allow for 1:1 code_parts (#93894)
By moving guard string assembly into dynamo's default behavior and letting code_parts do the work, we can have much better shape guard failures.

Before this fix, the guard failure in the test would look like:

```
'x.size()[1] == x.size()[0] and x.stride()[0] == x.[264 chars]!= 1' != 'x.size()[0] < 3'
- x.size()[1] == x.size()[0] and x.stride()[0] == x.size()[0] and x.stride()[1] == 1 and x.storage_offset() == 0 and y.size()[0] == x.size()[0] and y.size()[1] == x.size()[0] and y.stride()[0] == x.size()[0] and y.stride()[1] == 1 and y.storage_offset() == 0 and x.size()[0] < 3 and x.size()[0] != 0 and x.size()[0] != 1
+ x.size()[0] < 3
```
now it is
```
"x.size()[0] < 3"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93894
Approved by: https://github.com/ezyang
2023-02-05 09:24:12 +00:00
Michael Suo
4e4293f15f Add meta registration for bucketize (#93893)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93893
Approved by: https://github.com/zhxchen17
2023-02-02 21:03:08 +00:00
jon-chuang
d5901fcc80 fix(fx): make all make_fx invocations isolated (opaque to higher make_fx invocations) by default (#93290)
Fixes https://github.com/pytorch/pytorch/issues/88996#issuecomment-1409174554

Example code:
```python
import torch
from torch.fx.experimental.proxy_tensor import make_fx, wrapper_and_args_for_make_fx

@torch.fx.wrap
def func(a, b):
    return b.expand([1, a.shape[0], b.shape[-1]])

a = torch.randn(3, 4)
b = torch.randn(4)

class TestMode(torch.overrides.TorchFunctionMode):
    def __torch_function__(self, func, types, args=(), kwargs={}):
        if torch.overrides.resolve_name(func) in ["torch.Tensor.expand"]:
            print(f"TestMode: {func} {args} {kwargs}")
            wrapped, all_args = wrapper_and_args_for_make_fx(func, args, kwargs)
            gm = make_fx(wrapped, tracing_mode="real")(all_args)

        return func(*args, **kwargs)

with TestMode():
    gm = make_fx(func, tracing_mode="symbolic")(a, b)

gm.graph.print_tabular()
```
Before:
```
opcode         name        target               args                              kwargs
-------------  ----------  -------------------  --------------------------------  --------
placeholder    a_1         a_1                  ()                                {}
placeholder    b_1         b_1                  ()                                {}
call_function  detach      aten.detach.default  (b_1,)                            {}
call_function  detach_1    aten.detach.default  (detach,)                         {}
call_function  sym_size    aten.sym_size        (a_1, 0)                          {}
call_function  sym_size_1  aten.sym_size        (b_1, 0)                          {}
call_function  expand      aten.expand.default  (b_1, [1, sym_size, sym_size_1])  {}
call_function  detach_2    aten.detach.default  (expand,)                         {}
call_function  expand_1    aten.expand.default  (b_1, [1, sym_size, sym_size_1])  {}
output         output      output               (expand_1,)                       {}
```

After:
```
opcode         name        target               args                              kwargs
-------------  ----------  -------------------  --------------------------------  --------
placeholder    a_1         a_1                  ()                                {}
placeholder    b_1         b_1                  ()                                {}
call_function  sym_size    aten.sym_size        (a_1, 0)                          {}
call_function  sym_size_1  aten.sym_size        (b_1, 0)                          {}
call_function  expand      aten.expand.default  (b_1, [1, sym_size, sym_size_1])  {}
output         output      output               (expand_1,)                       {}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93290
Approved by: https://github.com/ezyang
2023-02-01 17:28:48 +00:00
Ivan Yashchuk
fba13d94a1 Remove deprecated torch.symeig (#70988)
The time has come to remove deprecated linear algebra related functions. This PR removes `torch.symeig`.

- [x] XLA PR: https://github.com/pytorch/xla/pull/4498

Pull Request resolved: https://github.com/pytorch/pytorch/pull/70988
Approved by: https://github.com/lezcano, https://github.com/kit1980, https://github.com/malfet
2023-01-31 11:59:11 +00:00
Edward Z. Yang
ec2461bbd8 Remove proxy tensor's check for data dependent output (#93265)
We'll rely on the underlying fake tensor to raise an error in these cases.  We only raise the error if there is an input to the data dependent operation that is a real tensor (and thus we are at risk of accidentally burning in real values)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93265
Approved by: https://github.com/albanD
2023-01-31 11:58:49 +00:00
Aaron Gokaslan
e790281a85 SymInt'ify view_as (#93242)
Follow up to #93241
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93242
Approved by: https://github.com/ezyang
2023-01-30 01:56:50 +00:00
Edward Z. Yang
3c570a2be3 SymInt'ify reshape_as (#93241)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93241
Approved by: https://github.com/Skylion007
2023-01-30 01:46:16 +00:00
Edward Z. Yang
1b5bfe9dd1 Properly compute device for elementwise operations with CPU scalar tensor (#93073)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93073
Approved by: https://github.com/eellison, https://github.com/bdhirsh
2023-01-26 21:27:57 +00:00
Edward Z. Yang
17803fb36e Make meshgrid support symbolic shapes (#93075)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93075
Approved by: https://github.com/Skylion007
2023-01-26 20:57:29 +00:00
Joel Schlosser
e5fd7e6d8f Fix to use upsample_bicubic2d.vec decomp for dynamic shape support (#92854)
For the `crossvit_9_240` model - it works now with dynamo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92854
Approved by: https://github.com/ezyang
2023-01-25 05:08:02 +00:00
PyTorch MergeBot
01f1097770 Revert "Fix to use upsample_bicubic2d.vec decomp for dynamic shape support (#92854)"
This reverts commit d49187bf88.

Reverted https://github.com/pytorch/pytorch/pull/92854 on behalf of https://github.com/malfet due to Resulted in 50+% flaky failures in dynamo, reverting
2023-01-25 00:10:14 +00:00
Joel Schlosser
d49187bf88 Fix to use upsample_bicubic2d.vec decomp for dynamic shape support (#92854)
For the `crossvit_9_240` model - it works now with dynamo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92854
Approved by: https://github.com/ezyang
2023-01-24 21:36:17 +00:00
PyTorch MergeBot
acdd462b1a Revert "Remove deprecated torch.symeig (#70988)"
This reverts commit d70ed68162.

Reverted https://github.com/pytorch/pytorch/pull/70988 on behalf of https://github.com/kit1980 due to Failing XLA tests, forward fix unsuccessful
2023-01-24 19:03:40 +00:00
Ivan Yashchuk
d70ed68162 Remove deprecated torch.symeig (#70988)
The time has come to remove deprecated linear algebra related functions. This PR removes `torch.symeig`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/70988
Approved by: https://github.com/lezcano, https://github.com/kit1980
2023-01-23 22:51:40 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
8f3600b966 [RELAND] Add metadata coverage for unsafe_split and unsafe_split_with_sizes (#92802)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92802
Approved by: https://github.com/soumith
2023-01-23 10:57:10 +00:00
Edward Z. Yang
c4501593c3 Delete get_pyobj() entirely (#92638)
Opt for the shorter and more direct node attribute access.

I need to do this because I'm going to publicly document
SymInt and SymFloat but I don't want to doc get_pyobj().

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92638
Approved by: https://github.com/Chillee, https://github.com/albanD, https://github.com/voznesenskym, https://github.com/bdhirsh
2023-01-20 19:06:56 +00:00
kshitij12345
274958ef43 [vmap] unsafe_split : batching rule and OpInfo (#92291)
Ref: https://github.com/pytorch/functorch/issues/1089

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92291
Approved by: https://github.com/Chillee
2023-01-20 10:31:56 +00:00
PyTorch MergeBot
827e22ec2d Revert "[vmap] unsafe_split : batching rule and OpInfo (#92291)"
This reverts commit 0510ae59b3.

Reverted https://github.com/pytorch/pytorch/pull/92291 on behalf of https://github.com/kshitij12345 due to Broke trunk
2023-01-19 13:49:43 +00:00
kshitij12345
0510ae59b3 [vmap] unsafe_split : batching rule and OpInfo (#92291)
Ref: https://github.com/pytorch/functorch/issues/1089

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92291
Approved by: https://github.com/Chillee
2023-01-19 06:34:45 +00:00
Peter Bell
8770a7ed6f Decompose more inplace ops (#90967)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90967
Approved by: https://github.com/anijain2305
2023-01-18 21:07:47 +00:00
Richard Zou
5d01277fea Deprecate torch.nn.utils.stateless.functional_call (#92280)
This PR:
- Updates the docs to say it is deprecated
- Raises a UserWarning
- Changes most of the callsites inside PyTorch to use
torch.func.functional_call, minus the test_stateless testing.

The motivation behind this is that we can now align behind a single
functional_call API in PyTorch.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92280
Approved by: https://github.com/albanD
2023-01-18 14:26:25 +00:00
Peter Bell
f0b592dae7 Make masked_fill reference traceable (#90972)
As the comment states, `item()` cannot be used since you can't trace through a
scalar.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90972
Approved by: https://github.com/ngimel
2023-01-18 10:54:42 +00:00
Avik Chaudhuri
bb11e072ae Squash and merge linalg meta kernels (#92335)
Squashed changes from https://github.com/pytorch/pytorch/pull/92021 and https://github.com/pytorch/pytorch/pull/92020 and https://github.com/pytorch/pytorch/pull/92019

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92335
Approved by: https://github.com/avikchaudhuri
2023-01-18 05:55:52 +00:00
lezcano
138a0188e0 Add support for logaddexp(float16) in CUDA and implement its reference (#91869)
The reference is implemented so that it generates efficient and
numerically stable triton code.

Fixes https://github.com/pytorch/pytorch/issues/91683

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91869
Approved by: https://github.com/ngimel
2023-01-10 00:19:24 +00:00
Xia, Weiwen
de9c82f41a [Meta] Register aten.pixel_shuffle.default for meta (#91605)
**Summary**
Fixes #91551
`aten.pixel_shuffle.default` is not registered for meta and it always generates contiguous (channels-first) layout of outputs. It can be reproduced by `torch.compile` (as described in the issue #91551) and running in FakeTensorMode.

**Test plan**
python test/inductor/test_torchinductor.py -k test_pixel_shuffle_channels_last
python test/test_proxy_tensor.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91605
Approved by: https://github.com/jgong5, https://github.com/mingfeima, https://github.com/anijain2305
2023-01-06 00:45:14 +00:00
Edward Z. Yang
f8740db410 Properly resolve source_ref when constructing shape guards (#91058)
Whenever you guard on something, you're supposed to tell GuardBuilder about it, so GuardBuilder knows that it has to actually bind it in scope when it creates the guard function. But shape env guards bypass that mechanism completely. Well, now they don't.

For the most part, this didn't matter in practice, because we usually had a `TENSOR_MATCH` guard floating around that made sure that the guard stayed live. But if we ever eliminate those guards (e.g., because we build it into the shape guard directly; something we'll probably want to do when https://github.com/pytorch/pytorch/pull/89707 goes online) then this will indeed matter.

One complication: some of the shape env guards are on globals. You have to make sure to shunt the usage to the correct guard builder in that case. Maybe it would be better if we refactored things so there is only one GuardBuilder. Not sure.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91058
Approved by: https://github.com/voznesenskym
2022-12-30 05:56:56 +00:00
Edward Z. Yang
bcf15cd93b Store source, not sname, in Symbol (#91057)
I'm going to need this in the follow up PR. Instead of storing only Source.name() in Symbol, I now store a full on Source. Lots of replumbing reoccurs. In particular:

- Move Source to torch._guards to break cycles
- I have to add TensorPropertySource and NegateSource to handle x.size()[0] and -x codegen that I was doing with string manipulation previously
- I tighten up invariants so that I never pass source=None; instead I pass ConstantSource (these are constant sources right) and test for that rather than source being missing. I think this is more parsimonious
- Some mypy wobbles from new imports

I didn't move LocalSource and friends to torch._guards, but I ended up needing to access them in a few places. The main annoyance with moving these is that then I also need to move the bytecode codegen stuff, and that's not so easy to move without bringing in the kitchen sink.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91057
Approved by: https://github.com/albanD, https://github.com/voznesenskym, https://github.com/zou3519
2022-12-30 05:56:56 +00:00
Joel Schlosser
8b55b86dbd Move sym_int and sym_float alongside SymInt / SymFloat in base torch package (#91317)
This PR moves the definitions for:
* `sym_int`
* `sym_ceil` (used only for `sym_int`)
* `sym_floor` (used only for `sym_int`)
* `sym_float`

from `torch/fx/experimental/symbolic_shapes.py` to `torch/__init__.py`, where `SymInt` and `SymFloat` are already defined.

This removes the need for several in-line imports, and enables proper JIT script gating for #91318. I'm very open to doing this in a better way!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91317
Approved by: https://github.com/ezyang, https://github.com/anijain2305
2022-12-28 16:08:16 +00:00
Joel Schlosser
1c40ec46ff Decomps and meta registrations for upsample_nearest 1D / 2D / 3D (#91260)
Adds decompositions and meta registrations for the 1D, 2D, and 3D implementations of `upsample_nearest`. All related OpInfo-based tests for AOTAutograd now pass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91260
Approved by: https://github.com/ezyang
2022-12-28 16:03:25 +00:00
PyTorch MergeBot
b68fd7e319 Revert "Store source, not sname, in Symbol (#91057)"
This reverts commit 88c581be87.

Reverted https://github.com/pytorch/pytorch/pull/91057 on behalf of https://github.com/atalman due to causing internal build failures
2022-12-21 22:33:15 +00:00
Edward Z. Yang
88c581be87 Store source, not sname, in Symbol (#91057)
I'm going to need this in the follow up PR. Instead of storing only Source.name() in Symbol, I now store a full on Source. Lots of replumbing reoccurs. In particular:

- Move Source to torch._guards to break cycles
- I have to add TensorPropertySource and NegateSource to handle x.size()[0] and -x codegen that I was doing with string manipulation previously
- I tighten up invariants so that I never pass source=None; instead I pass ConstantSource (these are constant sources right) and test for that rather than source being missing. I think this is more parsimonious
- Some mypy wobbles from new imports

I didn't move LocalSource and friends to torch._guards, but I ended up needing to access them in a few places. The main annoyance with moving these is that then I also need to move the bytecode codegen stuff, and that's not so easy to move without bringing in the kitchen sink.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91057
Approved by: https://github.com/albanD, https://github.com/voznesenskym
2022-12-21 04:51:51 +00:00
Edward Z. Yang
e48c91688b DebugInterpreter works with symbolic shapes now, plus test (#90913)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90913
Approved by: https://github.com/voznesenskym
2022-12-16 05:22:56 +00:00
Edward Z. Yang
67436f621a Add utility for binding symbols based on arguments passed to placeholders (#90912)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90912
Approved by: https://github.com/voznesenskym
2022-12-16 05:22:56 +00:00
Edward Z. Yang
54563e6288 Don't put tracing state on Tensor (#90628)
Fixes https://github.com/pytorch/pytorch/issues/89626

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90628
Approved by: https://github.com/voznesenskym
2022-12-15 08:43:08 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
1aab755320 Fakify params and weights under private config (#90417)
Previously, we planned to lift the parameters and weights while exporting and implement our own transformer to "unlift" the lifted weights and params back to the graph as attributes. But this is bit challenging because:

- We need to maintain correct ordering for weights and parameters that are passed as inputs so that we know how to map them back.
- Some weights are unused in the graph, so our transformer needs to be aware of which weights and parameters are not used in the graph. And we need to distinguish which are real user input and which are parameters.
- There can be more edge cases we haven't seen in other models yet.

I am aware that @Chillee  and @bdhirsh mentioned that functionalization won't work with fake-tensor attributes but this is fine for the short term as we don't expect users to be modifying weights and params in inference mode. In fact, we explicitly disable attribute mutation in torchdynamo export mode right now.

Given above condition, it might be ok to just fakify params when we need. I use a flag to guard against this change.

Differential Revision: [D41891201](https://our.internmc.facebook.com/intern/diff/D41891201)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90417
Approved by: https://github.com/eellison
2022-12-14 09:33:18 +00:00
Joel Schlosser
4a5f4416d0 Make at::outer SymInt-aware (#90714)
Fixes matmul and related ops with meta; no more xfails needed. The non-working case for matmul was the matrix-vector case, which dispatches to `outer`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90714
Approved by: https://github.com/lezcano
2022-12-13 18:16:09 +00:00
Edward Z. Yang
f7365eca90 Add unbacked symints support; item works now (#90624)
The big idea is to add `create_unbacked_symfloat` and `create_unbacked_symint` to ShapeEnv, allowing you to allocate symbolic floats/ints corresponding to data you don't know about at compile time. Then, instead of immediately erroring out when you try to call local_scalar_dense on a FakeTensor, we instead create a fresh symint/symfloat and return that.

There a bunch of odds and ends that need to be handled:

* A number of `numel` calls converted to `sym_numel`
* When we finally return from item(), we need to ensure we actually produce a SymInt/SymFloat when appropriate. The previous binding code assumed that you would have to get a normal Python item. I add a pybind11 binding for Scalar (to PyObject only) and refactor the code to use that. There is some trickiness where you are NOT allowed to go through c10::SymInt if there isn't actually any SymInt involved. See comment.
* One of our unit tests tripped an implicit data dependent access which occurs when you pass a Tensor as an argument to a sizes parameter. This is also converted to support symbolic shapes
* We now support tracking bare SymInt/SymFloat returns in proxy tensor mode (this was already in symbolic-shapes branch)
* Whenever we allocate an unbacked symint, we record the stack trace it was allocated at. These get printed when you attempt data dependent access on the symint (e.g., you try to guard on it)
* Subtlety: unbacked symints are not necessarily > 1. I added a test for this.

These unbacked symints are not very useful right now as you will almost always immediately raise an error later when you try to guard on them. The next logical step is adding an assertion refinement system that lets ShapeEnv learn facts about unbacked symints so it can do a better job eliding guards that are unnecessary.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90624
Approved by: https://github.com/Skylion007, https://github.com/voznesenskym
2022-12-12 13:33:07 +00:00
Edward Z. Yang
e33f1eeeb7 SymIntify resize_ and deduplicate memory format logic (#90442)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90442
Approved by: https://github.com/bdhirsh
2022-12-11 14:38:38 +00:00
Edward Z. Yang
45109ec30a Completely redo how ShapeEnv guards are generated (#90528)
Instead of inferring shape mappings from a bunch of data structures that were plumbed in InstructionTranslator, we instead work out mappings by just iterating over the GraphArgs and mapping symbols to arguments as they show up. If multiple argument sizes/strides/offset map to the same symbol, this means they are duck sized, so we also generate extra equality tests that they must be equal. Finally, we generate 0/1 specialization guards. The resulting code is much shorter, and I think also easier to understand.

TODO: Delete all the tensor ref tracking code, it's unnecessary

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90528
Approved by: https://github.com/voznesenskym
2022-12-10 13:35:04 +00:00
Edward Z. Yang
49c674e155 Revert guaranteed symint allocation (#90381)
So, uh, I have a new strategy for generating dupe guards, one where I don't actually need to allocate symints for every tensor that is fakeified. So I'm reverting the changes I made from earlier PRs in this one.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90381
Approved by: https://github.com/voznesenskym
2022-12-10 13:17:34 +00:00
Edward Z. Yang
e03cde07e4 Guarantee symbol allocation for all sizes/strides/storage offset (#89879)
We may need to express guards on the size/stride/storage offset of
a tensor, but we cannot do this if it's already been duck sized.
This PR guarantees that we allocate a symbol (or negation of the
symbol) whenever we ask to create a SymInt, and propagates this
symbol to SymNode so that Dynamo can look at it (not in this PR).

This PR doesn't actually add guards, nor does Dynamo do anything
with these symbols.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89879
Approved by: https://github.com/albanD
2022-12-01 13:43:10 +00:00
Nikita Karetnikov
4cb6bbbe27 Symintify embedding (#89327)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89327
Approved by: https://github.com/ezyang
2022-11-24 03:25:00 +00:00
Edward Z. Yang
5266953443 Add crossref debug mode for functionalization, catches stride errors (#89498)
The idea is to add a custom handler to Functionalize key in Python
dispatcher that runs the functionalized version along side a non
functionalized version, and checks that their outputs agree in the
end.  (Technically, for metadata mutation we should also check the
inputs, but for now we're relying on those functions returning self.)
I turned this on for test_functionalize.py (new TestCrossRefFunctionalize)
and found a bunch of failures that look legit.

This probably doesn't interact that nicely if you're also tracing at
the same time, probably need more special logic for that (directly,
just disabling tracing for when we create the nested fake tensor mode,
but IDK if there's a more principled way to organize this.)

There are some misc fixups which I can split if people really want.

- xfail_inherited_tests moved to test common_utils
- Bindings for _dispatch_tls_set_dispatch_key_included,
  _dispatch_tls_is_dispatch_key_included and _functionalization_reapply_views_tls
- Type stubs for _enable_functionalization, _disable_functionalization
- all_known_overloads utility to let you iterate over all OpOverloads
  in all namespaces.  Iterator support on all torch._ops objects to let
  you iterate over their members.
- suspend_functionalization lets you temporarily disable functionalization mode
  in a context
- check_metadata_matches for easily comparing outputs of functions and see
  if they match (TODO: there are a few copies of this logic, consolidate!)
- _fmt for easily printing the metadata of a tensor without its data
- _uncache_dispatch for removing a particular dispatch key from the cache,
  so that we force it to regenerate
- check_significant_strides new kwarg only_cuda to let you also do stride
  test even when inputs are not CUDA
- Functionalize in torch._C.DispatchKey

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89498
Approved by: https://github.com/malfet
2022-11-23 04:18:25 +00:00
anjali411
9c0bf9387c Meta impl for linalg_cholesky and linalg_cholesky_ex (#89430)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89430
Approved by: https://github.com/ezyang
2022-11-22 17:05:34 +00:00
Sherlock Huang
caf3d5319f Symintify numel(), infer_size, prims.elementwise_meta (#88956)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88956
Approved by: https://github.com/ezyang
2022-11-20 00:42:03 +00:00
PyTorch MergeBot
8ad39536d7 Revert "Symintify numel(), infer_size, prims.elementwise_meta (#88956)"
This reverts commit ce2f8700ba.

Reverted https://github.com/pytorch/pytorch/pull/88956 on behalf of https://github.com/ezyang due to somehow breaks torch.numel
2022-11-19 21:47:55 +00:00
Edward Z. Yang
5582001bd5 Reland 2 "Towards unifying symbolic and non symbolic fake tensor (#89038) (#89143)" (#89346)
This reverts commit 8e4c9828f4.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89346
Approved by: https://github.com/wconstab
2022-11-19 21:14:31 +00:00
Edward Z. Yang
94b5c807fd Detach fake tensors into val, so they aren't affected by metadata mutation (#89140)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89140
Approved by: https://github.com/bdhirsh
2022-11-19 00:08:14 +00:00
lezcano
154e58c032 Add most in-place references/decompositions (#88117)
We add most in-place references in a generic way. We also implement a
wrapper to implement the annoying interface that `nn.functional`
nonlinearities have.

We fix along the way a couple decompositions for some non-linearities by
extending the arguments that the references have.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88117
Approved by: https://github.com/mruberry
2022-11-18 14:59:46 +00:00
Sherlock Huang
f1fb586bc6 Symintify repeat_interleave.self_int (#89111)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89111
Approved by: https://github.com/ezyang
2022-11-18 05:04:02 +00:00
PyTorch MergeBot
8e4c9828f4 Revert "Reland "Towards unifying symbolic and non symbolic fake tensor (#89038)" (#89143)"
This reverts commit e686b8c3ba.

Reverted https://github.com/pytorch/pytorch/pull/89143 on behalf of https://github.com/ZainRizvi due to This seems to be causing the test_make_fx_symbolic_exhaustive_rad2deg_cpu_float32 and test_make_fx_symbolic_exhaustive_inplace_rad2deg_cpu_float32 test to fail across multiple jobs
2022-11-17 17:02:36 +00:00
Edward Z. Yang
e686b8c3ba Reland "Towards unifying symbolic and non symbolic fake tensor (#89038)" (#89143)
This reverts commit cf6003f046.

Differential Revision: [D41363992](https://our.internmc.facebook.com/intern/diff/D41363992)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89143
Approved by: https://github.com/albanD
2022-11-17 13:55:06 +00:00
PyTorch MergeBot
cf6003f046 Revert "Towards unifying symbolic and non symbolic fake tensor (#89038)"
This reverts commit 37d54239c7.

Reverted https://github.com/pytorch/pytorch/pull/89038 on behalf of https://github.com/ezyang due to executorch segfaults
2022-11-16 16:52:47 +00:00
Edward Z. Yang
37d54239c7 Towards unifying symbolic and non symbolic fake tensor (#89038)
Fake tensor behaves pretty differently depending on if you have
symbolic shapes or not.  This leads to bugs; for example, we
weren't getting correct convolution_backward strides because we
bypassed the correct stride logic in fake tensor on symbolic
shapes.

This PR attempts to unify the two codepaths.  I don't manage to
unify everything, but I get most of it.  The algorithm is delicate
and I'm still hosing down test failures.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89038
Approved by: https://github.com/anjali411
2022-11-16 14:02:43 +00:00
anjali411
dc40d3f93f Add meta impl for grid_sampler_2d_backward (#88745)
TODO: add an OpInfo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88745
Approved by: https://github.com/ezyang
2022-11-16 13:01:47 +00:00
Sherlock Huang
ce2f8700ba Symintify numel(), infer_size, prims.elementwise_meta (#88956)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88956
Approved by: https://github.com/ezyang
2022-11-16 03:36:00 +00:00
anjali411
b815f1fc50 Symintify view_as_complex and view_as_real (#89052)
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):
* __->__ #89052
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89052
Approved by: https://github.com/ezyang
2022-11-15 16:28:36 +00:00
Sherlock Huang
5faa2792fa Symintify decomps for split and upsample_bilinear; Fix decomp for _softmax_backward_data and native_dropout_backward (#88761)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88761
Approved by: https://github.com/ezyang
2022-11-15 13:34:45 +00:00
PyTorch MergeBot
eea506aee1 Revert "Symintify decomps for split and upsample_bilinear; Fix decomp for _softmax_backward_data and native_dropout_backward (#88761)"
This reverts commit 9eabcc370f.

Reverted https://github.com/pytorch/pytorch/pull/88761 on behalf of https://github.com/suo due to much broken 9eabcc370f
2022-11-14 01:58:47 +00:00
Sherlock Huang
9eabcc370f Symintify decomps for split and upsample_bilinear; Fix decomp for _softmax_backward_data and native_dropout_backward (#88761)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88761
Approved by: https://github.com/ezyang
2022-11-13 21:30:53 +00:00
anjali411
52be0c42ab meta function for max_pool2d_with_indices_backward (#88743)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88743
Approved by: https://github.com/lezcano, https://github.com/ezyang
2022-11-13 18:31:56 +00:00
Nikita Karetnikov
1e8f95ace1 Symintify broadcast_to (#88776)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88776
Approved by: https://github.com/ezyang
2022-11-11 15:49:43 +00:00
anjali411
d615d12289 Add meta impl for topk (#88694)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88694
Approved by: https://github.com/ezyang
2022-11-11 15:28:41 +00:00
anjali411
fc9e36dd42 Add meta support for scalar_tensor and argmax (#88590)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88590
Approved by: https://github.com/albanD
2022-11-11 01:31:00 +00:00
PyTorch MergeBot
d157fca59c Revert "Symintify broadcast_to (#88776)"
This reverts commit 3a09d9a129.

Reverted https://github.com/pytorch/pytorch/pull/88776 on behalf of https://github.com/malfet due to Broke functorch/test_aotdispatch on M1, see 3a09d9a129
2022-11-10 18:19:54 +00:00
Nikita Karetnikov
4b898a7304 Symintify adaptive_avg_pool3d (#88783)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88783
Approved by: https://github.com/ezyang
2022-11-10 15:23:54 +00:00
Nikita Karetnikov
3a09d9a129 Symintify broadcast_to (#88776)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88776
Approved by: https://github.com/ezyang
2022-11-10 15:21:50 +00:00
Edward Z. Yang
d81797e845 Meta function for aten.sort and aten.scatter* (#88705)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88705
Approved by: https://github.com/ezyang
2022-11-09 17:47:14 +00:00
Edward Z. Yang
f0e6cea2ed Meta registrations for inplace operators (#88678)
Also, handle non-default alpha correctly.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88678
Approved by: https://github.com/SherlockNoMad, https://github.com/albanD
2022-11-09 01:27:01 +00:00
Edward Z. Yang
a880ddc164 Meta implementation for unsqueeze_ (#88675)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88675
Approved by: https://github.com/SherlockNoMad
2022-11-09 01:27:01 +00:00
Edward Z. Yang
1dab35ca1b Meta implementation for bernoulli (#88676)
For some reason bernoulli uses legacy memory format, see linked issue.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88676
Approved by: https://github.com/SherlockNoMad
2022-11-09 01:26:58 +00:00
Edward Z. Yang
1b5373fc83 Mark as_strided_ as supporting SymInt in C++ (#88674)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88674
Approved by: https://github.com/anjali411
2022-11-08 18:45:05 +00:00
lezcano
39d9d2ed70 Implement reference for lerp (#87424)
We follow the vectorised CPU implementation for numerical accuracy

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87424
Approved by: https://github.com/ezyang
2022-11-02 11:21:01 +00:00
Tugsbayasgalan Manlaibaatar
2c7de4a144 Add meta implementation for aten.max.dim (#88005)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88005
Approved by: https://github.com/Chillee, https://github.com/bdhirsh
2022-11-01 18:37:24 +00:00
Edward Z. Yang
2a47b10780 Get the magic method try reverse protocol correct (#88030)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>

cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88030
Approved by: https://github.com/anjali411, https://github.com/albanD
2022-10-31 13:19:56 +00:00
albanD
8a9aca7b8d Reland 2 Many symintifications (#87604) (#87980)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87980
Approved by: https://github.com/ezyang
2022-10-28 13:40:11 +00:00
PyTorch MergeBot
8b4d95759c Revert "Many symintifications (#87604)"
This reverts commit 777e6a2c51.

Reverted https://github.com/pytorch/pytorch/pull/87604 on behalf of https://github.com/weiwangmeta due to breaking internal builds
2022-10-28 03:00:11 +00:00
lezcano
f21d0b310c Add decomposition for diagonal_scatter (#87282)
cc @ezyang @mruberry @ngimel @Lezcano @fdrocha
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87282
Approved by: https://github.com/mruberry
2022-10-28 00:50:29 +00:00
Edward Z. Yang
1ff52225f1 Unify SymIntNode and SymFloatNode into SymNode (#87817)
This refactor was prompted by challenges handling mixed int/float
operations in C++.  A previous version of this patch
added overloads for each permutation of int/float and was unwieldy
https://github.com/pytorch/pytorch/pull/87722/  This PR takes a different
approach.

The general outline of the patch is to combine the C++ types SymIntNode
and SymFloatNode into a single type, SymNode.  This is type erased; we
no longer know statically at C++ if we have an int/float and have to test
it with the is_int()/is_float() virtual methods.  This has a number of
knock on effects.

- We no longer have C++ classes to bind to Python.  Instead, we take an
  entirely new approach to our Python API, where we have a SymInt/SymFloat
  class defined entirely in Python, which hold a SymNode (which corresponds
  to the C++ SymNode).  However, SymNode is not pybind11-bound; instead,
  it lives as-is in Python, and is wrapped into C++ SymNode using PythonSymNode
  when it goes into C++.  This implies a userland rename.

  In principle, it is also possible for the canonical implementation of SymNode
  to be written in C++, and then bound to Python with pybind11 (we have
  this code, although it is commented out.)  However, I did not implement
  this as we currently have no C++ implementations of SymNode.

  Because we do return SymInt/SymFloat from C++ bindings, the C++ binding
  code needs to know how to find these classes.  Currently, this is done
  just by manually importing torch and getting the attributes.

- Because SymInt/SymFloat are easy Python wrappers, __sym_dispatch__ now
  takes SymInt/SymFloat, rather than SymNode, bringing it in line with how
  __torch_dispatch__ works.

Some miscellaneous improvements:

- SymInt now has a constructor that takes SymNode.  Note that this
  constructor is ambiguous if you pass in a subclass of SymNode,
  so an explicit downcast is necessary.  This means toSymFloat/toSymInt
  are no more.  This is a mild optimization as it means rvalue reference
  works automatically.

- We uniformly use the caster for c10::SymInt/SymFloat, rather than
  going the long way via the SymIntNode/SymFloatNode.

- Removed some unnecessary toSymInt/toSymFloat calls in normalize_*
  functions, pretty sure this doesn't do anything.

- guard_int is now a free function, since to guard on an int you cannot
  assume the method exists.  A function can handle both int and SymInt
  inputs.

- We clean up the magic method definition code for SymInt/SymFloat/SymNode.
  ONLY the user classes (SymInt/SymFloat) get magic methods; SymNode gets
  plain methods; this is to help avoid confusion between the two types.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

cc @jansel @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87817
Approved by: https://github.com/albanD, https://github.com/anjali411
2022-10-27 20:56:02 +00:00
Horace He
21bef8e944 fix sym_storage conversion and some cleanup (#87718)
cc @jansel @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87718
Approved by: https://github.com/ezyang
2022-10-27 02:45:18 +00:00
albanD
777e6a2c51 Many symintifications (#87604)
Adds
expand_inplace
conv conv_double_backward
convolution
adaptive_avg_pool2d_symint
_embedding_bag_backward_symint
cudnn_grid_sampler
cuda 32 bit indexing
nll_loss / nll_loss_2d
tensor split
pooling same mode
cudnn_is_acceptable
storage nbytes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87604
Approved by: https://github.com/ezyang
2022-10-26 17:33:53 +00:00
Michael Voznesensky
bc19494814 [Dynamo] Symbolic shape guards (#87570)
**Introduces symbolic shape guards into dynamo.**

In this PR, we take the existing fake tensor infra and plumbing in dynamo and we start passing a shape_env around. This shape_env does not get plumbed down to middle layers / backend yet - it only collects expressions from frontend invocations at the moment. We then translate these expressions into guards at the point where we take other guards installed throughout dynamo - and add them to check_fn.

Part 1 of https://docs.google.com/document/d/1QJ-M4zfMkD-fjHIqW089RptjLl9EgozZGCceUbvmgfY/edit#

cc @jansel @lezcano @fdrocha @mlazos @soumith @yanboliang @penguinwu @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87570
Approved by: https://github.com/ezyang
2022-10-25 21:15:40 +00:00
Horace He
569eebb43c Add get_guard_expr to symbolic_shapes which returns all guards in a single expression (#87665)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87665
Approved by: https://github.com/ezyang, https://github.com/voznesenskym
2022-10-25 16:58:18 +00:00
Ryan Spring
9bb4926de0 Add xlogy and xlog1py references (#77712)
* Add reference implementations for `xlogy` and `xlog1py`
 * Replace `_wrap_scalar` helper function with `scalar_tensor` prim
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77712
Approved by: https://github.com/mruberry
2022-10-22 17:59:25 +00:00
albanD
9199f9188c Add inplace function testing to test_proxy_tensor (#87324)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87324
Approved by: https://github.com/ezyang
2022-10-20 14:20:19 +00:00
albanD
254b681dc6 Convert torch.Size() argument to sym size in test_proxy_tensor (#87304)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87304
Approved by: https://github.com/ezyang
2022-10-20 14:20:19 +00:00
Horace He
bd757b364c Ensure that symbolic variables incorporate fresh constraints before they're used (#87254)
cc @jansel @lezcano @fdrocha
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87254
Approved by: https://github.com/jansel
2022-10-20 00:37:40 +00:00
albanD
12b2f70a89 Symintify pad ops (#87046)
Following comments below, we need to add support for `std::negate`/`std::min`/`std::max`/`operator-` for SymInt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87046
Approved by: https://github.com/ezyang
2022-10-19 21:43:08 +00:00
Horace He
5e23074f0d Fixed FakeTensor not calling CompositeImplicitAutograd decomps sometimes (#87252)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87252
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2022-10-19 07:13:30 +00:00
albanD
1463013c85 autograd clone_obey_contract() symint support (#87044)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87044
Approved by: https://github.com/ezyang
2022-10-17 13:14:12 +00:00
albanD
c21dcffc00 Very limited pow support (#87042)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87042
Approved by: https://github.com/ezyang
2022-10-17 13:14:07 +00:00
albanD
3a4c0900c7 Reland 3 of Merge more symbolic meta kernels and symint changes from branch (#86795)
Take 3
Contains:
- symintification of split*
- floor support on SymFloat
- pad_backward, gather, scatter meta
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86795
Approved by: https://github.com/z-a-f
2022-10-17 02:09:40 +00:00
Horace He
2c1bc216b8 Fixed partitioner issue with getitem and made metadata a storage more consistent (#87012)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87012
Approved by: https://github.com/ngimel
2022-10-15 17:58:55 +00:00
Brian Hirsh
34c86adec4 symintify all of derivatives.yaml (#86610)
Big-bang PR to symintify **all** .sizes() calls in derivatives.yaml, which will be needed for symbolic tracing.

* with the exception of `split()`, which is tougher to land because it requires internal changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86610
Approved by: https://github.com/albanD
2022-10-14 20:15:48 +00:00
Horace He
b3b9786fdd Unified symbolic shape variables between AOTAutograd and Inductor (#86659)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86659
Approved by: https://github.com/wconstab
2022-10-14 00:24:43 +00:00
Jason Ansel
c7c09722ad Move TorchDynamo into PyTorch core (#86461)
Context:
https://github.com/pytorch/torchdynamo/issues/1588

This PR moves [TorchDynamo](https://github.com/pytorch/torchdynamo) and TorchInductor into PyTorch core.
- `torchdynamo` becomes `torch._dynamo`
- `torchinductor` becomes `torch._inductor`

This PR was generated by running `copy_to_core.sh` in https://github.com/pytorch/torchdynamo/pull/1538

Pull Request resolved: https://github.com/pytorch/pytorch/pull/86461
Approved by: https://github.com/voznesenskym
2022-10-13 23:18:06 +00:00
Khushi Agrawal
77d29bcee2 [primTorch] special: ndtr, ndtri, log_ndtr, erfcx (#86077)
- Adds prims and _refs for `erfcx` and `ndtri`.
- Adds _refs for `ndtr`, and `log_ndtr`.

cc @kshitij12345 @lezcano @mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86077
Approved by: https://github.com/mruberry
2022-10-13 01:18:30 +00:00
albanD
66cab5245f Reland 2 min/max support for SymInt/Floats, finish as_strided/scatter/squeeze() backward symint support (#86797)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86797
Approved by: https://github.com/bdhirsh
2022-10-13 00:31:19 +00:00
Khushi
2344135179 [primTorch] special: entr, expit (#86592)
Add _refs for `entr` & `expit`.

cc @mruberry @kshitij12345!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86592
Approved by: https://github.com/mruberry
2022-10-12 07:00:40 +00:00
PyTorch MergeBot
2aa981ab74 Revert "Reland 2 of Merge more symbolic meta kernels and symint changes from branch (#86334) (#86488)"
This reverts commit 978b46d7c9.

Reverted https://github.com/pytorch/pytorch/pull/86488 on behalf of https://github.com/osalpekar due to Broke executorch builds internally with the following message: RuntimeError: Missing out variant for functional op: aten::split.Tensor(Tensor(a -> *) self, SymInt split_size, int dim=0) -> Tensor(a)[] . Make sure you have loaded your custom_ops_generated_lib
2022-10-11 23:39:50 +00:00
PyTorch MergeBot
811b8e012b Revert "min/max support for SymInt/Floats, finish as_strided/scatter/squeeze() backward symint support (#86643)"
This reverts commit 86f914e996.

Reverted https://github.com/pytorch/pytorch/pull/86643 on behalf of https://github.com/osalpekar due to Need to revert this to cleanly revert https://github.com/pytorch/pytorch/pull/86488. This should be safe to re-land later
2022-10-11 23:12:40 +00:00
albanD
86f914e996 min/max support for SymInt/Floats, finish as_strided/scatter/squeeze() backward symint support (#86643)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86643
Approved by: https://github.com/anjali411
2022-10-11 17:37:30 +00:00
albanD
be8627827e More symintification of get/set item (#86605)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86605
Approved by: https://github.com/anjali411
2022-10-11 12:00:40 +00:00
albanD
49c9b0a154 symintify einsum (#86603)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86603
Approved by: https://github.com/anjali411
2022-10-11 12:00:35 +00:00
albanD
978b46d7c9 Reland 2 of Merge more symbolic meta kernels and symint changes from branch (#86334) (#86488)
symintify split_with_sizes, dropout, fused_fake_obs_quant. meta for padding_2d ops

add meta_bernoulli_

meta kernel for at::gather

get pytorch_struct to pass: meta for scatter_add, fix backward

symintify split ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86488
Approved by: https://github.com/ezyang
2022-10-10 15:54:28 +00:00
albanD
55663b7f81 Reland 3 of Symintify getitem and add the required helper functions (#86207) (#86487)
Note that this might not cover every use of the function (we know it doesn't)
But this is enough to get few models passing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86487
Approved by: https://github.com/ezyang
2022-10-10 15:54:28 +00:00
anjali411
c89d286af6 symintify unbind_backward and tensor_split (#86357)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86357
Approved by: https://github.com/albanD
2022-10-09 16:25:55 +00:00
Edward Z. Yang
33f0e98a49 Re-land*4 "SymIntify cat and narrow" (#86468)
This re-lands https://github.com/pytorch/pytorch/pull/86289 but with more wrappers.

Contains implicit inclusion of <ATen/native/NonSymbolicBC.h> in internal usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86468
Approved by: https://github.com/albanD
2022-10-08 07:17:37 +00:00
PyTorch MergeBot
65b408074f Revert "Relandx3 "SymIntify cat and narrow" (#86289)"
This reverts commit a00f8489df.

Reverted https://github.com/pytorch/pytorch/pull/86289 on behalf of https://github.com/malfet due to @seemether  unlanded the rest of the stack and it will fail intern import anyway
2022-10-07 16:29:27 +00:00
PyTorch MergeBot
5b69b87d5a Revert "Symintify getitem and add the required helper functions (#86207)"
This reverts commit fd5085c445.

Reverted https://github.com/pytorch/pytorch/pull/86207 on behalf of https://github.com/seemethere due to  Fails internal tests, see: https://www.internalfb.com/intern/sandcastle/job/22517998926071860/insights
2022-10-07 16:10:30 +00:00
PyTorch MergeBot
75df4b5e3d Revert "Merge more symbolic meta kernels and symint changes from branch (#86334)"
This reverts commit 08e3999fa4.

Reverted https://github.com/pytorch/pytorch/pull/86334 on behalf of https://github.com/seemethere due to Trying to revert https://github.com/pytorch/pytorch/pull/86207, this PR causes merge conflicts with the initial revert so will have to revert this as well
2022-10-07 16:03:30 +00:00
Edward Z. Yang
a00f8489df Relandx3 "SymIntify cat and narrow" (#86289)
This reverts commit fc94a2115b.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86289
Approved by: https://github.com/wconstab
2022-10-07 14:04:10 +00:00
PyTorch MergeBot
2110c89443 Revert "Revert "Revert "SymIntify cat and narrow (#86191)"" (#86289)"
This reverts commit e778fbf519.

Reverted https://github.com/pytorch/pytorch/pull/86289 on behalf of https://github.com/seemethere due to Fails internal tests see: https://www.internalfb.com/intern/sandcastle/job/27021598552487548/
2022-10-07 05:20:36 +00:00
Brian Hirsh
08e3999fa4 Merge more symbolic meta kernels and symint changes from branch (#86334)
symintify split_with_sizes, dropout, fused_fake_obs_quant. meta for padding_2d ops

add meta_bernoulli_

meta kernel for at::gather

get pytorch_struct to pass: meta for scatter_add, fix backward

symintify split ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86334
Approved by: https://github.com/ezyang
2022-10-06 23:29:04 +00:00
albanD
fd5085c445 Symintify getitem and add the required helper functions (#86207)
Note that this might not cover every use of the function (we know it doesn't)
But this is enough to get few models passing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86207
Approved by: https://github.com/ezyang, https://github.com/Chillee, https://github.com/bdhirsh
2022-10-06 04:46:19 +00:00