Commit Graph

132 Commits

Author SHA1 Message Date
Animesh Jain
fee677eeb6 [fbode-testing][dynamo][reland][inline-inbuilt-nn-modules] Mark attri… (#134136)
Shuai wants to test this internally before https://github.com/pytorch/pytorch/pull/133713 can go in. Creating a separate PR for ghmport.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134136
Approved by: https://github.com/yanboliang
2024-08-22 17:54:58 +00:00
PyTorch MergeBot
68425e68fe Revert "[dynamo][reland][inline-inbuilt-nn-modules] Mark attributes of nn mod… (#133714)"
This reverts commit e8d3c4be36.

Reverted https://github.com/pytorch/pytorch/pull/133714 on behalf of https://github.com/anijain2305 due to fails internally ([comment](https://github.com/pytorch/pytorch/pull/133714#issuecomment-2302171472))
2024-08-21 14:21:06 +00:00
Animesh Jain
33f1ee036e [dynamo][user-defined] Simplify call_hasattr (#133935)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133935
Approved by: https://github.com/williamwen42, https://github.com/jansel
ghstack dependencies: #133745, #133747, #133746, #133799, #133800
2024-08-20 16:27:44 +00:00
Animesh Jain
e8d3c4be36 [dynamo][reland][inline-inbuilt-nn-modules] Mark attributes of nn mod… (#133714)
Relands https://github.com/pytorch/pytorch/pull/132539
Relands https://github.com/pytorch/pytorch/pull/132736

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133714
Approved by: https://github.com/jansel
2024-08-20 05:57:52 +00:00
Edward Z. Yang
90d2593b3e Revert #132806, #132736, #132539, #132487 (#133570)
This reverts commit 25df063f04.
This reverts commit de00c79583.
This reverts commit 419b76c4ac.
This reverts commit bc57d5b6ff.

Differential Revision: [D61335013](https://our.internmc.facebook.com/intern/diff/D61335013)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133570
Approved by: https://github.com/albanD, https://github.com/jansel, https://github.com/anijain2305
2024-08-15 20:54:21 +00:00
Oguz Ulgen
6e79932543 Add basic mypy annotations to dynamo (#132415)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132415
Approved by: https://github.com/XuehaiPan, https://github.com/jamesjwu
2024-08-04 18:43:36 +00:00
PyTorch MergeBot
3558a8cf4a Revert "Add basic mypy annotations to dynamo (#132415)"
This reverts commit 71e22e0959.

Reverted https://github.com/pytorch/pytorch/pull/132415 on behalf of https://github.com/ZainRizvi due to Sorry, this PR has entered a weird state in the diff train. Trying to revert it to skip it, and then we can try relanding it ([comment](https://github.com/pytorch/pytorch/pull/132415#issuecomment-2267631785))
2024-08-04 18:39:29 +00:00
Animesh Jain
419b76c4ac [dynamo] Reland 132308, 132314, 132318, 132334 - Make builtin nn modules attributes static (#132539)
Relanding 4 PRs ending at https://github.com/pytorch/pytorch/pull/132334

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132539
Approved by: https://github.com/Skylion007, https://github.com/yanboliang, https://github.com/mlazos
2024-08-03 02:08:22 +00:00
PyTorch MergeBot
24d0a32f98 Revert "[dynamo] Wrap unspecialized nn module getattr with UnspecializedNNModuleSource (#132308)"
This reverts commit aa0ed2496f.

Reverted https://github.com/pytorch/pytorch/pull/132308 on behalf of https://github.com/anijain2305 due to broke internal tests ([comment](https://github.com/pytorch/pytorch/pull/132308#issuecomment-2265959993))
2024-08-02 18:55:51 +00:00
PyTorch MergeBot
e696f17467 Revert "[dynamo] Track builtin nn modules with UnspecializedBuiltinNNModuleVariable (#132314)"
This reverts commit d6a82ce39b.

Reverted https://github.com/pytorch/pytorch/pull/132314 on behalf of https://github.com/anijain2305 due to broke internal tests ([comment](https://github.com/pytorch/pytorch/pull/132314#issuecomment-2265953367))
2024-08-02 18:52:38 +00:00
Oguz Ulgen
71e22e0959 Add basic mypy annotations to dynamo (#132415)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132415
Approved by: https://github.com/XuehaiPan, https://github.com/jamesjwu
2024-08-01 20:14:25 +00:00
Animesh Jain
d6a82ce39b [dynamo] Track builtin nn modules with UnspecializedBuiltinNNModuleVariable (#132314)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132314
Approved by: https://github.com/yanboliang
ghstack dependencies: #132302, #132304, #132312, #132308
2024-08-01 06:21:05 +00:00
Animesh Jain
aa0ed2496f [dynamo] Wrap unspecialized nn module getattr with UnspecializedNNModuleSource (#132308)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132308
Approved by: https://github.com/yanboliang
ghstack dependencies: #132302, #132304, #132312
2024-08-01 06:21:05 +00:00
Xuehai Pan
e74ba1b34a [BE][Easy][15/19] enforce style for empty lines in import segments in torch/_d*/ (#129767)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129767
Approved by: https://github.com/anijain2305
2024-07-31 21:18:11 +00:00
Animesh Jain
a617919541 [dynamo] Do not guard on keys for _forward_hooks and _forward_pre_hooks (#131682)
Fixes https://github.com/pytorch/pytorch/issues/125836

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131682
Approved by: https://github.com/bdhirsh
2024-07-26 04:39:54 +00:00
Oguz Ulgen
7a42470bcb Annotate all InstructionTranslator (#131509)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131509
Approved by: https://github.com/zou3519
2024-07-24 23:45:53 +00:00
PyTorch MergeBot
5db5865614 Revert "Annotate all InstructionTranslator (#131509)"
This reverts commit eafbd20f23.

Reverted https://github.com/pytorch/pytorch/pull/131509 on behalf of https://github.com/clee2000 due to sorry need to revert this to revert something else, I think you only need to rebase and remerge ([comment](https://github.com/pytorch/pytorch/pull/131509#issuecomment-2249000843))
2024-07-24 22:29:49 +00:00
Oguz Ulgen
b56939dae1 Annotate more InstructionTranslator (#131680)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131680
Approved by: https://github.com/zou3519
ghstack dependencies: #131676
2024-07-24 22:14:29 +00:00
Oguz Ulgen
eafbd20f23 Annotate all InstructionTranslator (#131509)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131509
Approved by: https://github.com/zou3519
2024-07-24 05:31:01 +00:00
Animesh Jain
e49c0acc39 [dynamo] Revert https://github.com/pytorch/pytorch/pull/130416 (#131058)
All the changes brought by the original PR have been addressed in alternative ways in the stack. Why the original PR has to be reverted requires  more effort because there is some bad interaction with export.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131058
Approved by: https://github.com/williamwen42
2024-07-19 17:26:24 +00:00
Animesh Jain
ac76dd606f [dynamo] Alternative way to skip empty hooks guards on inbuilt nn modules (#131057)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131057
Approved by: https://github.com/williamwen42, https://github.com/jansel
ghstack dependencies: #131056
2024-07-19 04:42:38 +00:00
Animesh Jain
65b4163bd2 [dynamo][nn-module] Make slice getitem on nn module container sourceless (#130852)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130852
Approved by: https://github.com/mlazos
ghstack dependencies: #130773
2024-07-17 20:17:08 +00:00
Aaron Gokaslan
53e5b8ac5b [BE]: Update flake8-comprehensions and enable C420 (#130699)
Uses `dict.fromkeys` whenever possible as covered by flake8-comprehensions rule C420. While the ruff rule RUF025 is still in preview, flake8-comprehensions have added a new rule which covers this. Use dict.fromkeys is faster when the value being added to the dictionary is the same at every iteration and is immutable, it also removes an unnecessary dict comprehension.

This rule will be enabled with our current ruleset in RUF in 0.6 as C420.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130699
Approved by: https://github.com/lezcano, https://github.com/ezyang
2024-07-16 13:47:49 +00:00
Xuehai Pan
973037be6a [BE][Easy] apply autofix for ruff rules unnecessary-collection-call (C408): list() / tuple() / dict() (#130199)
This PR changes the empty collection factory call to Python literals:

- `list()` -> `[]`
- `tuple()` -> `()`
- `dict()` -> `{}`

The Python literals are more performant and safer. For example, the bytecode for building an empty dictionary:

```bash
$ python3 -m dis - <<EOS
import collections

d1 = {}
d2 = dict()

dict = collections.OrderedDict
d3 = dict()
EOS
```

```text
  0           0 RESUME                   0

  1           2 LOAD_CONST               0 (0)
              4 LOAD_CONST               1 (None)
              6 IMPORT_NAME              0 (collections)
              8 STORE_NAME               0 (collections)

  3          10 BUILD_MAP                0
             12 STORE_NAME               1 (d1)

  4          14 PUSH_NULL
             16 LOAD_NAME                2 (dict)
             18 CALL                     0
             26 STORE_NAME               3 (d2)

  6          28 LOAD_NAME                0 (collections)
             30 LOAD_ATTR                8 (OrderedDict)
             50 STORE_NAME               2 (dict)

  7          52 PUSH_NULL
             54 LOAD_NAME                2 (dict)
             56 CALL                     0
             64 STORE_NAME               5 (d3)
             66 RETURN_CONST             1 (None)
```

The dict literal `{}` only has one bytecode `BUILD_MAP`, while the factory call `dict()` has three `PUSH_NULL + LOAD_NAME + CALL`. Also, the factory call is not safe if users override the `dict` name in `locals` or `globals` (see the example of replacing with `OrderedDict` above).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130199
Approved by: https://github.com/malfet
2024-07-11 17:30:28 +00:00
Animesh Jain
f7d7b94017 [dynamo][unspecialized-nn-module] Distinguish between user-defined and builtin nn module (#130416)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130416
Approved by: https://github.com/jansel
ghstack dependencies: #130285, #130368
2024-07-11 14:13:24 +00:00
Animesh Jain
c9798d123b [dynamo][compile-time] Manually trace torch.nn.Module.parameters (#129583)
With this PR, we are not worse than no-inlining for Dynamo-only compilation time (there is a litte bit of noise, so outlier of 0.89 is probably ok here). For most of the models, we see positive numbers because of better caching in `UserDefinedObjectVariable`.

![image](https://github.com/pytorch/pytorch/assets/13822661/719d34fd-3e7f-4886-b7e0-1dbfc7141aa5)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129583
Approved by: https://github.com/jansel
2024-06-27 06:06:04 +00:00
Animesh Jain
c4dd752d97 [dynamo][compile-time][inlining-inbuilt-nn-modules] Manually implement nn.Module._call_impl (#129285)
# Compile time for eager backend
## AlbertForMaskedLM
No inlining - 3.65 seconds
Inlining on main - 7.48 seconds
Inlining + this PR - 2.86 seconds

## MobileBertForMaskedLM
No inlining - 26.90 seconds
Inlining on main - 48.21 seconds
Inlining + this PR - 24.25 seconds

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129285
Approved by: https://github.com/jansel
ghstack dependencies: #129316, #129315
2024-06-25 01:31:26 +00:00
Animesh Jain
514f9279f8 [dynamo][compile-time] Manually implement nn.Module.__getattr__ to reduce compile time (#129315)
# Compile time for eager backend
## AlbertForMaskedLM
No inlining - 3.65 seconds
Inlining on main - 7.48 seconds
Inlining + this PR - 6.70 seconds

## MobileBertForMaskedLM
No inlining - 26.90 seconds
Inlining on main - 48.21 seconds
Inlining + this PR - 43.85 seconds

*Next PR in the stack makes the total compile time better/comparable to no inlining*

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129315
Approved by: https://github.com/jansel
ghstack dependencies: #129316
2024-06-25 01:31:26 +00:00
Animesh Jain
17d1723aee [dynamo][unspecialized-nn-modules] Remove dead (also incorrect) code (#129316)
This code is unused because we just inline the `.parameters` call. The code was also wrong because side-effects only track the first level of mutations. An object might not marked mutated if one of the child objects (like a dict) is mutated.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129316
Approved by: https://github.com/jansel
2024-06-23 03:02:27 +00:00
Animesh Jain
c0b87afcad [RELAND2][dynamo][nn-modules] Trace through nn.Module dunder methods for UnspecializedNNModule (#126578)
Tracing through `__init__`  is important because it initializes (calls STORE_ATTR) on members. By doing that, we kick in the mutation tracking for these objects. So, things like mutating `_modules` etc is tracked automatically.

Fixes https://github.com/pytorch/pytorch/issues/111837

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126578
Approved by: https://github.com/jansel
2024-06-12 04:09:23 +00:00
PyTorch MergeBot
adb699189b Revert "[RELAND][dynamo][nn-modules] Trace through nn.Module dunder methods for UnspecializedNNModule (#126578)"
This reverts commit b2d602306a.

Reverted https://github.com/pytorch/pytorch/pull/126578 on behalf of https://github.com/clee2000 due to failed internal test D58394084.  Author has forward fix but includes external changes so reverting is a bit easier to coordinate ([comment](https://github.com/pytorch/pytorch/pull/126578#issuecomment-2161481839))
2024-06-11 19:41:41 +00:00
Animesh Jain
b2d602306a [RELAND][dynamo][nn-modules] Trace through nn.Module dunder methods for UnspecializedNNModule (#126578)
Tracing through `__init__`  is important because it initializes (calls STORE_ATTR) on members. By doing that, we kick in the mutation tracking for these objects. So, things like mutating `_modules` etc is tracked automatically.

Fixes https://github.com/pytorch/pytorch/issues/111837

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126578
Approved by: https://github.com/jansel
ghstack dependencies: #128295
2024-06-10 23:11:04 +00:00
Animesh Jain
05711eece9 [dynamo][inlining inbuilt modules] Ensure BC for nn_module_stack (#128295)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128295
Approved by: https://github.com/ydwu4
2024-06-10 23:11:04 +00:00
PyTorch MergeBot
44371bd432 Revert "[dynamo][nn-modules] Trace through nn.Module dunder methods for UnspecializedNNModule (#126578)"
This reverts commit 7ede78f9f5.

Reverted https://github.com/pytorch/pytorch/pull/126578 on behalf of https://github.com/anijain2305 due to pippy tests fail ([comment](https://github.com/pytorch/pytorch/pull/126578#issuecomment-2155836555))
2024-06-08 06:35:34 +00:00
Animesh Jain
7ede78f9f5 [dynamo][nn-modules] Trace through nn.Module dunder methods for UnspecializedNNModule (#126578)
Tracing through `__init__`  is important because it initializes (calls STORE_ATTR) on members. By doing that, we kick in the mutation tracking for these objects. So, things like mutating `_modules` etc is tracked automatically.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126578
Approved by: https://github.com/jansel
ghstack dependencies: #128001
2024-06-06 23:05:49 +00:00
Animesh Jain
626dc934d1 [dynamo][pippy] Hotfix for nn_module_stack for pippy usecase (#127972)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127972
Approved by: https://github.com/ydwu4
2024-06-05 20:14:50 +00:00
Animesh Jain
efcea2d2fd [dynamo] Support __getitem__ on NNModuleVariable __dict__ (#126956)
Moves further along (but still fails) for the testcase in https://github.com/pytorch/pytorch/pull/126875

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126956
Approved by: https://github.com/jansel
ghstack dependencies: #126923
2024-06-01 15:22:45 +00:00
Animesh Jain
90461d4986 [dynamo] Detect monkeypatching on nn module forward method (#126203)
An alternative was https://github.com/pytorch/pytorch/pull/124975. Though it was safer because it was adding guards for every inlined function, it was causing guard overhead for a few models of > 20%.  The overhead of this PR is minimal for the common unpatched case.

Fixes an internal issue - [fb.workplace.com/groups/1075192433118967/permalink/1411067766198097](https://fb.workplace.com/groups/1075192433118967/permalink/1411067766198097/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126203
Approved by: https://github.com/ezyang
2024-05-15 20:41:13 +00:00
William Wen
ff090c6937 [dynamo] support tracing nn.Module @property that accesses closure cells (#125724)
Fix https://github.com/pytorch/pytorch/issues/125702

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125724
Approved by: https://github.com/jansel, https://github.com/jbschlosser
ghstack dependencies: #125710
2024-05-08 23:25:39 +00:00
William Wen
93f3d561f9 [dynamo] don't make nn parametrized Modules unspecialized (#125710)
Workaround for https://github.com/pytorch/pytorch/issues/125314 and https://github.com/pytorch/pytorch/issues/125478.

We no longer make parametrized nn.Modules unspecialized. Instead, when we are about to call a function from the `torch.nn.utils.parametrize` module, we skip the frame.

The script from https://github.com/pytorch/pytorch/issues/125314 now outputs
```
parametrize=True: 6587ms
parametrize=False: 1729ms
parametrize=True: 4497ms
parametrize=False: 1539ms
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125710
Approved by: https://github.com/jansel, https://github.com/jbschlosser
2024-05-08 23:25:39 +00:00
Animesh Jain
5ba777f46e [guards][cpp-guards] Optimize NN module getattr guards (#124522)
Improves the guard overhead of MobileBert model with nn module guards from 92000 units to 20000 units.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124522
Approved by: https://github.com/jansel
ghstack dependencies: #125439, #125421
2024-05-04 22:08:56 +00:00
Animesh Jain
fd24d8c05a [dynamo][nn module] Use correct sources for _call_impl (#124970)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124970
Approved by: https://github.com/jansel
ghstack dependencies: #124779, #124627
2024-04-26 23:18:30 +00:00
Animesh Jain
febc4d8759 [dynamo][easy] forbid_in_graph check to use getattr_static (#124445)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124445
Approved by: https://github.com/yanboliang, https://github.com/jansel
2024-04-20 14:11:05 +00:00
Edward Z. Yang
bebdbb63ce Introduce set_example_value and use it throughout Dynamo (#124176)
I'm going to setup some extra behavior when we set example value, so
I need a convenient place to interpose.  I cannot easily do it on
meta itself because its a generic dict with no interposition point.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124176
Approved by: https://github.com/oulgen
ghstack dependencies: #124105, #124059
2024-04-17 22:57:11 +00:00
Xuehai Pan
93e249969b [BE] enable ruff rule RSE and remove useless parentheses in raise statements (#124261)
Remove useless parentheses in `raise` statements if the exception type is raised with no argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124261
Approved by: https://github.com/albanD
2024-04-17 19:29:34 +00:00
Animesh Jain
58afcd7b61 [dynamo][dict] Add UnspecializedNNModuleVariable to dict keys (#122812)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122812
Approved by: https://github.com/jansel
ghstack dependencies: #122943, #123877, #123878
2024-04-13 02:07:35 +00:00
Jason Ansel
212e460dce [dynamo] Support custom __setattr__ on UserDefinedObjectVariable (#123318)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123318
Approved by: https://github.com/anijain2305
2024-04-07 21:06:52 +00:00
Animesh Jain
8e98fda7a9 [dynamo][easy] Add AC test and improve graph break message (#121394)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121394
Approved by: https://github.com/yanboliang
2024-04-06 01:02:45 +00:00
Pian Pawakapan
42c2a5477c [export] nn_module_stack to return class name str (#123308)
Previously, `node.meta["nn_module_stack"]` had type `Dict[str, Tuple[str, class]]` when exported, and later `Dict[str, Tuple[str, str]]` after de/serialization. This PR changes it to consistently be `Dict[str, Tuple[str, str]]` for round-trippability, i.e.
```
{..., 'L__self___conv': ('conv', 'torch.nn.modules.conv.Conv2d')}
```

`source_fn_stack` is left untouched in this PR.

note: the `Union[type, str]` type annotations in ONNX are because ONNX goes through both `export.export()` and `_dynamo.export()` (which still has the original `Dict[str, Tuple[str, class]]` format). nn_module_stack from `export.export()` should consistently have the new format, and we verify/test for that in `_trace.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123308
Approved by: https://github.com/zhxchen17, https://github.com/thiagocrepaldi
2024-04-05 21:48:22 +00:00
Joel Schlosser
07b618e2d4 Graph break cleanly in Dynamo for module parametrization (#121041)
Fixes #118795

This is a graph breaking partial fix for #120914. We still need -actual- module parametrization tracing support, but at least it doesn't blow up hard now.

**Background**: Module parametrization injects a property as the module parameter attribute that calls a `nn.Module` whose forward takes in a module parameter and returns a reparametrized module parameter.
Example:
```
class MyParametrization(nn.Module):
    def forward(X):
        # This reparametrization just negates the original parameter value
        return -X

m = nn.Linear(...)
p = MyParametrization()
register_parametrization(m, "weight", p)

# Accessing the "weight" attribute will invoke p's forward() on m's original weight and return the output as the new weight.
# m.weight here is now an injected property that does the above instead of an actual Parameter.
# This property is defined in torch/nn/utils/parametrize.py.
m.weight

# NB: Parametrization changes the module type (e.g. torch.nn.utils.parametrize.ParametrizedLinear)
print(type(m))
```

**Problem 1**: Dynamo has special tracing rules for things in `torch.nn`. Parametrizing a module changes the type of the module and the parametrized attribute, so now these rules wrongly affect tracing here. To fix this:
* For parametrized modules, call `convert_to_unspecialized()` to restart analysis where Dynamo starts inlining the module.

**Problem 2**: The issue seen in #118795 is that Dynamo will see a dynamically constructed tensor when `m.weight` is called and introduce that to its `tensor_weakref_to_sizes_strides` cache during fake-ification. This tensor is also made to be a graph input, since it's a module parameter. When guards are created for this module parameter input, the logic calls `m.weight` again and tries to look the result up in the cache, but this is a different tensor now, giving the `KeyError` symptom. To fix this:
* Replace Dynamo's `tensor_weakref_to_sizes_strides` cache with a `input_source_to_sizes_strides` cache.
    * This cache was originally introduced in #100128.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121041
Approved by: https://github.com/anijain2305
2024-03-26 23:44:51 +00:00