Summary:
Also adds support for backend_config with relu fusion since XNNPACK allows it.
We should revisit the relu fusion once we gain more clarity on quantSrcPartition or some other way to do these fusion and not having to add all combinations.
We should really rename the backend config to et_xnnpack.py or something TODO
Test Plan: `buck test fbcode//mode/dev-nosan fbcode//executorch/backends/xnnpack/test:`
Differential Revision: D46985169
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104134
Approved by: https://github.com/mcr229, https://github.com/salilsdesai
Summary:
Also adds support for backend_config with relu fusion since XNNPACK allows it.
We should revisit the relu fusion once we gain more clarity on quantSrcPartition or some other way to do these fusion and not having to add all combinations.
We should really rename the backend config to et_xnnpack.py or something TODO
Test Plan: `buck test fbcode//mode/dev-nosan fbcode//executorch/backends/xnnpack/test:`
Differential Revision: D46924209
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104090
Approved by: https://github.com/mcr229
Similar to https://github.com/pytorch/pytorch/pull/96160 but for the modules
nn.PixelShuffle and nn.PixelUnshuffle.
torch.nn.PixelUnshuffle accepts both float and quantized inputs.
However, previously we would unnecessarily dequantize quantized inputs into floats
before passing them to the function. This commit fixes this by lowering the pattern
[dequant - PixelShuffle - quant].
[dequant - PixelUnshuffle - quant].
Test Plan:
python test/test_quantization.py TestQuantizeFxOps.test_pixel_shuffle_module
python test/test_quantization.py TestQuantizeFxOps.test_pixel_unshuffle_module
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101926
Approved by: https://github.com/jerryzh168
Summary:
## Summary
torch.nn.functional.pixel_unshuffle and torch.narrow accepts both float
and quantized inputs. However, previously we would unnecessarily
dequantize quantized inputs into floats before passing them to
the function. This commit fixes this by lowering the pattern
[dequant - pixel_unshuffle - quant].
[dequant - narrow - quant].
Test Plan:
```
python test/test_quantization.py TestQuantizeFxOps.test_pixel_unshuffle
```
```
python test/test_quantization.py TestQuantizeFxOps.test_narrow
```
Differential Revision: D43858199
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96160
Approved by: https://github.com/andrewor14
**Summary**
Linear is decomposed to `t - addmm/mm` after `dynamo.export`. And weight's observer is inserted between `t` and `addmm/mm` in the first place. `_rearrange_weight_observer_for_addmm()` is then called to move the observer between weight and `t`.
```
before:
weight - t - observer \
input - observer - addmm/mm
after:
weight - observer - t \
input - observer - addmm/mm
```
We found two issues of `_rearrange_weight_observer_for_addmm()`:
- It does not call `m.recompile()` in the end, so it does not function correctly.
- It does not support `aten.mm.default` which is from decomposed linear without bias.
This PR fixes the two issues and renames the function to `_rearrange_weight_observer_for_decomposed_linear`.
**Test plan**
python test/test_quantization.py -k test_rearrange_weight_observer_for_decomposed_linear
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94296
Approved by: https://github.com/jgong5, https://github.com/andrewor14
Summary:
Previously we assumed asymmetric quantization for dynamic quantization, this diff adds the support of symmetric quantization
for the input in dynamic quantization
Test Plan: buck run executorch/exir/tests:quant_lowering_custom_backend_pass -- "executorch.exir.tests.test_quant_lowering_custom_backend_pass.TestQuantLoweringCustomBackendPass.test_quantized_linear_dynamic"
Reviewed By: digantdesai
Differential Revision: D43134794
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94854
Approved by: https://github.com/digantdesai
Summary: `torch.nn.functional.pixel_shuffle` accepts both float
and quantized inputs. However, previously we would unnecessarily
dequantize quantized inputs into floats before passing them to
the function. This commit fixes this by lowering the pattern
[dequant - pixel_shuffle - quant].
Test Plan:
python test/test_quantization.py TestQuantizeFxOps.test_pixel_shuffle
Reviewers: vkuzo
Subscribers: vkuzo, supriyar
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94769
Approved by: https://github.com/vkuzo
Summary:
This is no longer needed, we can use dtype to decide whether an observer is needed or not
Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92589
Approved by: https://github.com/jcaip
**Summary**
This work continues with https://github.com/pytorch/pytorch/pull/83784 by @vkuzo and includes all the changes in that PR.
Quote from https://github.com/pytorch/pytorch/pull/83784:
> Issue #83658 reports that ops followed by a certain pattern of `view` and `size` ops were not quantized correctly by FX graph mode quantization.
Before this PR, the "size" op was in the "op shares qparams with input" category, and the code assumed that the input of this op has the same dtype as its output. This led to incorrectly propagating the `int` dtype as the output of whichever op was preceding the `view` op, which in turn made that op blocklisted from quantization.
> The fix is to create a new category of ops which work on different dtypes of tensors but are not observed. This PR does so for `size`, and also for `shape` since it works the same way.
**Note**: This PR needs https://github.com/pytorch/pytorch/pull/91297 to be landed first otherwise there is a UT failure.
**Test plan**
```
python test/test_quantization.py -k test_linear_size_view
python test/test_quantization.py -k test_linear_shape_view
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90001
Approved by: https://github.com/jgong5, https://github.com/jerryzh168
Summary: This commit moves the API specification section of
the BackendConfig tutorial to the docstrings, which is a more
suitable place for this content. This change also reduces some
duplication. There is no new content added in this change.
Reviewers: jerryzh168, vkuzo
Subscribers: jerryzh168, vkuzo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91999
Approved by: https://github.com/vkuzo, https://github.com/jerryzh168
Summary:
This PR introduces the top level APIs for quantization support in PyTorch 2.0 Export stack
* torch.ao.quantization.quantize_pt2e.prepare_pt2e
Takes a model that is captured by the PyTorch 2.0 export (torchdynamo full graph mode) and prepares the model for calibration
for post training quantization
* torch.ao.quantization.quantize_pt2e.convert_pt2e
Takes a calibrated model and converts that to a reference quantized model that can be lowered later to quantized operator libraries or delegation modules
Also added a backend config for the qnnpack_pt2e backend:
* torch.ao.quantization.backend_config.get_qnnpack_pt2e_backend_config
Note: everything related to quantize_pt2e are experimental (prototype), and we don't have any bc guarantees
Test Plan:
python test/test_quantization.py TestQuantizePT2EModels
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91035
Approved by: https://github.com/HDCharles
Summary:
This PR introduces the top level APIs for quantization support in PyTorch 2.0 Export stack
* torch.ao.quantization.quantize_pt2e.prepare_pt2e
Takes a model that is captured by the PyTorch 2.0 export (torchdynamo full graph mode) and prepares the model for calibration
for post training quantization
* torch.ao.quantization.quantize_pt2e.convert_pt2e
Takes a calibrated model and converts that to a reference quantized model that can be lowered later to quantized operator libraries or delegation modules
Also added a backend config for the qnnpack_pt2e backend:
* torch.ao.quantization.backend_config.get_qnnpack_pt2e_backend_config
Note: everything related to quantize_pt2e are experimental (prototype), and we don't have any bc guarantees
Test Plan:
python test/test_quantization.py TestQuantizePT2EModels
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90971
Approved by: https://github.com/HDCharles
Summary:
This PR introduces the top level APIs for quantization support in PyTorch 2.0 Export stack
* torch.ao.quantization.quantize_pt2e.prepare_pt2e
Takes a model that is captured by the PyTorch 2.0 export (torchdynamo full graph mode) and prepares the model for calibration
for post training quantization
* torch.ao.quantization.quantize_pt2e.convert_pt2e
Takes a calibrated model and converts that to a reference quantized model that can be lowered later to quantized operator libraries or delegation modules
Also added a backend config for the qnnpack_pt2e backend:
* torch.ao.quantization.backend_config.get_qnnpack_pt2e_backend_config
Note: everything related to quantize_pt2e are experimental (prototype), and we don't have any bc guarantees
Test Plan:
python test/test_quantization.py TestQuantizePT2EModels
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90802
Approved by: https://github.com/qihqi
Summary: The existing BackendConfig fusion pattern
uses a "reversed nested tuple" format that is highly
unintuitive. For example,
```
linear-relu -> (nn.ReLU, nn.Linear)
conv-bn-relu -> (nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
```
This pattern format also complicates the signatures
of the user specified "fuser methods", which needed
to accept arguments in reverse nested order to match
the patterns:
```
def fuse_linear_relu(is_qat, relu, linear):
...
def fuse_conv_bn_relu(is_qat, relu, bn_conv):
(bn, conv) = bn_conv
...
```
Instead, this commit introduces a new pattern format that
simply specifies the ops in forward order with no nesting:
```
linear-relu -> (nn.Linear, nn.ReLU)
conv-bn-relu -> (nn.Conv2d, nn.BatchNorm2d, nn.ReLU)
def fuse_linear_relu(is_qat, linear, relu):
...
def fuse_conv_bn_relu(is_qat, conv, bn, relu):
...
```
Note that the legacy "reversed nested tuple" is still
used internally since it is more general. In the
future, we should replace it with the format used in
the subgraph rewriter in `torch.fx`, and simplify the
existing pattern matching code to handle the new
format added in this commit.
BC-breaking Notes:
Before:
```
import torch as nn
import torch.ao.nn.intrinsic as nni
from torch.ao.quantization.backend_config import BackendPatternConfig
def fuse_linear_relu(is_qat, relu, bn_conv):
(bn, conv) = bn_conv
return nni.ConvBnReLU2d(conv, bn, relu)
config = BackendPatternConfig((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
.set_dtype_configs(...) \
.set_fuser_method(fuse_conv_bn_relu) \
.set_fused_module(nni.ConvBnReLU2d)
```
After:
```
def fuse_linear_relu(is_qat, conv, bn, relu):
return nni.ConvBnReLU2d(conv, bn, relu)
config = BackendPatternConfig((nn.Conv2d, nn.BatchNorm2d, nn.ReLU)) \
.set_dtype_configs(...) \
.set_fuser_method(fuse_conv_bn_relu) \
.set_fused_module(nni.ConvBnReLU2d)
```
OR (for backward-compatibility)
```
def fuse_linear_relu(is_qat, relu, bn_conv):
(bn, conv) = bn_conv
return nni.ConvBnReLU2d(conv, bn, relu)
config = BackendPatternConfig() \
._set_pattern_complex_format((nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))) \
.set_dtype_configs(...) \
.set_fuser_method(fuse_conv_bn_relu) \
.set_fused_module(nni.ConvBnReLU2d) \
._set_use_legacy_pattern_format(True)
```
Before:
```
backend_config.configs # returns Dict[Pattern, BackendPatternConfig]
```
After:
```
backend_config.configs # returns List[BackendPatternConfig]
```
Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestBackendConfig
Reviewers: jerryzh168, vkuzo
Subscribers: jerryzh168, vkuzo
Differential Revision: [D41954553](https://our.internmc.facebook.com/intern/diff/D41954553)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90698
Approved by: https://github.com/vkuzo, https://github.com/jerryzh168