Commit Graph

421 Commits

Author SHA1 Message Date
Edward Z. Yang
f7c9ef88f5 Add masked_select abstract impl (#110103)
Fixes https://github.com/pytorch/pytorch/issues/109871

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110103
Approved by: https://github.com/bdhirsh
2023-09-27 04:07:58 +00:00
Edward Z. Yang
b07bebd4bd Add default arguments to sym_constrain_range_for_size (#109858)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109858
Approved by: https://github.com/williamwen42
2023-09-26 00:35:33 +00:00
Edward Z. Yang
09622d8d49 Allow inferring size-nature from sizes passed to empty constructor (#109720)
This removes the need for many constrain_as_size calls as we now
infer them from error checking for sizes.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109720
Approved by: https://github.com/aakhundov
2023-09-21 17:57:40 +00:00
Edward Z. Yang
2c1554a032 Make SymFloat behave symmetrically with float in torch.tensor (#109513)
Previously, SymFloat would force double precision.  That's wrong;
instead, we must respect default dtype.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109513
Approved by: https://github.com/voznesenskym
2023-09-19 01:52:41 +00:00
Jez Ng
7f3885137f Add meta function for _segment_reduce (#109359)
This fixes numerous tests which were xfailing. For instance, the
`_segment_reduce.lengths` OpInfo test, which was previously relying on
the fallback kernel to determine the shape of the meta tensor. The
fallback kernel would fail with

    segment_reduce(): Expected all rows of lengths along axis to sum to data.size(lengths.dim()-1) when !unsafe.

as it was trying to read the values of a meta tensor.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109359
Approved by: https://github.com/ezyang
2023-09-16 13:31:03 +00:00
Guilherme Leobas
49e3d76684 Add SymInt support to torch.take_along_dim (#108879)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108879
Approved by: https://github.com/Skylion007, https://github.com/lezcano, https://github.com/Chillee
2023-09-13 23:13:09 +00:00
Edward Z. Yang
55f956f1d2 optests improvements based on torchvision usage on nms (#108929)
- Update cross-ref FakeMode test to use ShapeEnv.  Dynamic ops can now
  return an unbacked SymInt.  We always accept this as equal to whatever
  the real value was.
- Relax test so it works on all classes, not just unittest.TestCase
- Properly wrap the original method, so things like
  pytree.mark.parametrize are carried over
- Support dynamic shapes by default for make_fx `tracing_mode="fake"` without symbolifying everything else

Fixes https://github.com/pytorch/pytorch/issues/108927

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108929
Approved by: https://github.com/zou3519
2023-09-13 13:26:15 +00:00
Peter Bell
464f9c3725 [meta] Add meta implementation for aten.masked_scatter (#108802)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108802
Approved by: https://github.com/lezcano
2023-09-12 16:16:05 +00:00
Edward Z. Yang
2b9ad3d5c4 Fix setitem with SymInt (#108873)
Fixes https://github.com/pytorch/pytorch/issues/101939

Several fixes bundled together:

1. When we valueToTensor, we only handled non-symbolic inputs and not symbolic inputs. We support symbolic Scalar, so also handle symbolic values.
2. In the symbolic case, we MUST NOT lift_fresh, as you're not going to inline a constant into the graph, it's going to be from a `scalar_tensor` call (so no need to clone it to avoid mutations)
3. In indexing scalarToTensor, must not do the static, directly read out the scalar contents logic with the scalar is symbolic

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108873
Approved by: https://github.com/jansel
2023-09-10 06:44:22 +00:00
Edward Z. Yang
9b83402666 Add support for symbolic repeat_interleave (#108763)
Fixes https://github.com/pytorch/pytorch/issues/108195

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108763
Approved by: https://github.com/Chillee
2023-09-08 16:48:32 +00:00
David Watson
598babf017 Added normal op decomposition for specializations of the normal op (#106792)
This fixes running normal with the meta key.

```
import torch

t = torch.tensor(4.0, device='meta')
torch.normal(0.5, t)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106792
Approved by: https://github.com/lezcano
2023-08-25 16:18:28 +00:00
Edward Z. Yang
5673c0874c Use expect_true to make split with unbacked sizes work. (#106788)
This pattern shows up in torchrec KeyedJaggedTensor.  Most
of the change in this PR is mechanical: whenever we failed
an unbacked symint test due to just error checking, replace the
conditional with something that calls expect_true (e.g.,
torch._check or TORCH_SYM_CHECK).

Some of the changes are a bit more nuanced, I've commented on the PR
accordingly.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106788
Approved by: https://github.com/lezcano
ghstack dependencies: #106720
2023-08-15 20:31:30 +00:00
Tugsbayasgalan Manlaibaatar
20c5add133 [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-15 05:41:43 +00:00
Nikita Karetnikov
e7a3fb13e7 [pt2] add Python metas for special ops (#106683)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106683
Approved by: https://github.com/ezyang
2023-08-13 14:12:21 +00:00
Sam Larsen
e165938853 Implement decomposition for aten.rrelu_with_noise (#106812)
Test Plan:
* Primarily, added new test in test/test_decomp.py
* Updated existing tests, e.g., to NOT expect failure

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106812
Approved by: https://github.com/eellison
2023-08-11 19:18:29 +00:00
PyTorch MergeBot
745d29b0cc Revert "[export] Refactor constrain_as_value and constrain_as_size (#106591)"
This reverts commit 18989890bf.

Reverted https://github.com/pytorch/pytorch/pull/106591 on behalf of https://github.com/izaitsevfb due to Breaks inductor test on trunk ([comment](https://github.com/pytorch/pytorch/pull/106591#issuecomment-1675069091))
2023-08-11 16:37:47 +00:00
Tugsbayasgalan Manlaibaatar
18989890bf [export] Refactor constrain_as_value and constrain_as_size (#106591)
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
2023-08-11 05:29:22 +00:00
David Berard
393e9eed90 [inductor] modify index_reduce to pass opinfo tests (#106429)
1. add a python meta registration, to fix an issue with the forward pass. The problem was that previously, the C++ meta registration calls [numel()](7b14a14e27/aten/src/ATen/native/TensorAdvancedIndexing.cpp (L329)) which fails (LMK if it's better to fix the C++ implementation to not do this check)
2. Modify the backward to fix an issue in the backward. The backward is not a custom op - it's a custom manual backward implementation. In particular, there's some situations that don't support double backward; the check for whether double backward is allowed requires a .item() call. To fix the meta/fake tensor case, this PR will avoid setting the double backward error only if `GradMode::is_enabled()` - which shouldn't be turned on in PT2.
3. Update skips.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106429
Approved by: https://github.com/zou3519
2023-08-10 18:14:00 +00:00
Nikita Karetnikov
467a2e63f0 [pt2] add Python meta for triangular_solve (#106682)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106682
Approved by: https://github.com/ezyang
2023-08-09 18:50:54 +00:00
Peter Bell
ab6efb1649 [pt2] Add reference implementations of torch.{stft,istft} (#106400)
This allows symbolic shapes to be traced through `torch.stft` and `torch.istft`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106400
Approved by: https://github.com/lezcano
ghstack dependencies: #106319
2023-08-07 20:59:30 +00:00
Peter Bell
d4d090e2da [FakeTensor] Workaround FFT ops with incorrect meta strides (#106319)
Currently there are FFT operators which raise `UnsupportedOperatorException`
because their meta implementations sometimes give incorrect strides. This works
around the problem for static shapes by falling back to eager. Though we still
don't support calls with dynamic shapes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106319
Approved by: https://github.com/ezyang
2023-08-07 20:59:30 +00:00
Nikita Karetnikov
7215007f01 [pt2] add Python meta for polygamma (#106681)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106681
Approved by: https://github.com/ezyang
2023-08-07 00:59:14 +00:00
Nikita Karetnikov
19621a73c0 [pt2] add metas for grid_sampler_3d ops (#106261)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106261
Approved by: https://github.com/ezyang
2023-08-05 14:48:11 +00:00
Edward Z. Yang
91afefb55b Fix some fake mode confusion between inner/outer fake mode in export (#106515)
Fixes https://github.com/pytorch/pytorch/issues/106412

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106515
Approved by: https://github.com/voznesenskym, https://github.com/BowenBao, https://github.com/thiagocrepaldi
2023-08-04 15:42:23 +00:00
Nikita Karetnikov
1f734e03df [pt2] add metas for mode ops (#106273)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106273
Approved by: https://github.com/ezyang
ghstack dependencies: #106272
2023-08-03 13:11:10 +00:00
Nikita Karetnikov
70469e6f04 [pt2] add metas for median ops (#106272)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106272
Approved by: https://github.com/ezyang
2023-08-03 13:11:10 +00:00
Nikita Karetnikov
f23d755e1f [pt2] add meta for ormqr (#106278)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106278
Approved by: https://github.com/ezyang
2023-08-01 06:47:48 +00:00
Nikita Karetnikov
0ee3b84021 [pt2] add meta for cholesky_inverse (#106120)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106120
Approved by: https://github.com/ezyang
2023-07-29 17:16:20 +00:00
Nikita Karetnikov
80755884be [pt2] add meta for cholesky (#106115)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106115
Approved by: https://github.com/Skylion007, https://github.com/ezyang
2023-07-29 17:16:20 +00:00
lezcano
36ae359655 Update matmul decomp to match eager (#105850)
The decomposition was not updated after https://github.com/pytorch/pytorch/pull/95261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105850
Approved by: https://github.com/Chillee
2023-07-26 09:24:51 +00:00
Nikita Karetnikov
a4cffaae67 [pt2] add metas for _cholesky_solve_helper and cholesky_solve (#105867)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105867
Approved by: https://github.com/ezyang
2023-07-25 20:21:47 +00:00
Yukio Siraichi
0cd51b3df0 Reland: Value range refinement using multi-variate expressions (#105491)
Trying to re-land: #97964.

Test strategy:

```
buck2 test '@fbcode//mode/dev-nosan' fbcode//pye/model_inventory/inside_out_tracking_model:inside_out_tracking_model_test -- --exact 'pye/model_inventory/inside_out_tracking_model:inside_out_tracking_model_test - test_executorch_e2e_output_consistency_aten (pye.model_inventory.inside_out_tracking_model.InsideOutTrackingModelTest.InsideOutTrackingModelTest)'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105491
Approved by: https://github.com/ezyang
2023-07-20 02:38:39 +00:00
Edward Z. Yang
1152e86da1 Transmute refined SymInt into int (#104828)
Previously, x.size(0) could return a SymInt, even when the internal
sympy expression was actually already constant (e.g., due to an
introduced guard.)  We now allow to query the Python object with
maybe_as_int which allows us to transmute these objects back to
int when possible.

It is still possible to end up with a constant SymInt even after this
change, e.g., if you get out a SymInt and while holding onto it
specialize it, but casual users are more likely to get ints when they
want to.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104828
Approved by: https://github.com/Skylion007
2023-07-15 18:46:10 +00:00
PyTorch MergeBot
1c69f363c4 Revert "Transmute refined SymInt into int (#104828)"
This reverts commit 0f322a300e.

Reverted https://github.com/pytorch/pytorch/pull/104828 on behalf of https://github.com/ezyang due to executorch failure ([comment](https://github.com/pytorch/pytorch/pull/104828#issuecomment-1635997559))
2023-07-14 15:08:11 +00:00
Yukio Siraichi
8e01f75b1b New Mod class for SymPy expressions. (#104968)
This PR introduces a new `Mod` class to be used with SymPy expressions. The main reason
being due to SymPy simplification errors (#97792).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104968
Approved by: https://github.com/ezyang
2023-07-14 13:34:52 +00:00
Edward Z. Yang
0f322a300e Transmute refined SymInt into int (#104828)
Previously, x.size(0) could return a SymInt, even when the internal
sympy expression was actually already constant (e.g., due to an
introduced guard.)  We now allow to query the Python object with
maybe_as_int which allows us to transmute these objects back to
int when possible.

It is still possible to end up with a constant SymInt even after this
change, e.g., if you get out a SymInt and while holding onto it
specialize it, but casual users are more likely to get ints when they
want to.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104828
Approved by: https://github.com/Skylion007
2023-07-13 07:02:52 +00:00
PyTorch MergeBot
06a5df8d31 Revert "Transmute refined SymInt into int (#104828)"
This reverts commit 4694f54356.

Reverted https://github.com/pytorch/pytorch/pull/104828 on behalf of https://github.com/ezyang due to broke inductor ([comment](https://github.com/pytorch/pytorch/pull/104828#issuecomment-1633049980))
2023-07-12 18:57:58 +00:00
Edward Z. Yang
4694f54356 Transmute refined SymInt into int (#104828)
Previously, x.size(0) could return a SymInt, even when the internal
sympy expression was actually already constant (e.g., due to an
introduced guard.)  We now allow to query the Python object with
maybe_as_int which allows us to transmute these objects back to
int when possible.

It is still possible to end up with a constant SymInt even after this
change, e.g., if you get out a SymInt and while holding onto it
specialize it, but casual users are more likely to get ints when they
want to.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104828
Approved by: https://github.com/Skylion007
2023-07-12 16:40:21 +00:00
Yukio Siraichi
40b8d10d5e Re-land: Turn translation validation on for tests and accuracy runs by default. (#104467)
Re-landing: #103611

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104467
Approved by: https://github.com/malfet
2023-07-05 19:01:50 +00:00
Nikita Karetnikov
c00dd43e43 [pt2] add metas for multilabel_margin_loss ops (#104388)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104388
Approved by: https://github.com/ezyang
2023-07-05 13:42:22 +00:00
Nikita Karetnikov
a3aa4da154 [pt2] add metas for multi_margin_loss ops (#104236)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104236
Approved by: https://github.com/ezyang
2023-07-05 13:40:05 +00:00
Nikita Karetnikov
ad58aba932 [pt2] add metas for adaptive_max_pool ops (#104167)
Fixes #103892.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104167
Approved by: https://github.com/ezyang
2023-07-05 07:02:07 +00:00
Nikita Karetnikov
b1c31b1d26 [pt2] metas and SymInt support for max_pool ops (#103951)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103951
Approved by: https://github.com/Chillee, https://github.com/kulinseth
2023-07-01 01:33:35 +00:00
Nikita Karetnikov
c4a6f86062 [pt2] add metas for max_unpool2d and max_unpool3d (#103821)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103821
Approved by: https://github.com/Skylion007, https://github.com/Chillee
2023-07-01 01:33:35 +00:00
PyTorch MergeBot
4de1ee6ba4 Revert "Value range refinement using multi-variate expressions. (#97964)"
This reverts commit 2642412207.

Reverted https://github.com/pytorch/pytorch/pull/97964 on behalf of https://github.com/huydhn due to Sorry for reverting your PR, but it is breaking an internal test ([comment](https://github.com/pytorch/pytorch/pull/97964#issuecomment-1615194524))
2023-06-30 21:08:05 +00:00
PyTorch MergeBot
a2a8b4d415 Revert "Turn translation validation on for tests and accuracy runs by default. (#103611)"
This reverts commit e311bed2a8.

Reverted https://github.com/pytorch/pytorch/pull/103611 on behalf of https://github.com/malfet due to Broke inductor tests ([comment](https://github.com/pytorch/pytorch/pull/103611#issuecomment-1614850276))
2023-06-30 15:54:18 +00:00
Yukio Siraichi
2642412207 Value range refinement using multi-variate expressions. (#97964)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97964
Approved by: https://github.com/ezyang
2023-06-30 01:32:22 +00:00
Yukio Siraichi
ffb526a2e4 Value range refinement using uni-variate expressions. (#97963)
This PR introduces value range refinement of shape symbols by symbolically evaluating the
value range of the involved guards. This should help `_maybe_evaluate_static` to eliminate
more guards.

This is a stack of PRs created from the discussion on: #96616.

In summary, this PR:
- simplifies `FloorDiv` nodes on the left-hand side of an expression so as to isolate a
symbol in the numerator
- tries to match the expression against the form: `<symbol> <relop> <expr>`
- uses the matched expression for refining the value range of `<symbol>` using the range
of `<expr>`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97963
Approved by: https://github.com/ezyang
2023-06-30 01:32:22 +00:00
Yukio Siraichi
e311bed2a8 Turn translation validation on for tests and accuracy runs by default. (#103611)
This PR turns translation validation on by default for tests and accuracy benchmark
runs. It also installs Z3 on CI.

The main changes are:

- Add `--no-translation-validation` as an option in _test/run_tests.py_
    - Set `PYTORCH_TEST_WITH_TV` environment variable
- Add `TEST_WITH_TV` variable in _torch/testing/_internal/common_utils.py_
- Turn translation validation on for accuracy benchmarks in _benchmarks/dynamo/common.py_
- Add Z3 installation on CI scripts

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103611
Approved by: https://github.com/ezyang
2023-06-30 01:32:21 +00:00
Brian Hirsh
875f60399e pre_dispatch tracing: support autocast and no_grad/enable_grad ctx managers, add a pre_dispatch_eager dynamo backend (#103024)
This PR adds support for `enable_grad`/`no_grad`/`autocast` context managers getting properly traced in `pre_dispatch` tracing. The stuff in this PR includes:
- I added a torch function mode that runs during make_fx pre_dispatch tracing, `ProxyTorchFunctionMode`. It directly intercepts the torch ops that run during the above context managers, and adds them to the current graph instead of executing them
- `enable_grad` and `no_grad` currently desugar into `torch._C.set_grad_enabled(bool)`, but this API isn't currently overrideable by torch function so I added the ability to interpose there
- the `torch.amp` context managers don't currently have a nice equivalent, like `set_autocast_enabled(state)`, so I ended up adding two new API's: `torch.amp._set_autocast_enabled` and `torch.amp._set_autocast_disabled`. If you look at how the context manager is implemented, it ends up calling several different state-changing functions, some of which depend on the backend - so I figured that it would be cleaner just to add a new API (that should probably only be used by tracing) - but open to feedback
- I added a new dynamo backend, `compile(backend="pre_dispatch_eager")`. When pre_dispatch tracing becomes always-on in inductor, it will be another potential surface for bugs. I also added a test file for it (`test/dynamo/test_pre_dispatch.py`).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103024
Approved by: https://github.com/ezyang
2023-06-29 14:17:42 +00:00