Summary:
integer adaptive_avg_pool2d is not well defined due to different possible ways of rounding fp32 value to integer value, and
this op isn't too critical for numerics (since it appears not too often), so we'll skip this for now.
we might need to revert the changes that adds integer impl for adaptive_avg_pool op as well
Test Plan:
python test/test_quantization.py TestQuantizePT2ERepresentation
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108924
Approved by: https://github.com/kimishpatel
Summary:
This commit fixes two silent correctness problems with
the current implementation of `move_model_to_eval`:
(1) Previously the user had to manually call `eliminate_dead_code`
before calling `move_model_to_eval`, otherwise the dropout pattern
won't actually get eliminated. This is because subgraph rewriter
complains the match is not self-contained, and so silently does
not do the replacement.
(2) We wish to error when the user calls `model.train()` or
`model.eval()` on an exported model. This error is raised
correctly immediately after export today, but no longer raised
after the user calls prepare or convert.
We fix (1) by moving the `eliminate_dead_code` call into
`move_model_to_eval`, and fix (2) by ensuring the respective
errors are thrown after prepare and convert as well.
Additionally, this commit renames `move_model_to_eval` to
`move_exported_model_to_eval` to be more explicit.
bypass-github-export-checks
Test Plan:
python test/test_quantization.py TestQuantizePT2E.test_disallow_eval_train
python test/test_quantization.py TestQuantizePT2E.test_move_exported_model_to_eval
Imported from OSS
Differential Revision: D49097293
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108891
Approved by: https://github.com/jerryzh168
Fixes#68972
Relands #107246
To avoid causing Meta-internal CI failures, this PR avoids always asserting that the default dtype is float in the `TestCase.setUp/tearDown` methods. Instead, the assert is only done if `TestCase._default_dtype_check_enabled == True`. `_default_dtype_check_enabled` is set to True in the `if __name__ == "__main__":` blocks of all the relevant test files that have required changes for this issue
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108088
Approved by: https://github.com/ezyang
Summary:
Previously we can only use native pytorch int dtypes that has corresponding quantized dtypes (e.g. quint8, qint8), this
PR removes this assumption in observers/fake_quants so that users can use all pytorch native dtypes (except for int64, we can add it later if need)
the main addition here is int16.
Test Plan:
python test/test_quantization.py TestQuantizePT2E
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108453
Approved by: https://github.com/kimishpatel
Summary:
During convert step observers are first replaced by Q-DQ pair. In some
scenarios like following output DQ has a fan out.
---> OP2 -> Q -> DQ
/
OP -> Q -> DQ -
\
---> OP3 -> Q -> DQ
If either op OP2 or OP3 are configured to be quantized, then the input
is expected to quantized. In this case quantized equivalent of some
pattern, that quantizer asked to be quantized, should look like:
[DQ -> {pattern} -> Q]. However, in scenario like above where DQ node
is shared between multiple "quantized" patterns, boundary of "quantized"
pattern is not clear because DQ now belongs to multiple quantized
patterns.
This poses challenge for:
- Porting metadata: which "quantized" partition this DQ node belongs
- Quantized representation, equivalently, needs to identify
self-contained quantized pattern that is replaced by its equivalent pattern
that captures compute in the quantized precision.
Test Plan:
test_duplicate_dq_pass
Reviewers:
Subscribers:
Tasks:
Tags:
Differential Revision: [D48663147](https://our.internmc.facebook.com/intern/diff/D48663147)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107900
Approved by: https://github.com/jerryzh168, https://github.com/andrewor14, https://github.com/leslie-fang-intel
ghstack dependencies: #107105, #107106, #107899
Summary: This commit adds a public facing
`torch.ao.quantization.move_model_to_eval` util function
for QAT users. Instead of calling model.eval() on an exported
model (which doesn't work, see
https://github.com/pytorch/pytorch/issues/103681), the user
would call this new util function instead. This ensures special
ops such as dropout and batchnorm (not supported yet) will have
the right behavior when the graph is later used for inference.
Note: Support for an equivalent `move_model_to_train` will be
added in the future. This is difficult to do for dropout
currently because the eval pattern of dropout is simply a clone
op, which we cannot just match and replace with a dropout op.
Test Plan:
python test/test_quantization.py TestQuantizePT2E.test_move_model_to_eval
Reviewers: jerryzh168, kimishpatel
Subscribers: jerryzh168, kimishpatel, supriyar
Differential Revision: [D48814735](https://our.internmc.facebook.com/intern/diff/D48814735)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108184
Approved by: https://github.com/jerryzh168
Summary: This commit does 4 main things:
1. When verifying QAT numerics, automatically check both the
per tensor and the per channel cases, and automatically verify
convert numerics
2. When verifying the QAT graph, automatically check both the
per tensor and the per channel cases
3. Merge verify graph and verify numerics tests for conv-bn
4. Fix `test_prepare_qat_conv_bn_fusion_getitem_placeholder`,
which was no longer testing the right thing recent capture
changes, since the maxpool op is no longer followed by a
getitem node. However, we do still need this test for other
ops that *are* followed by getitem nodes (e.g. standalone BN).
Items (1) - (3) make the QAT tests significantly less verbose
and easier to read.
Test Plan:
python test/test_quantization.py TestQuantizePT2E
python test/test_quantization.py TestQuantizePT2EModels
Reviewers: jerryzh168, kimishpatel
Subscribers: jerryzh168, kimishpatel, supriyar
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107991
Approved by: https://github.com/jerryzh168
**Summary**
Add linear and linear-unary post-op quantization recipe to x86 inductor quantizer. For PT2E with Inductor. With this, the quantization path will add `quant-dequant` pattern for linear and linear-unary post op.
**Test plan**
python test/test_quantization.py -k test_linear_with_quantizer_api
python test/test_quantization.py -k test_linear_unary_with_quantizer_api
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106781
Approved by: https://github.com/leslie-fang-intel, https://github.com/jgong5, https://github.com/jerryzh168
ghstack dependencies: #105818
Summary: This fixes the no bias case for conv annotations.
Previously this would result in an index out of bounds, since
the new aten.conv2d op may not have the bias arg (unlike the
old aten.convolution op). This was not caught because of a lack
of test cases, which are added in this commit.
Test Plan:
python test/test_quantization.py TestQuantizePT2E.test_qat_conv_no_bias
python test/test_quantization.py TestQuantizePT2E.test_qat_conv_bn_relu_fusion_no_conv_bias
Reviewers: jerryzh168, kimishpatel
Subscribers: jerryzh168, kimishpatel
Differential Revision: [D48696874](https://our.internmc.facebook.com/intern/diff/D48696874)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107971
Approved by: https://github.com/jerryzh168
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.
I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
Dynamo currently runs the real graph module with real inputs as a way to match the return result of graph module with the eager return type. This is unsafe when graph module is side effectful. In the long term, we will get rid of this step. But in the short term, we just fakify the graph module again and run it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107271
Approved by: https://github.com/ezyang
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.
I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
Summary:
Currently in quantizer/quantize_pt2e we import things from specific quantizers (XNNPACKQuantizer, QuantizationConfig) etc.
this PR removes them so it's clearer that they are not part of the core quantization code base
This PR also removed get_supported_operators from main Quantizer since we haven't seen a clear need for this API
Test Plan:
CIs
Imported from OSS
Differential Revision: D48340367
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107259
Approved by: https://github.com/kimishpatel
Summary:
Previously if we have:
```
conv1 -> cat
conv2 /
```
and configure output of conv1/conv2 to be int8 quantized, and cat also int8 quantized and with shared inputs,
it will not produce expected results (input of cat will not be shared)
The problem is that there is some missing checks when inserting observers for input for cat
This PR fixes the problem.
Fixes: https://github.com/pytorch/pytorch/issues/106760
Test Plan:
python tes/test_quantization.py TestQuantzePT2E.test_shared_qspec
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106922
Approved by: https://github.com/kimishpatel
Summary:
att
we don't actually need gradient for conv2d, just need it to run without error, so we delayed the error of out_dtype gradient
to the time when user actually requested it
Test Plan:
python test/test_quantization.py TestQuantizePT2E.test_representation_conv2d
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106924
Approved by: https://github.com/zou3519, https://github.com/kimishpatel
Summary: Internal model and Resnet uses "re-export" flow now. Also did some refactoring to make the code little cleaner
Some changes for OSS:
1. Correctly use the "cached" fake tensors so that static symbols are still resolved to static
2. Change logic in PassBase to allocate static shapes for parameters
3. Add "is_torch_exported" tag to every node to make it survive during various graph transformations.
4. Added experimental wrapper API for quantization team to get pre_dispatch=True graph. Note that it doesn't actually do that right now. But we plan to switch soon.
Test Plan: CI
Differential Revision: D47890878
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106676
Approved by: https://github.com/jerryzh168