The AMP inserts `_autocast_to_reduced_precision` and `_autocast_to_full_precision` automatically. The aten implementation provides a fast path to bypass the conversion if the tensor data type has been the reduced/full precision. But NNC always does the conversion which could bring >5% E2E performance regression.
This PR is to address the performance issue like aten. We will not pull `_autocast_to_reduced_precision` and `_autocast_to_full_precision` into NNC fusion group and fallback to aten to trigger its fast path if the tensor data type has been the reduced/full precision.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85140
Approved by: https://github.com/frank-wei
Since we separated at::foo and at::foo_symint there is no benefit
to trying to make initializer lists work in both cases. So we can
get rid of the special different struct.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84837
Approved by: https://github.com/kit1980
Since we separated at::foo and at::foo_symint there is no benefit
to trying to make initializer lists work in both cases. So we can
get rid of the special different struct.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84837
Approved by: https://github.com/kit1980
Per many C++ code-style guides members(for [example](https://google.github.io/styleguide/cppguide.html#Enumerator_Names) ) members of `enum` should be CamelCased,
and only defines should be ALL_CAPS
Changes `MemOverlap`, `MemOverlapStatus` and `CmpEvalResult` enum values
Also, `YES`, `NO`, `TRUE` and `FALSE` are often system defines
Fixes among other things, current iOS build regression, see, which manifests as follows (see [this](6e90572bb9):
```
/Users/runner/work/pytorch/pytorch/aten/src/ATen/MemoryOverlap.h:19:29: error: expected identifier
enum class MemOverlap { NO, YES, TOO_HARD };
^
/Applications/Xcode_12.4.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator14.4.sdk/usr/include/objc/objc.h:89:13: note: expanded from macro 'YES'
#define YES __objc_yes
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79772
Approved by: https://github.com/drisspg, https://github.com/kulinseth
Summary:
Names of analogous files in quantized directory (previously snake case) were inconsistent with
their non-quantized filename counterparts (pascal case). This is the first of a series of PRs that changes
all files in quantized (and sub-directories) dir to have pascal case.
`aten/src/ATen/native/quantized/qconv_unpack.cpp` has not been renamed yet
because (for reasons currently unknown) after making the name change, `import torch` produces the below error (`qlinear_unpack.cpp` renaming also seems to fail some phabricator CI tests for similar reasons). We suspect that these may be undefined errors and will revisit naming these files in a future PR.
```
terminate called after throwing an instance of 'c10::Error'
what(): Type c10::intrusive_ptr<ConvPackedParamsBase<2> > could not be converted to any of the known types.
Exception raised from operator() at ../aten/src/ATen/core/jit_type.h:1735 (most recent call first):
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x55 (0x7f26745c0c65 in /data/users/dzdang/pytorch/torch/lib/libc10.so)
frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xb1 (0x7f26745bdcd1 in /data/users/dzdang/pytorch/torch/lib/libc10.so)
frame #2: <unknown function> + 0x1494e24 (0x7f2663b14e24 in /data/users/dzdang/pytorch/torch/lib/libtorch_cpu.so)
frame #3: <unknown function> + 0xfed0bc (0x7f266366d0bc in /data/users/dzdang/pytorch/torch/lib/libtorch_cpu.so)
frame #4: c10::detail::infer_schema::make_function_schema(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >&&, c10::ArrayRef<c10::detail::infer_schema::ArgumentDef>, c10::ArrayRef<c10::detail::infer_schema::ArgumentDef>) + 0x5a (0x7f266366d71a in /data/users/dzdang/pytorch/torch/lib/libtorch_cpu.so)
frame #5: c10::detail::infer_schema::make_function_schema(c10::ArrayRef<c10::detail::infer_schema::ArgumentDef>, c10::ArrayRef<c10::detail::infer_schema::ArgumentDef>) + 0x7b (0x7f266366e06b in /data/users/dzdang/pytorch/torch/lib/libtorch_cpu.so)
frame #6: <unknown function> + 0x1493f32 (0x7f2663b13f32 in /data/users/dzdang/pytorch/torch/lib/libtorch_cpu.so)
frame #7: <unknown function> + 0xe227dd (0x7f26634a27dd in /data/users/dzdang/pytorch/torch/lib/libtorch_cpu.so)
frame #8: <unknown function> + 0x14e0a (0x7f268c934e0a in /lib64/ld-linux-x86-64.so.2)
..........................truncated.............
```
Test Plan:
```
python test/test_quantization.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77037
Approved by: https://github.com/jerryzh168
Analyze the range to determine if a condition cannot be satisfied. Suppose the for-loop body contains `IfThenElse` or `CompareSelect` while the condition of the two statements depends on the for-loop index `Var`. In that case, we will analyze the range to check whether the condition could always be satisfied or not. If the condition is deterministic, simplify the logic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76793
Approved by: https://github.com/huiguoo
Summary:
The `Buf` uses `std::vector<ExprHandle>` to represent its strides. The `ExprHandle` could be an immediate value or a mathematical expression with variables involved both for the static shape and dynamic shape. So it is hard to directly deduce the channels-last contiguous layout based on the numerical calculation. Hence, the utility functions of this PR are based on the pattern match to check whether the `Buf` is channels-last contiguous.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75938
Reviewed By: cpuhrsch
Differential Revision: D35724091
Pulled By: ZolotukhinM
fbshipit-source-id: f79ae21749d0aad8601f0434b52df88602ff09bf
(cherry picked from commit 3712bbbe4bea57c5c1abe1eafde4b8778e13e0c4)
Summary:
PyTorch supports registering a custom operator by `TORCH_LIBRARY_FRAGMENT` / `TORCH_LIBRARY_IMPL` and `torch::jit::tensorexpr::getNNCLoweringRegistry` could insert a custom operator. But the te fuser passes conditional check does not support custom operator. The `isSupported` of `tensorexpr_fuser` checks whether the `Node` is `get_tensorexpr_elementwise_set()`, `supported_non_eltwise_set()`, `supported_misc_set` and `supported_reduction_set`. If a custom operator needs to be added to the TE fusion group, the checked will block it.
Taking the RN50 as an example, we can speed up the model by fusing the convolution and consecutive element-wise operator into a custom operator. The framework overhead becomes non-negligible when the computation becomes more efficient, especially for the latency mode and the tiny models. If the TE fuser allows adding the custom operator to the fusion group, then the entire RN50 model could be fused by TE as a single operator/function consisting of "ExternalCalls" and TE-IR. This could significantly reduce framework overhead, which in turn improves RN50 E2E performance. The same goes for other models.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73073
Reviewed By: pbelevich
Differential Revision: D35453165
Pulled By: ZolotukhinM
fbshipit-source-id: a764cf340b0b1e05fe230649cbe44f5786bdd37d
(cherry picked from commit ee95aa4d36714540fbb216a338799e6a6bb966d5)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73486
conv and linear packed params were previously defined in ATen/native/quantized/cpu/conv_packed_params.h> and ATen/native/quantized/cpu/packed_params.h>. These two files have been merged into one and has been relocated to ATen/native/quantized/cpu/packed_params.h>.
Differential Revision:
D34513286
D34513286
Test Plan: Imported from OSS
Reviewed By: dagitses
Pulled By: dzdang
fbshipit-source-id: 813845af7ea9449e316ab7822efe7460f0bd0d88
(cherry picked from commit 2f627561f27f81977ff73b8863c5e9e719dc4c60)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73028
A typical use case for `TensorExprKernel` is to create the kernel once and call it multiple times, possibly in parallel. For the parallel calls to work, we need to ensure that the run() method calls do not change any state in `TensorExprKernel`.
Before this change, the `run()` method was modifying the sizes and strides vectors when dynamic shapes were present. This manifested as a data race when running a model with Static Runtime.
ghstack-source-id: 149398820
Test Plan:
```
buck build mode/dev-asan //caffe2/test/cpp/tensorexpr:tensorexpr
./buck-out/dev/gen/caffe2/test/cpp/tensorexpr/tensorexpr --gtest_filter="DynamicShapes.MultiThreadedExecution"
```
Reviewed By: eellison
Differential Revision: D34287960
fbshipit-source-id: d311f3c5a66c5d5de4e1deaeaa01816b53e9906e
(cherry picked from commit 161568bfae)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72390
This class didn't add much value and only caused more boilerplate code.
This change removes the class and updates all the use cases with
uses of `ExprHandle`.
A side effect of this change is different names in loop variables, which
caused massive mechanical changes in our tests.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D34030296
Pulled By: ZolotukhinM
fbshipit-source-id: 2ba4e313506a43ab129a10d99e72b638b7d40108
(cherry picked from commit c2ec46a058)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72389
This is an NFC change that just prepares the code for the upcoming
deletion of `DimArg` class. This change makes `Compute` and `Reduce`
APIs to use `ExprHandle` everywhere.
There should be no observable behavior change from this PR.
Test Plan: Imported from OSS
Reviewed By: navahgar
Differential Revision: D34030295
Pulled By: ZolotukhinM
fbshipit-source-id: 3fd035b6a6bd0a07ccfa92e118819478ae85412a
(cherry picked from commit 1b0a4b6fac)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71186
So far we've only supported scalar inputs, but couldn't handle scalar outputs
or intermediates. This PR adds it.
Scalar outputs are returned as 0-dim tensors. If the kernel is invoked on a
stack of IValues, we correctly convert the results to scalar IValues when
needed. If the kernel is invoked with a vector of void* pointers, everything
works out of the box without any conversions.
Lowerings for scalar operators are a bit tricky. Usual lowerings return a pair
<Buf, Stmt> (aka Tensor), but for scalar operators we also want to have the
corresponding Var that the lowering function supposedly creates (in theory we
could just use Loads and Stores, but I'm worried it can affect performance as
there is no guarantee this will be optimized by LLVM). So, what we do here to
work around this is we return a fake buf + stmt that sets the corresponding
var. Then outside of the lowering we create a real buffer and generate a Store
to it with the value from the variable we passed as the base handle of the fake
buf. This real buffer is then treated as usual by the rest of the system and we
can use it if we need to return this scalar value as a kernel output. If we do
not need to return it, then the Store will be deleted by the DCE pass.
Differential Revision:
D33539324
D33539324
Test Plan: Imported from OSS
Reviewed By: navahgar
Pulled By: ZolotukhinM
fbshipit-source-id: ab4524b9820ce204f106effcf6232ed33d4ee223
(cherry picked from commit 7faa0939f0)
Summary:
The block and thread extent calculations in `cuda_codegen` should be using `int64_t` instead of `int`. The updated test, `test_dynamic_shapes`, fails without this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71428
Reviewed By: samdow
Differential Revision: D33640374
Pulled By: navahgar
fbshipit-source-id: 64c340ad2a9a1fa1fe066cf1c5dfc3b546b7be6d
(cherry picked from commit 6ea546ce11)