Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53068
Adds a ```bool is_available()``` method to the backend contract: it returns ```true``` if ```compile()``` and ```execute()``` can be called; ```false``` otherwise.
It is used to implement the following changes in the ```LoweredModule```:
* ```compile()``` in ```__setstate__``` will run if ```is_available()```, else ```__setstate__``` throws an exception (“Backend not available.”).
* ```compile()``` at ```LoweredModule``` creation will run if ```is_available()```, else a WARNING will be thrown.
* ```execute()``` will only be executed if ```is_available()``` returns true; else throws an exception (“Backend not available.”).
The goal of these changes is to ensure we have a well defined behaviour for the different combinations of backend availability on-host and on-target.
More specifically, backends may have different capabilities to compile and/or execute the Module, depending whether this happens on-host (i.e. where the program is being written) or on-target (where the program is being executed).
First of all, we know that "preprocess" always takes place, and that only happens on-host at creation time. So, we can assume that any compilation is needed/possible on-host then all of it could be pushed here.
Overall, we want to ensure the following:
**On host**
| compile | execute | Outcome |
| -- | -- | -- |
| No | No | On module creation, LoweredModule is generated, with a warning (since compilation and execution can still take place on-target). On module load, throws an exception (since execution is not possible). |
| No | Yes | This configuration should not be possible. This assumes the full compiler is not available, even if some work was done in preprocess the program cannot be finalized for execution. |
| Yes | No | In this case, the expectation would be for is_available() to return false, and compilation logic to move into preprocess. |
| Yes | Yes | All good. This is the only case that is_available() should return true. |
**On target**
| compile | execute | Outcome |
| -- | -- | -- |
| No | No | Loading the LoweredModule throws an exception. Since execution is not possible. |
| No | Yes | Basically this is another instance of Yes/Yes: compilation per se may not be possible on device, which means compile() can be called without issue but it is a no-op, and thus is_available should return true. Consequently, loading the LoweredModule: Succeeds, if the preprocessed module is ready for execution. Fails with exception otherwise. |
| Yes | No | This configuration should not be possible. Just putting here for completeness. |
| Yes | Yes | All good. This, along with No/Yes case (because compilation is assumed to have happened on-host, so it's just another instance of Yes/Yes), are the cases where is_available() should return true. |
**Refactoring existing code**
This change also updates other backends (Glow) code, to implement the is_available() method to have the same behaviour as before this change (i.e. always available).
This should not cause backward incompatibilities with already saved models since we're adding a new method to the PyTorchBackendInterface.
Models saved with the old interface that didn't have is_available() will still find the other 2 methods in the bound object (i.e. compile and execute), and the saved LoweredModule logic will be the old one.
**Future**
We plan to use is_available() to implement support for fallback to the PyTorch interpreter.
ghstack-source-id: 123498571
Test Plan: Added C++ (test_backend.cpp) and Python (test_backends.py) tests to validate the exceptions.
Reviewed By: jackm321, spaugh, iseeyuan
Differential Revision: D26615833
fbshipit-source-id: 562e8b11db25784348b5f86bbc4179aedf15e0d3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52258
Removes deprecated preprocess method from the backend interface.
Preprocessing logic should be now registered along with the backend interface (i.e. PyTorchBackendInterface) via the BackendPreprocessFunction.
Also refactored internal dependencies.
ghstack-source-id: 121704837
Test Plan:
Validates all related tests pass:
buck test mode/dev //caffe2/test/cpp/jit:jit -- --exact 'caffe2/test/cpp/jit:jit - BackendTest.ToBackend'
python test/test_jit.py TestBackends
===== Glow
buck test mode/dev //glow/fb/torch_glow/tests:TorchGlowBackendTests
buck test mode/dev //glow/fb/torch_glow/tests:torch_glow_backend_tests
Reviewed By: jackm321
Differential Revision: D26443479
fbshipit-source-id: afdc51ae619ced293d10c7a6a12f3530e4c4e53c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51757
Enables backend preprocessing to take place outside of the backend interface.
What's new:
* A new definition for backend preprocessing (i.e. BackendPreprocessFunction).
* Registration of the backend's PyTorchBackendInterface interface implementation is augmented to take the BackendPreprocessFunction.
* A new registry is created to handle the BackendPreprocessFunction functions, using the backend's name as key.
* When a BackendPreprocessFunction is used, the PyTorchBackendInterface's "preprocess" method is not added to the LoweredModule. Instead, the BackendPreprocessFunction is called and its output used to set the LoweredModule's __processed_module.
Why?:
These changes are needed to avoid forcing backend preprocessing to be part of the LoweredModule, and in the future be able to eliminate "preprocess" from the PyTorchBackendInterface.
This is important for Mobile use cases where "preprocess" can take the bulk of the compilation process, and thus contain code dependencies that we do not want to bring (or cannot bring) to the Mobile binary.
What didn't change:
* Everything is backwards compatible:
** The existing "preprocess" method in PyTorchBackendInterface is still there.
** When backend registration is done without the BackendPreprocessFunction, as before, things work the same way: "preprocess" is added to LoweredModule, and invoked through the module's instance of the backend interface.
Longer term, the plan is to refactor existing users to move to the new backend registration.
ghstack-source-id: 121190883
Test Plan:
Updated existing tests (test_backend.py) to use the new registration mechanism.
Verified test ran and passed (in my OSS build).
Reviewed By: iseeyuan
Differential Revision: D26261042
fbshipit-source-id: 0dc378acd5f2ab60fcdc01f7373616d1db961e61
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40839
**Summary**
This commit splits the to_backend API properly into
`libtorch` and `libtorch_python`. The backend interface and all
of the code needed to run a graph on a backend is in
libtorch, and all of the code related to creating a Python binding
for the lowering process is in `libtorch_python`.
**Test Plan**
`python test/test_jit.py TestBackends`
**Fixes**
This commit fixes#40072.
Test Plan: Imported from OSS
Differential Revision: D22418664
Pulled By: SplitInfinity
fbshipit-source-id: b96e0c34ab84e45dff0df68b8409ded57a55ab25
Summary:
**Summary**
This commit adds a registry for storing lowering functions for backends.
Instead of backends registering these lowering functions in separate C
extension modules, these will be registered in the Torch extension.
Backends are registered statically, so a registry is needed to hold
these lowering functions until Python bindings are created.
**Test Plan**
`python test/test_jit.py TestBackends`
```
Couldn't download test skip set, leaving all tests enabled...
..
----------------------------------------------------------------------
Ran 2 tests in 0.104s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39552
Reviewed By: mortzur
Differential Revision: D22033855
Pulled By: SplitInfinity
fbshipit-source-id: 05abf152274e5e51c37b6004886ea25bd4d33b80
Summary:
**Summary**
This commit adds support for seralization and deserialization of
`ScriptModules` that have been lowered to a specific backend. Nothing
special was required to accomplish this, other than removing some code
in `unpickler.cpp` that guarded against the deserialization of `Any`
type objects. Now that lists and dicts are tagged with their types
during serialization, this check is no longer necessary.
**Test Plan**
This commit adds a unit test for testing that a lowered module still
produces the same results as Python and regular JIT after saving and
loading.
**Fixes**
This pull request fixes part of https://github.com/pytorch/pytorch/issues/37841.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38893
Differential Revision: D21825813
Pulled By: SplitInfinity
fbshipit-source-id: 77a7b84504e0dddf14c89b3ed5dd6b438c086f66
Summary:
**Summary**
This commit gets rid of the separate compilation unit that is currently
being created for every backend-specific module generated by
`jit::backend::generateToBackendFn` and mangles the name properly to
allow multiple backend-specific modules to coexist in the same
compilation unit.
**Test Plan**
`python test/test_jit.py TestBackends`
**Fixes**
This pull request fixes part of https://github.com/pytorch/pytorch/issues/37841.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38679
Differential Revision: D21744620
Pulled By: SplitInfinity
fbshipit-source-id: ac85b8ce0d179c057991e9299fd53a4e13ba02a9
Summary:
**Summary**
This commit adjusts the `pybind` includes in `backend.h` so
that we can avoid exporting some unrelated headers during install (which
probably shouldn't be exposed anyway). In addition, the headers that this commit
removes are not used.
**Test Plan**
Continuous integration (includes tests for JIT backends).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38562
Differential Revision: D21601694
Pulled By: SplitInfinity
fbshipit-source-id: c8f8103d24cb4f10d9eb6b3657eed75878078945
Summary:
**Summary**
This commit adds `torch::jit::RegisterBackend`, an API that allows
external backends to be registered for the execution of JIT subgraphs
outside the JIT interpreter. In order to register an external backend,
one must extend the provided abstract class `PyTorchBackendInterface` and provide
two additional functions: one that creates an instance of the aforementioned subclass
of `PyTorchBackendInterface`, and another that preprocesses a `ScriptModule` so that
it can run on the backend. Then, a `ScriptModule` that can compile and execute a given
JIT subgraph using the functions provided at registration time is generated
for each registered backend.
**Testing**
This commit adds a unit test that uses a minimal test backend
to make sure that the registration endpoint and generated
`ScriptModule` work.
```
$ python test/test_jit.py TestBackends
Fail to import hypothesis in common_utils, tests are not derandomized
.
----------------------------------------------------------------------
Ran 1 test in 0.183s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35833
Differential Revision: D21231955
Pulled By: SplitInfinity
fbshipit-source-id: 452db1123d0e5d83f97fe5da8a00fdfdb50dbef9