Commit Graph

270 Commits

Author SHA1 Message Date
Ralf Gommers
71bbd5f1d4 Add back Tensor.nonzero type annotation (#43053)
Summary:
Closes gh-42998

The issue is marked for 1.6.1, if there's anything I need to do for a backport please tell me what that is.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/43053

Reviewed By: izdeby

Differential Revision: D23131708

Pulled By: malfet

fbshipit-source-id: 2744bacce6bdf6ae463c17411b672f09707e0887
2020-08-14 11:41:19 -07:00
Keigo Kawamura
75dfa5a459 Remove itruediv because it's already defined in torch/tensor.py (#42962)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/42955

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42962

Reviewed By: mruberry

Differential Revision: D23111523

Pulled By: malfet

fbshipit-source-id: ecab7a4aae1fe556753b8d6528cae1ae201beff3
2020-08-14 11:36:23 -07:00
Gaurav Subedi
ed822de0fc change 2 instances of blacklist to blocklist in tools/pyi/gen_pyi.py (#41979)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/41722

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41979

Reviewed By: ngimel

Differential Revision: D22764112

Pulled By: zou3519

fbshipit-source-id: 3f8580c96cf45078a9df3cd9ca6fdb10d58e143f
2020-07-27 14:12:32 -07:00
kshitij12345
71fdf748e5 Add torch.atleast_{1d/2d/3d} (#41317)
Summary:
https://github.com/pytorch/pytorch/issues/38349

TODO:
 * [x] Docs
 * [x] Tests

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41317

Reviewed By: ngimel

Differential Revision: D22575456

Pulled By: mruberry

fbshipit-source-id: cc79f4cd2ca4164108ed731c33cf140a4d1c9dd8
2020-07-17 10:10:41 -07:00
Sanjeev Kumar
af34f2f63b Added missing generator argument in type annotation(pytorch#40803) (#40873)
Summary:
Added missing generator argument in type annotation(pytorch#40803)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40873

Differential Revision: D22344217

Pulled By: malfet

fbshipit-source-id: 9871401b97c96fa20c70e3f66334259ead1f8429
2020-07-01 16:05:18 -07:00
Ho Young Jhoo
ed83b9a4be Change function parameter self to input in torch.__init__.pyi (#40235)
Summary:
Fix https://github.com/pytorch/pytorch/issues/40223: Incorrect "self" keyword arguments in `torch.__init__.pyi` type hints
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40235

Differential Revision: D22285816

Pulled By: ezyang

fbshipit-source-id: ebc35290c0c625916289f1a46abc6ff2197f4bcf
2020-06-29 13:49:13 -07:00
Diego M. Rodriguez
e180ca652f Add __all__ to torch/_C/_VariableFunctions.pyi (#40499)
Summary:
Related to https://github.com/pytorch/pytorch/issues/40397

Inspired by ezyang's comment at https://github.com/pytorch/pytorch/issues/40397#issuecomment-648233001, this PR attempts to leverage using `__all__` to explicitly export private functions from `_VariableFunctions.pyi` in order to make `mypy` aware of them after:

```
if False:
    from torch._C._VariableFunctions import *
```

The generation of the `__all__` template variable excludes some items from `unsorted_function_hints`, as it seems that those without hints end up not being explicitly included in the `.pyi` file: I leaned on the side of caution and opted for having `__all__` consistent with the definitions inside the file. Additionally, added some pretty-printing to avoid having an extremely long line.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40499

Differential Revision: D22240716

Pulled By: ezyang

fbshipit-source-id: 77718752577a82b1e8715e666a8a2118a9d3a1cf
2020-06-25 14:10:07 -07:00
Edward Yang
e4766fb4d9 Meta tensors, but without code deduplication (#38490)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38490

A meta tensor is a tensor that is a lot like a normal tensor,
except it doesn't actually have any data associated with it.
You can use them to carry out shape/dtype computations without
actually having to run the actual code; for example, this could
be used to do shape inference in a JIT analysis pass.
Check out the description in DispatchKey.h for more information.

Meta tensors are part of a larger project to rationalize how we
write kernels so that we don't have to duplicate shape logic
in CPU kernel, CUDA kernel and meta kernel (this PR makes the
duplication problem worse!)  However, that infrastructure can
be built on top of this proof of concept, which just shows how
you can start writing meta kernels today even without this
infrastructure.

There are a lot of things that don't work:
- I special cased printing for dense tensors only; if you try to
  allocate a meta sparse / quantized tensor things aren't going
  to work.
- The printing formula implies that torch.tensor() can take an
  ellipsis, but I didn't add this.
- I wrote an example formula for binary operators, but it isn't
  even right!  (It doesn't do type promotion of memory layout
  correctly).  The most future proof way to do it right is to
  factor out the relevant computation out of TensorIterator,
  as it is quite involved.
- Nothing besides torch.add works right now
- Meta functions are ALWAYS included in mobile builds (selective
  build doesn't work on them).  This isn't a big deal for now
  but will become more pressing as more meta functions are added.

One reason I'm putting up this PR now is to check with Yinghai Lu
if we can unblock shape inference for accelerators, while we are
still working on a long term plan for how to unify all shape
computation across our kernels.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21935609

Pulled By: ezyang

fbshipit-source-id: f7d8636eeb8516b6bc296db99a16e56029972eee
2020-06-22 09:18:33 -07:00
Edward Yang
eace053398 Move all torch.nn.modules type annotations inline (#38211)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38211

Just because the annotations are inline doesn't mean the files type
check; most of the newly annotated files have type errors and I
added exclusions for them in mypy.ini.  The payoff of moving
all of these modules inline is I can delete the relevant code
generation logic for the pyi files (which was added ignore
annotations that weren't actually relevant anymore.)

For the most part the translation was completely mechanical, but there
were two hairy issues.  First, I needed to work around a Python 3.6 and
earlier bug where Generic has a nontrivial metaclass.  This fix is in
torch/jit/__init__.py.  Second, module.py, we need to apply the same
fix for avoiding contravariance checks that the pyi file used to have;
this is done by declaring forward as a variable (rather than a
function), which appears to be sufficient enough to get mypy to not
contravariantly check input arguments.

Because we aren't actually typechecking these modules in most
cases, it is inevitable that some of these type annotations are wrong.
I slavishly copied the old annotations from the pyi files unless there
was an obvious correction I could make.  These annotations will probably
need fixing up later.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21497397

Pulled By: ezyang

fbshipit-source-id: 2b08bacc152c48f074e7edc4ee5dce1b77d83702
2020-06-11 15:59:57 -07:00
Nikita Shulga
8811e4d00d Add/fix typing annotations to some functions (#39075)
Summary:
Add missing typing imports to some jit tests
Add typing annotations to `torch.testing._compare_scalars_internal` and `torch.testing._internal.assertTrue`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39075

Differential Revision: D21882468

Pulled By: malfet

fbshipit-source-id: dd9858eb8e11a38411544cc64daf36fced807d76
2020-06-04 13:40:04 -07:00
Edward Yang
4d880c0693 Device and torch._C function cleanup (#38173)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38173

- Introduce torch.types.Device representing all "device-like" types
- Stubbed torch.device.__reduce__
- Stubbed all torch._C functions comprehensively
- Deleted _safe_call which is unused throughout the codebase

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21497399

Pulled By: ezyang

fbshipit-source-id: 1f534442b0ec9a70d556545d072f2c06a08b9d15
2020-06-03 19:17:22 -07:00
Ralf Gommers
cebf5a8767 Run mypy on some test files, add iinfo/finfo annotations (#38220)
Summary:
Most test files have a ton of errors; there's not much point adding ignores for them though. The way of working is simply to run `mypy test/test_somefile.py`, fix up the errors, then add that file to the `files =` list in `mypy.ini`.

Can't add all of `test/*` by default, because the JIT test files have (on purpose) syntax errors that are meant to exercise the robustness of the JIT to bad annotations. Leave those alone for now.

_Depends on the ghstacked PRs in gh-38173, only the last 2 commits are new._
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38220

Differential Revision: D21503481

Pulled By: ezyang

fbshipit-source-id: 63026e73201c549d64647a03a20a4c6687720244
2020-05-11 20:18:41 -07:00
Peter Bell
5137827ad0 Lazily initialise thread local num_threads value (#37461)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/37259, fixes https://github.com/pytorch/pytorch/issues/20156

This lazily calls `at::init_num_threads` once for each thread by adding a call to `lazy_init_num_threads` in `at::parallel_for` and `at::parallel_reduce`.

If this solution is okay, then we should add the same to guard other places that might use MKL or OpenMP.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37461

Reviewed By: ezyang

Differential Revision: D21472763

Pulled By: ilia-cher

fbshipit-source-id: 889d6664f5bd4080037ade02ee324b1233992915
2020-05-11 13:24:45 -07:00
Edward Yang
6edf340338 Delete torch/__init__.pyi, deferring to direct extension stubs (#38157)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38157

This removes the error prone process of assembling `torch/__init__.pyi`
(and frequently forgetting to expose things), since now we can simply
rely on the true source file to get things done.  Most of the old
codegen in gen_pyi.py is now rerouted to various files:

- `torch/_C/__init__.pyi` (the dumping pile of all misc bindings)
- `torch/_C/_nn.pyi` (NN function bindings)
- `torch/_C/_VariableFunctions.pyi` (torch function bindings)

`torch.types` grew a bunch more definitions that previously where
defined in `torch/__init__.pyi`

Some miscellaneous changes

- Fixed a bug where we treat single TensorList argument as implying
  varargs are accepted. This is actually only supported on IntList.
  This means we can correctly generate a stub for dequantize.
- Add missing manual stub for nonzero
- Switched torch/onnx/operators.py to directly refer to _C module,
  since apparently mypy doesn't think that methods prefixed with
  underscores get reexported.  This may be a recurring theme; maybe
  we need to find a better way to solve it.

Because I was really lazy, I dumped namedtuple definitions in both
`torch._C` and `torch._C._VariableFunctions`.  This is definitely wrong.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21497400

Pulled By: ezyang

fbshipit-source-id: 07b126141c82efaca37be27c07255cb2b9b3f064
2020-05-11 07:20:13 -07:00
Kimish Patel
df31ddbd98 Add channel shuffle op fp32 + quantized. (#36815)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36815

Pytorch does not have native channel shuffle op.
This diff adds that for both fp and quantized tensors.
For FP implementation is inefficient one. For quantized there is a native
QNNPACK op for this.
ghstack-source-id: 103267234

Test Plan:
buck run caffe2/test:quantization --
quantization.test_quantized.TestQuantizedOps.test_channel_shuffle
X86 implementation for QNNPACK is sse2 so this may not be the most efficient
for x86.

Reviewed By: dreiss

Differential Revision: D21093841

fbshipit-source-id: 5282945f352df43fdffaa8544fe34dba99a5b97e
2020-05-01 10:07:15 -07:00
Bartosz Gasiorzewski
867e05921f Fix multiple issues with type annotations (#36358)
Summary:
- added tests that showcase the problems
- fixed the problems

These changes would allow me to remove many "# type: ignore" comments in my codebase.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36358

Differential Revision: D21230704

Pulled By: ezyang

fbshipit-source-id: e6d475a0aa1fb40258fa0231ade28c38108355fb
2020-04-29 11:16:39 -07:00
Robert Porter
8fe2a5e91b Fixes type annotations for named tensors #27846 (#36890)
Summary:
This enables type checking for named tensors, and fixes the underlying problems.

The bulk of the fix is modifying `gen_pyi.py` to generate reasonable types in `torch/__init__.pyi`.  I took two approaches:  First, I tried to take a generic approach and added `DimnameList` to the magic list of variable argument lists.  Unfortunately that was insufficient for many of the method signatures, so I also added manual definitions for `rename`, `refine_names`, and `unflatten` in `__init__.pyi.in`.

Finally there were a few problems in the doctests that had to be cleaned up so that `test/test_type_hints.py` will run successfully.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36890

Differential Revision: D21259192

Pulled By: zou3519

fbshipit-source-id: 2a9e7d7bec9be5ae3ae2995078c6abfa3eca103c
2020-04-28 06:51:22 -07:00
moto
5a27ec09b8 Add Inverse Short Time Fourier Transform in ATen native (#35569)
Summary:
Ported `torchaudio`'s implementation (test, and documentation as well) to ATen.

Note
 - Batch packing/unpacking is performed in Python. ATen implementation expects 4D input tensor.
 - The way `hop_length` is initialized in the same way as `stft` implementation. [The Torchaudio's version tried to mimic the same behavior but slightly different](7da61a4bee/torchaudio/functional.py (L152-L157)).

Closes https://github.com/pytorch/pytorch/issues/34827
Relates https://github.com/pytorch/pytorch/issues/3775
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35569

Differential Revision: D21178090

Pulled By: mthrok

fbshipit-source-id: 2701a8b241a36a6fb1b740c2fb2b07cb938185d4
2020-04-24 12:14:55 -07:00
Kurt Mohler
2bc49a4b85 block_diag dense (#33449)
Summary:
Add block_diag function for dense tensors, based on scipy.linalg.block_diag

Closes https://github.com/pytorch/pytorch/issues/31932
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33449

Differential Revision: D20943099

Pulled By: zou3519

fbshipit-source-id: 8b5c9476fb5af959aafa4169612c660396d9b717
2020-04-13 10:04:55 -07:00
Mike Ruberry
7c1ea736ba Extends true_divide to be a method (#34794)
Summary:
Per title. See related https://github.com/pytorch/pytorch/pull/34570.

In PyTorch 1.7 the plan is for torch.div and Python's division operator to perform "true" division, like Python 3, JAX, and NumPy. To facilitate this change, this PR expands true_divide to be a method so it can cover all of torch.div's use cases.

New true_divide tests are added to test_torch.py, test_type_promotion.py, and test_sparse.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34794

Differential Revision: D20545507

Pulled By: mruberry

fbshipit-source-id: 55286f819716c8823d1930441a69008560ac2bd5
2020-03-23 23:12:23 -07:00
Pavel Belevich
3cd3f0b3f1 Fix Tensor __radd__ type hint issue (#35231)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35231

Fixes #35213

(Note: this ignores all push blocking failures!)

Test Plan: `mypy -c "import torch; ten = torch.tensor([1.0, 2.0, 3.0]); print(7 + ten)"` should not produce any warnings

Differential Revision: D20604924

Pulled By: pbelevich

fbshipit-source-id: 53a293a99b3f2ab6ca5516b31f3a92f67eb67a39
2020-03-23 14:13:30 -07:00
Pavel Belevich
5306713a36 Replace Generator* with Generator that holds std::shared_ptr<GeneratorImpl> (#34468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34468

This PR prepares `at::Generator` for pybind11's `type_caster<at::Generator>` which is required to implement custom RNG in python. The following changes are done:
1. `at::Generator` was moved to `c10::GeneratorImpl` (similar to `c10::TensorImpl`)
2. `at::Generator` was recreated as a holder of `std::shared_ptr<c10::GeneratorImpl>` (similar to `at::Tensor` that holds `c10::intrusive_ptr<c10::TensorImpl>`)
3. Most of `at::Generator*` usages were replaced with `at::Generator`

TBD: replacing `Generator generator = nullptr` with `{}` requires JIT changes(adding Generator to IValue?)

Differential Revision: D20549420

Pulled By: pbelevich

fbshipit-source-id: 4c92a40eab8f033b359bb6c93f4cd84b07ee8d4e
2020-03-21 17:36:10 -07:00
Jerry Zhang
3fa7813b9f [quant] Add dequantize.tensors (#34348)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34348

We need this function to do swap dequantize for prim::ListConstruct since
the output of prim::ListConstruct is a list of Tensors

Test Plan:
.

Imported from OSS

Differential Revision: D20504454

fbshipit-source-id: e6155e37da98e2219a6f79737cd46fe32a509c9f
2020-03-20 22:51:51 -07:00
Mike Ruberry
3b7e1cd2cc Makes floor_divide a method, adds sparse floor division (#34552)
Summary:
(Updated per review feedback)

`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:

- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors

Tests are added to test_sparse.py and test_torch.py for these new behaviors.

In addition, this PR:

- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU

Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).

The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.

There are two potential follow-up issues suggested by this PR:

- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552

Differential Revision: D20509850

Pulled By: mruberry

fbshipit-source-id: 2cd3c828aad67191c77f2ed8470411e246f604f8
2020-03-18 15:00:53 -07:00
Mike Ruberry
1afc584188 Deprecates current torch.full integral type inference, adds torch.full complex type inference (#34709)
Summary:
Per title.

Currently torch.full will always (attempt to) produce a float tensor. This is inconsistent with NumPy in (at least) two cases:

- When integral fill values (including bool) are given
- When complex fill values are given

For example:

```
np.full((1, 2), 1).dtype
: dtype('int64')

np.full((1, 2), (1 + 1j)).dtype
: dtype('complex128')
```

Whereas in PyTorch

```
torch.full((1, 2), 1).dtype
: torch.float32

torch.full((1, 2), (1 + 1j)).dtype
: RuntimeError: value cannot be converted to type float without overflow: (1,1)
```

This PR begins the process of deprecating our current behavior of returning float tensors (by default) when given integer fill values by warning the user that integer fill values will require explicitly specifying the dtype or out kwargs in 1.6, and in 1.7 the behavior will change to return a LongTensor by default (BoolTensor for bool values). The intermediate 1.6 release is to prevent changing the behavior silently and unexpectedly.

The PR also implements inference for complex types. So that with it:

```
torch.full((1, 2), (1 + 1j)).dtype
: torch.complex64
```

The complex type inference returns a ComplexFloat tensor when given a complex fill value (and no dtype or out kwarg is specified), unless the default dtype is Double, in which case a ComplexDouble tensor is returned.

A test for these behaviors is added to test_torch.py.

Implementation note:

This PR required customizing full's dispatch because currently in eager codegen the TensorOptions object passed to functions improperly sets has_dtype() to true, even if the user did not explicitly provide a dtype. torch.arange already worked around this issue with its own custom implementation. The JIT, however, does pass a properly constructed TensorOptions object.

Future Work:

This PR does not extend torch.full's complex type inference to ONNX. This seems unlikely to come up and will be a clear error if it does. When integer type inference is added to torch.full, however, then porting the behavior to ONNX may be warranted. torch.arange ported its complex type promotion logic to ONNX, for example.

Additionally, this PR mostly leaves existing call sites in PyTorch that would trigger this warning intact. This is to be more minimal (since the PR is BC breaking). I will submit a separate PR fixing PyTorch's call sites.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34709

Differential Revision: D20509387

Pulled By: mruberry

fbshipit-source-id: 129593ba06a1662032bbbf8056975eaa59baf933
2020-03-18 12:19:31 -07:00
Mike Ruberry
a1eaaea288 Revert D20497453: [pytorch][PR] Makes floor_divide a method, adds sparse floor division
Test Plan: revert-hammer

Differential Revision:
D20497453

Original commit changeset: ac326f2007d8

fbshipit-source-id: b94b89b1a25521506e3d0a6b072d3d4d8c55e63d
2020-03-18 01:48:50 -07:00
Mike Ruberry
b7129050e7 Makes floor_divide a method, adds sparse floor division (#34552)
Summary:
(Updated per review feedback)

`torch.floor_divide` is currently a function that can operate on two tensors or a tensor and a scalar (scalar x scalar floor division is handled natively by Python and the JIT has a builtin function for it). This PR updates it to:

- have an out variant: `floor_divide(x, y, out=z)`
- be a method on a tensor: `x.floor_divide(y)`
- have an in-place variant: `x.floor_divide_(y)`
- work with sparse tensors

Tests are added to test_sparse.py and test_torch.py for these new behaviors.

In addition, this PR:

- cleans up the existing sparse division and true_division code and improves their error message
- adds testing of sparse true_division to test_sparse.py
- extends existing floor_divide testing in test_torch to run on CUDA, too, not just the CPU

Unfortunately, making floor_divide a method requires breaking backwards compatibility, and floor_divide has been added to the BC whitelist since this is international. The BC issue is that the first parameter name to torch.floor_divide is changing from input to self. If you previously called torch.floor_divide with keyword arguments, e.g. torch.floor_divide(input=x, other=y), you will need to update to torch.floor_divide(self=x, other=y), or the more common torch.floor_divide(x, y).

The intent of this PR is to allow floor_divide to be substituted for division (torch.div, /) wherever division was previously used. In 1.6 we expect torch.div to perform true_division, and floor_divide is how users can continue to perform integer division with tensors.

There are two potential follow-up issues suggested by this PR:

- the test framework might benefit from additional tensor construction classes, like one to create dividends and divisors for multiple dtypes
- the test framework might benefit from a universal function test class. while methods have reasonable coverage as part of test_torch.py's TestTensorOp tests, function coverage is spotty. Universal functions are similar enough it should be possible to generate tests for them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34552

Differential Revision: D20497453

Pulled By: mruberry

fbshipit-source-id: ac326f2007d8894f730d1278fef84d63bcb07b5d
2020-03-18 00:01:45 -07:00
Xiao Wang
ccf6fab65e Fix doc and type hints for "torch.add"; fix deprecated python calls in tests (#33935)
Summary:
This PR fixed documentation for `torch.add` with alpha. It also fixed these deprecated python calls `torch.add` and `torch.addmm` in tests, which may affect performance in *test/test_sparse.py* and *test/test_nn.py*.

cc csarofeen ptrblck
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33935

Differential Revision: D20313320

Pulled By: ngimel

fbshipit-source-id: fb08413d7e244865952e3fc0e1be7f1794ce4e9a
2020-03-06 15:53:58 -08:00
JeongUkJae
b10761d890 fix type stub errors (#33762)
Summary:
I've been using pytorch with type hintings, and I found errors that can be easily fixed. So I'm creating this PR to fix type bugs.

I expected below code should be type-checked without any errors.

```python
import torch
from torch.nn import Linear
from torch.autograd import Variable
from torch.optim import AdamW
from torch.utils import hooks

# nn.Module should have training attribute
module = Linear(10, 20)
module.training

# torch should have dtype bfloat16
tensor2 = torch.tensor([1,2,3], dtype=torch.bfloat16)

# torch.Tensor.cuda should accept int or str value
torch.randn(5).cuda(1)
torch.tensor(5).cuda('cuda:0')

# optimizer should have default attribute
module = Linear(10, 20)
print(AdamW(module.weight).default)

# torch.Tensor should have these boolean attributes
torch.tensor([1]).is_sparse
torch.tensor([1]).is_quantized
torch.tensor([1]).is_mkldnn

# Size class should tuple of int
a, b = torch.tensor([[1,2,3]]).size()

# check modules can be accessed
torch.nn.parallel
torch.autograd.profiler
torch.multiprocessing
torch.sparse
torch.onnx
torch.jit
torch.hub
torch.random
torch.distributions
torch.quantization
torch.__config__
torch.__future__

torch.ops
torch.classes

# Variable class's constructor should return Tensor
def fn_to_test_variable(t: torch.Tensor):
    return None

v = Variable(torch.tensor(1))
fn_to_test_variable(v)

# check RemovableHandle attributes can be accessed
handle = hooks.RemovableHandle({})
handle.id
handle.next_id

# check torch function hints
torch.is_grad_enabled()
```

But current master branch raises errors. (I checked with pyright)

```
$ pyright test.py
Searching for source files
Found 1 source file
test.py
  12:45 - error: 'bfloat16' is not a known member of module
  15:21 - error: Argument of type 'Literal[1]' cannot be assigned to parameter 'device' of type 'Optional[device]'
  'int' is incompatible with 'device'
  Cannot assign to 'None'
  16:22 - error: Argument of type 'Literal['cuda:0']' cannot be assigned to parameter 'device' of type 'Optional[device]'
  'str' is incompatible with 'device'
  Cannot assign to 'None'
  23:19 - error: Cannot access member 'is_sparse' for type 'Tensor'
  Member 'is_sparse' is unknown
  24:19 - error: Cannot access member 'is_quantized' for type 'Tensor'
  Member 'is_quantized' is unknown
  25:19 - error: Cannot access member 'is_mkldnn' for type 'Tensor'
  Member 'is_mkldnn' is unknown
  32:7 - error: 'autograd' is not a known member of module
  33:7 - error: 'multiprocessing' is not a known member of module
  34:7 - error: 'sparse' is not a known member of module
  35:7 - error: 'onnx' is not a known member of module
  36:7 - error: 'jit' is not a known member of module
  37:7 - error: 'hub' is not a known member of module
  38:7 - error: 'random' is not a known member of module
  39:7 - error: 'distributions' is not a known member of module
  40:7 - error: 'quantization' is not a known member of module
  41:7 - error: '__config__' is not a known member of module
  42:7 - error: '__future__' is not a known member of module
  44:7 - error: 'ops' is not a known member of module
  45:7 - error: 'classes' is not a known member of module
  60:7 - error: 'is_grad_enabled' is not a known member of module
20 errors, 0 warnings
Completed in 1.436sec
```

and below list is not checked as errors, but I think these are errors too.

* `nn.Module.training` is not boolean
* return type of `torch.Tensor.size()` is `Tuple[Unknown]`.

 ---

related issues.

https://github.com/pytorch/pytorch/issues/23731, https://github.com/pytorch/pytorch/issues/32824, https://github.com/pytorch/pytorch/issues/31753
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33762

Differential Revision: D20118884

Pulled By: albanD

fbshipit-source-id: 41557d66674a11b8e7503a48476d4cdd0f278eab
2020-02-27 06:58:53 -08:00
Jeong Ukjae
819ca2c285 add bfloat16 conversion method in type stub (__init__.pyi) (#33747)
Summary:
Resolve https://github.com/pytorch/pytorch/issues/33699

`torch/__init__.pyi` will be generated like

```python
# TODO: One downside of doing it this way, is direct use of
# torch.tensor.Tensor doesn't get type annotations.  Nobody
# should really do that, so maybe this is not so bad.
class Tensor:
    requires_grad: _bool = ...
    grad: Optional[Tensor] = ...

    # some methods here...

    overload
    def bernoulli_(self, p: _float=0.5, *, generator: Generator=None) -> Tensor: ...
    def bfloat16(self) -> Tensor: ...
    def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...

    # some methods here...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33747

Differential Revision: D20090316

Pulled By: ngimel

fbshipit-source-id: b9ce4c0d4ef720c94ccac0a0342a012e8cf3af0c
2020-02-25 08:49:47 -08:00
Jeong Ukjae
fd175fa8a2 fix bugs in gen_pyi.py (#33748)
Summary:
This loop should generate type hints for inplace binary operator methods (`binop` variable) but had been using `name` variable. That's why that wrong type hints had been generated.

Resolve https://github.com/pytorch/pytorch/issues/33698

 ---

Current `__init__.pyi` has these type hints.

```python
class Tensor:

    # some codes here...

    overload
    def zeros_like_(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def zeros_like_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def zeros_like__(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like__(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like__(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def zeros_like__(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def zeros_like___(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like___(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like___(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def zeros_like___(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def zeros_like____(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like____(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def zeros_like____(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def zeros_like____(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...

    # some codes here...
```

But `__init__.pyi` should generate these type hints.

```python
class Tensor:

    # some codes here...

    overload
    def add_(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def add_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def add_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def add_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...

    # some codes here...

    overload
    def div_(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def div_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def div_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def div_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...

    # some codes here...

    overload
    def mul_(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def mul_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def mul_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def mul_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...

    # some codes here...

    overload
    def sub_(self, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def sub_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
    overload
    def sub_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    overload
    def sub_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...

    # some codes here...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33748

Differential Revision: D20090444

Pulled By: ngimel

fbshipit-source-id: e4a5dd08126629ec4c54b630a87ee540e669ec9a
2020-02-25 08:45:19 -08:00
cshesse
c841ab403c add missing method annotations to torch.Tensor (#30576)
Summary:
Looks like some of the tensor methods defined in https://github.com/pytorch/pytorch/blob/master/torch/tensor.py#L393 were missing.

Also add missing self object to `map_`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30576

Differential Revision: D19698355

Pulled By: ezyang

fbshipit-source-id: 6df99f17d5de11715dbe89aecb292612405c08ac
2020-02-03 09:59:14 -08:00
Bartosz Gasiorzewski
a2641e6005 Make type of Tensor.type() more specific (#32353)
Summary:
Fixes the following issue:

```
$ cat test.py
import torch

t = torch.tensor(1.5)
t.type(torch.float32)[None]

$ mypy test.py
test.py:4: error: Invalid index type "None" for "Union[str, Tensor]"; expected type "Union[int, slice]"
Found 1 error in 1 file (checked 1 source file)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32353

Differential Revision: D19499388

Pulled By: ezyang

fbshipit-source-id: 715111e934aea020b20f850d27e32c4f70b82572
2020-01-21 10:37:56 -08:00
Brian Wignall
f326045b37 Fix typos, via a Levenshtein-type corrector (#31523)
Summary:
Should be non-semantic.

Uses https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines to find likely typos, with https://github.com/bwignall/typochecker to help automate the checking.

Uses an updated version of the tool used in https://github.com/pytorch/pytorch/pull/30606 .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31523

Differential Revision: D19216749

Pulled By: mrshenli

fbshipit-source-id: 7fd489cb9a77cd7e4950c1046f925d57524960ea
2020-01-17 16:03:19 -08:00
Richard Zou
9047d4df45 Remove all remaining usages of BUILD_NAMEDTENSOR (#31116)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31116

Changelist:
- remove BUILD_NAMEDTENSOR macro
- remove torch._C._BUILD_NAMEDTENSOR
- remove all python behavior that relies on torch._C._BUILD_NAMEDTENSOR

Future:
- In the next diff, I will remove all usages of
ATen/core/EnableNamedTensor.h since that header doesn't do anything
anymore
- After that, we'll be done with the BUILD_NAMEDTENSOR removal.

Test Plan: - run CI

Differential Revision: D18934951

Pulled By: zou3519

fbshipit-source-id: 0a0df0f1f0470d0a01c495579333a2835aac9f5d
2019-12-12 09:53:03 -08:00
henribru
764e0ee882 Improve Tensor type hints (#28578)
Summary:
I've typed some attributes from ee920b92c4/torch/csrc/autograd/python_variable.cpp (L490) that were not included in the stubs so that MyPy will be aware of them. I made sure to only add those attributes that are mentioned somewhere in the documentation. If there are attributes mentioned in the documentation that are not meant to be part of the public API (or the opposite), please let me know. I've also made sure that attributes that can't be set are typed as read-only properties. If setting `dtype`, `shape`, `device` or `names` directly is not part of the public API, let me know and I'll make them properties as well.

I've also added `__len__`, `__iter__` and `__contains__`, which means MyPy will no longer complain about `len(t)`, `t1 in t2` and `for t1 in t2`.

Shameless plug: I have another typing-related PR here that needs review: https://github.com/pytorch/pytorch/pull/27445

Fixes https://github.com/pytorch/pytorch/issues/28457
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28578

Reviewed By: lerks

Differential Revision: D18113954

Pulled By: fmassa

fbshipit-source-id: 0b69a2966d22054d8d87392f19ec5aa3918773bc
2019-10-27 04:43:51 -07:00
Xingying Cheng
177c95e9bc Migrate return type void to () for native functions. (#28290)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28290

ghstack-source-id: 92368250

Test Plan:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28290
ghstack-source-id: 92368250

Differential Revision: D17565528

fbshipit-source-id: f4870bb9ee4f4e7c48df4d68508b512d25ed277c
2019-10-22 15:23:20 -07:00
Igor Fedan
12dde7f58a cdist performance improvement for euclidean distance (#25799)
Summary:
jacobrgardner https://github.com/pytorch/pytorch/issues/15253#issuecomment-491467128 preposed a way to speedup euclidean distance calculation. This PR is implementation of this solution for normal and batch version.

Also simonepri provided performance metrics https://github.com/pytorch/pytorch/issues/15253#issuecomment-502363581
![image](https://user-images.githubusercontent.com/12058312/64460756-44a24580-d0c9-11e9-9f7f-a5942f4c832d.png)

Current implementation has speedup comparing to jacobrgardner approach
![image](https://user-images.githubusercontent.com/12058312/64461495-5553bb00-d0cb-11e9-87e6-302b8cc7e12b.png)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25799

Differential Revision: D17964982

Pulled By: ifedan

fbshipit-source-id: bf7bd0dbfca51fd39e667da55139347480f30a2f
2019-10-17 14:56:54 -07:00
Lu Fang
e9a91756cd Back out "[pytorch][PR] Migrate soft_margin_loss from the TH to Aten (CUDA+CPU)"
Summary: Original commit changeset: 9ddffe4dbbfa

Test Plan: ci

Reviewed By: yf225

Differential Revision: D17939581

fbshipit-source-id: 44a3b843bf1e7059fec57b9e3d12ed4886816145
2019-10-15 21:12:10 -07:00
Edward Yang
2aa84d927b Revert D17939700: Revert D17889288: [pytorch][PR] Migrate soft_margin_loss from the TH to Aten (CUDA+CPU)
Test Plan: revert-hammer

Differential Revision:
D17939700

Original commit changeset: 4fc6156ba388

fbshipit-source-id: dded0a2140d2c14cd2f2a574987ecc164b0e5bfe
2019-10-15 15:24:36 -07:00
Edward Yang
c44e33b578 Revert D17889288: [pytorch][PR] Migrate soft_margin_loss from the TH to Aten (CUDA+CPU)
Test Plan: revert-hammer

Differential Revision:
D17889288

Original commit changeset: 9ddffe4dbbfa

fbshipit-source-id: 4fc6156ba38834512b2f735ac0d03e34e69b7286
2019-10-15 14:35:28 -07:00
Andreas Koepf
9033ace9c4 Migrate soft_margin_loss from the TH to Aten (CUDA+CPU) (#27673)
Summary:
Replaces fused TH kernels with a 2-liner of regular Tensor functions.
Benchmarking revealed that performance improves compared to PyTorch 1.2.

Refs: https://github.com/pytorch/pytorch/issues/24631, https://github.com/pytorch/pytorch/issues/24632, https://github.com/pytorch/pytorch/issues/24764, https://github.com/pytorch/pytorch/issues/24765
VitalyFedyunin

### Benchmarking results on my laptop:

## 1.4.0a0+f63c9e8 output
```
PyTorch version: 1.4.0a0+f63c9e8
CPU Operator sanity check:
tensor(0.5926, grad_fn=<MeanBackward0>)
tensor([-0.0159, -0.0170, -0.0011, -0.0083, -0.0140, -0.0217, -0.0290, -0.0262,
        -0.0078, -0.0129])
double backward
tensor(-0.1540, grad_fn=<SumBackward0>)
ok

GPU Operator sanity check:
tensor(0.5601, device='cuda:0', grad_fn=<MeanBackward0>)
tensor([-0.0393, -0.0316, -0.0233, -0.0140, -0.0141, -0.0161, -0.0322, -0.0238,
        -0.0054, -0.0151], device='cuda:0')
double backward
tensor(-0.2148, device='cuda:0', grad_fn=<SumBackward0>)
ok

CPU warmup 1000 took 9.025700273923576e-05
CPU warmup 10000 took 0.0009383050055475906
CPU warmup 100000 took 0.0015631120040779933
CPU warmup TOTAL time 0.0026368020044174045
CPU forward 1000 took 6.919399311300367e-05
CPU forward 10000 took 0.00014462800754699856
CPU forward 100000 took 0.0011234670091653243
CPU forward 1000000 took 0.014555767003912479
CPU forward 10000000 took 0.13409724000666756
CPU forward 100000000 took 1.246048310000333
CPU forward TOTAL time 1.3961777170043206
CPU for- & backward 1000 took 0.0003219560021534562
CPU for- & backward 10000 took 0.00037290599721018225
CPU for- & backward 100000 took 0.001975035003852099
CPU for- & backward 1000000 took 0.02621342398924753
CPU for- & backward 10000000 took 0.2944270490115741
CPU for- & backward 100000000 took 1.6856628700043075
CPU for- & backward TOTAL time 2.0091958299890393

GPU warmup 1000 took 0.0002462909906171262
GPU warmup 10000 took 9.991199476644397e-05
GPU warmup 100000 took 0.00034347400651313365
GPU warmup TOTAL time 0.0007382350013358518
GPU forward 1000 took 9.67290106927976e-05
GPU forward 10000 took 9.349700121674687e-05
GPU forward 100000 took 9.384499571751803e-05
GPU forward 1000000 took 0.0004975290066795424
GPU forward 10000000 took 0.0017606960027478635
GPU forward 100000000 took 0.003572814996005036
GPU forward TOTAL time 0.006185991995153017
GPU for- & backward 1000 took 0.00035818999458570033
GPU for- & backward 10000 took 0.0003240450023440644
GPU for- & backward 100000 took 0.0003223370003979653
GPU for- & backward 1000000 took 0.00036740700306836516
GPU for- & backward 10000000 took 0.0003690610028570518
GPU for- & backward 100000000 took 0.0003672500024549663
GPU for- & backward TOTAL time 0.002197896988946013
```

## 1.2 output
```
PyTorch version: 1.2.0
CPU Operator sanity check:
tensor(0.5926, grad_fn=<SoftMarginLossBackward>)
tensor([-0.0159, -0.0170, -0.0011, -0.0083, -0.0140, -0.0217, -0.0290, -0.0262,
        -0.0078, -0.0129])
double backward
tensor(-0.1540, grad_fn=<SumBackward0>)
ok

GPU Operator sanity check:
tensor(0.5601, device='cuda:0', grad_fn=<SoftMarginLossBackward>)
tensor([-0.0393, -0.0316, -0.0233, -0.0140, -0.0141, -0.0161, -0.0322, -0.0238,
        -0.0054, -0.0151], device='cuda:0')
double backward
tensor(-0.2148, device='cuda:0', grad_fn=<SumBackward0>)
ok

CPU warmup 1000 took 8.422900282312185e-05
CPU warmup 10000 took 0.00036992700188420713
CPU warmup 100000 took 0.003682684007799253
CPU warmup TOTAL time 0.004169487991021015
CPU forward 1000 took 5.521099956240505e-05
CPU forward 10000 took 0.00036948200431652367
CPU forward 100000 took 0.003762389998883009
CPU forward 1000000 took 0.03725024699815549
CPU forward 10000000 took 0.3614480490068672
CPU forward 100000000 took 3.6139175269927364
CPU forward TOTAL time 4.016912263003178
CPU for- & backward 1000 took 0.0002734809968387708
CPU for- & backward 10000 took 0.0006605249946005642
CPU for- & backward 100000 took 0.005437346000690013
CPU for- & backward 1000000 took 0.051245586000732146
CPU for- & backward 10000000 took 0.5291594529990107
CPU for- & backward 100000000 took 5.23841712900321
CPU for- & backward TOTAL time 5.8253340990049765

GPU warmup 1000 took 0.0005757809994975105
GPU warmup 10000 took 0.0004058420017827302
GPU warmup 100000 took 0.0003764610009966418
GPU warmup TOTAL time 0.0013992580061312765
GPU forward 1000 took 0.0003543390048434958
GPU forward 10000 took 0.0003633670130511746
GPU forward 100000 took 0.0004807310033356771
GPU forward 1000000 took 0.0005875999922864139
GPU forward 10000000 took 0.0016903509967960417
GPU forward 100000000 took 0.014400018990272656
GPU forward TOTAL time 0.0179396449966589
GPU for- & backward 1000 took 0.0006167769897729158
GPU for- & backward 10000 took 0.0006845899915788323
GPU for- & backward 100000 took 0.000631830989732407
GPU for- & backward 1000000 took 0.0010741150035755709
GPU for- & backward 10000000 took 0.0017265130009036511
GPU for- & backward 100000000 took 0.014847910992102697
GPU for- & backward TOTAL time 0.01965981800458394
```

### Code used for performance test
```
import torch
import torch.nn.functional as F
import torch.nn as nn

from timeit import default_timer

torch.manual_seed(0)
cpu = torch.device('cpu')
gpu = torch.device('cuda')

loss_fn = F.soft_margin_loss

def run_benchmark(name, depth, require_grad, device, fn):
    total_start = default_timer()
    for i in range(3, 3 + depth):
        start = default_timer()
        n = 10 ** i
        a = torch.rand(n, requires_grad=require_grad, device=device)
        b = torch.rand(n, device=device)
        fn(a, b)
        end = default_timer()
        print('{} {} took {}'.format(name, n, end-start))
    total_end = default_timer()
    print('{} TOTAL time {}'.format(name, total_end-total_start))

def fwd_only(a, b):
    out = loss_fn(a, b)

def fwd_bck(a, b):
    out = loss_fn(a, b)
    out.backward()

def sanity_check(name, device):
    print('{} Operator sanity check:'.format(name))
    a = torch.rand(10, requires_grad=True, device=device)
    b = torch.rand(10, device=device)
    out = loss_fn(a,b)
    print(out)
    out.backward()
    print(a.grad)
    print('double backward')
    loss = loss_fn(a, b)
    loss2 = torch.autograd.grad(loss, a, create_graph=True)
    z = loss2[0].sum()
    print(z)
    z.backward()
    print('ok')
    print()

print('PyTorch version:', torch.__version__)
sanity_check('CPU', cpu)
sanity_check('GPU', gpu)
print()

run_benchmark('CPU warmup', 3, False, cpu, fwd_only)
run_benchmark('CPU forward', 6, False, cpu, fwd_only)
run_benchmark('CPU for- & backward', 6, True, cpu, fwd_bck)
print()

run_benchmark('GPU warmup', 3, False, gpu, fwd_only)
run_benchmark('GPU forward', 6, False, gpu, fwd_only)
run_benchmark('GPU for- & backward', 6, True, gpu, fwd_bck)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27673

Differential Revision: D17889288

Pulled By: ezyang

fbshipit-source-id: 9ddffe4dbbfab6180847a8fec32443910f18f0a9
2019-10-15 08:44:57 -07:00
Edward Yang
013ca32730 Devirtualize numel() (#27294)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27294

Fixes #27291

I'm a little annoyed that I have to reintroduce manual binding code.  But it's
probably not a good idea to teach the codegen how to do fastpath functions
(is it?)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17763486

Pulled By: ezyang

fbshipit-source-id: 5793b53e2db80b044e57faae325a95c649d9d459
2019-10-09 11:43:50 -07:00
Sameer Deshmukh
c389156fc4 move new_zeros to core from THP (#26511)
Summary:
Fix for issue https://github.com/pytorch/pytorch/issues/25831

ezyang can you please have a look?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26511

Differential Revision: D17763037

Pulled By: ezyang

fbshipit-source-id: 3596c01c4ab421e7785d6055cc813806f840a5c7
2019-10-04 08:23:35 -07:00
Edward Yang
2e1a5cb80e Port new_full to ATen. (#25583)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25583

Following the game plan from https://github.com/pytorch/pytorch/pull/25475

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17183438

Pulled By: ezyang

fbshipit-source-id: 67bd98206f349ddf5ffdd7be0c16e45418c1b1cd
2019-09-04 14:34:43 -07:00
Edward Yang
3d9c419648 Port new_empty to ATen. (#25475)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25475

I got sucked into this rabbit hole when I was trying to understand
what I should do with TensorTypeId occurrences in
torch/csrc/utils/tensor_new.cpp.  I eventually concluded that all of my problems
were because Tensor.new_empty was hand implemented and not actually a native
function.  So I made it a native function.

There are a bunch of other new_* functions which should get this
treatment, but I'm sending out this PR just to show how it can
be done.

The general recipe:
1. Implement a concept of TensorOptions merging (TensorOptions::merge_in).
   This represents the notion of taking a tensor, but "overriding" some
   of its values with specific overrides.  One subtlety here is how
   devices get merged; see the comments for what our existing behavior is,
   and how I preserve it.
2. Implement new_empty as a native function, using options merging.
3. Add another special case to Python binding generation to treat new_*
   similar to *_like (i.e., handle TensorOptions correctly).  The logic
   here is probably wrong, actually; we should codegen TensorOptions
   correctly no matter what happens, but new_empty follows the same
   pattern as empty_like so I opted not to touch this code too much.
4. Delete the now defunct manual binding code.
5. Delete manual type annotations that are no longer necessary since
   we're going through native.

I didn't handle memory format correctly here.  I don't know if this function
should accept memory format; prior memory format patches didn't add support
for memory format to new_like.  If we had put memory format in TensorOptions
this wouldn't have been a question.
ghstack-source-id: 89294185

Test Plan: sandcastle & ossci

Differential Revision: D17133000

fbshipit-source-id: 00f4e98bd5174f6fd54e8aba2910ea91824771d9
2019-09-04 14:34:39 -07:00
Richard Zou
7030f2c623 Implement tensor.align_to(names), torch.align_tensors(*tensors) (#23804)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23804

`output = tensor.align_to(names)` returns a view of `tensor` such that
`output.names = names`. Dimensions with the same names in `tensor` and
`output` have the same sizes; dimensions with new names have size 1.

The following must be true for this operation to succeed:
1) tensor.names must be a subsequence (not necessarily contiguous) of `names`
2) Aligning tensor.names to names must not change the absolute position from the
   right of any unnamed dimension.

In practice, these constraints mean that aligning cannot transpose
names.

Some examples:
- Tensor[C].align_to(C) -> Tensor[C]
- Tensor[N].align_to([N, C]) -> Tensor[N, C]
- Tensor[H, W].align_to([N, H, W, C]) -> Tensor[N, H, W, C]
- Tensor[None].align_to([N, None]) -> Tensor[N, None]
- Tensor[N].align_to([N, None None]) -> Tensor[N, None, None]

Examples of error cases:
- Tensor[W, H].align_to([N, H, W, C]) -> Error (not a subsequence)
- Tensor[None, H].align_to([None, H, W]) -> Error (would change the
absolute position from the right of a None dimension)

`torch.align_tensors(*tensors)` aligns the named dimensions of each
tensor according to the alignment rules so that they can be used in an
operation. More concretely, it aligns each tensor to the
longest names among the names of the tensors in `tensors`.

This allows users to emulate "broadcasting by names", which is one of
the things named tensors tries to enable. Here is an example:

```
imgs: Tensor[N, C, H, W]
scale: Tensor[N]

// Doesn't work because we do broadcasting by alignment by default
imgs * scale

// Does work
imgs, scale = torch.align_tensors(imgs, scale)
imas * scale
```

Future:
- Consider allowing broadcasting by names by default.

Test Plan:
- The diff looks pretty large but more than half of it is testing.
- new tests [namedtensor ci]

Differential Revision: D16657927

Pulled By: zou3519

fbshipit-source-id: e2f958bf5146c8ee3b694aba57d21b08e928a4e6
2019-08-14 09:40:27 -07:00
Edward Yang
d125b5ffa2 Fix C412 lint from flake8-comprehensions update. (#24184)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24184

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D16764168

Pulled By: ezyang

fbshipit-source-id: cc252a860fd7e4b7fb2b95c5d9fcdbf6935ffeb6
2019-08-12 14:34:45 -07:00
Iurii Zdebskyi
19c675178f Updated docs and added deprecation warnings to acknowledge a bool tensor (#22261)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22261
ghimport-source-id: 1611d62d056a04c0ad15ef662e594a3d206a78e2

Test Plan: Imported from OSS

Differential Revision: D16005990

Pulled By: izdeby

fbshipit-source-id: 2413824aa75a0755719e4df11acd21e6607e5a85
2019-08-05 07:42:34 -07:00
shihongzhi
be644d822b fixes #20178 (#23297)
Summary:
fixes https://github.com/pytorch/pytorch/issues/20178
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23297

Differential Revision: D16497552

Pulled By: VitalyFedyunin

fbshipit-source-id: 386933b15c27d02351f042be71b153bc9439004d
2019-07-29 12:04:44 -07:00
Jon Malmaud
bfeff1eb8f Stubs for torch.nn (#19089)
Summary:
Closes https://github.com/pytorch/pytorch/issues/18724
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19089

Differential Revision: D16073654

Pulled By: ezyang

fbshipit-source-id: 5642179651ce45ab7c5a46cc1fcc4fd6b37fa71c
2019-07-01 09:50:17 -07:00
Vitaly Fedyunin
516c7e4456 Adding memory_format to empty and empty_like operators (#20558)
Summary:
Original RFC https://github.com/pytorch/pytorch/issues/19092

To ensure that we are not introducing BC breaking change, empty_like returns contiguous tensor by default.

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nCwh = torch.empty_like(nhwC)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Now we need a way to preserve memory format in `empty_like`

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nhwC, memory_format=torch.preserve_format)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

like_nCwh = torch.empty_like(nCwh, memory_format=torch.preserve_format)
like_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Usage of `torch.preserve_format` allows us to avoid `if` constructs.

We can also generate different memory format outputs

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nCwh, memory_format=torch.channels_last)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

new_nCwh = torch.empty_like(nhwC, memory_format=torch.contiguous_format)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20558

Differential Revision: D15502474

Pulled By: VitalyFedyunin

fbshipit-source-id: 2e120d57eefad6fb8e04b8322c79871392f64331
2019-06-26 11:48:27 -07:00
Richard Zou
4bc89bd5a6 Implement tensor.select(Dimname,int) (#21795)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21795
ghimport-source-id: d13af6078a47de1d6045cfbb7d278c378fe734fe

Test Plan: Imported from OSS

Differential Revision: D15833457

Pulled By: zou3519

fbshipit-source-id: fa52aff25ce0e12f31da3eef83ea948b4f7a5d9f
2019-06-21 16:16:45 -07:00
Jerry Zhang
94f903654c Add qscheme() method (#20608)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20608

Exposing QScheme in python as Python objects like `torch.qscheme.per_tensor_affine` etc.

Reviewed By: zafartahirov

Differential Revision: D15364354

fbshipit-source-id: 4d6a96d67e9ead051cf4a8f934553a8c7232fdb7
2019-06-14 16:29:29 -07:00
Richard Zou
0d6eb209e6 Expose torch.empty(sizes, *, names, ...) to Python (#21648)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21648
ghimport-source-id: 583f155c8ee95967d2f8b9d8df27d94b9e725694

Differential Revision: D15804482

Pulled By: zou3519

fbshipit-source-id: f86520dda479100be2a752e4db8a902167413a83
2019-06-14 11:52:47 -07:00
lsrock1
4e02d3c0a1 insert default parameters in binary cross entropy with logits (#21336)
Summary:
I inserted default weight and reduction params in binary_cross_entropy_with_logits function . These default params exist in python and binary_cross_entropy function in cpp.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21336

Differential Revision: D15628917

Pulled By: ezyang

fbshipit-source-id: 38e5f53851125238842df1bd71cb6149c8603be1
2019-06-06 08:47:39 -07:00
shihongzhi
2e59a0a646 add contiguous function type hint for tensor (#21285)
Summary:
Fixes #21261
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21285

Differential Revision: D15604270

Pulled By: soumith

fbshipit-source-id: c1c02348e338477a507052de0a1065cf42a99387
2019-06-03 10:17:03 -07:00
Hans Lee
41b17e2458 Fix wrong type hints for Tensor.is_cuda, is_leaf (#21192)
Summary:
`Tensor.is_cuda` and `is_leaf` is not a predicate function but a `bool` attribute. This patch fixes the type hints in `torch/__init__.pyi` for those attributes.

```diff
- def is_cuda(self) -> bool: ...
+ is_cuda: bool
- def is_leaf(self) -> bool: ...
+ is_leaf: bool
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21192

Differential Revision: D15592766

Pulled By: soumith

fbshipit-source-id: 8c4ecd6939df8b8a8a19e1c9db6d40193bca7e4a
2019-06-01 10:04:52 -07:00
Roy Li
3038cf8eee Remove THSTensor and SparseTensorRef (#20877)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20877
ghimport-source-id: a07f53ca158f9a3dce7a25ef5a169871e98ea3ea

Differential Revision: D15480353

Pulled By: li-roy

fbshipit-source-id: 1152dbc4df827ded3be1a57f007a6b7de12f567f
2019-05-29 01:37:03 -07:00
Ilia Cherniavskii
409200df59 Move inter-op settings into ATen/Parallel (#20050)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20050
ghimport-source-id: cc102bab8abf3e56c099245976786317ed63ea14

Differential Revision: D15248576

Pulled By: ilia-cher

fbshipit-source-id: 55ddcb7af387ddfc68a42ac7167de07ea648e249
2019-05-17 03:12:02 -07:00
Roy Li
fbf505cba7 Remove copy and copy_ special case on Type (#18972)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18972
ghimport-source-id: b5d3012b00530145fa24ab0cab693a7e80cb5989

Differential Revision: D14816530

Pulled By: li-roy

fbshipit-source-id: 9c7a166abb22d2cd1f81f352e44d9df1541b1774
2019-04-18 00:21:43 -07:00
Vitaly Fedyunin
1c5073fb4b Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors (#18952)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.

Now compatible with both torch scripts:
 `  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"), pin_memory=False)`
and
`  _1 = torch.zeros([10], dtype=6, layout=0, device=torch.device("cpu"))`

Same checked for all similar functions `rand_like`, `empty_like` and others

It is fixed version of #18455
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18952

Differential Revision: D14801792

Pulled By: VitalyFedyunin

fbshipit-source-id: 8dbc61078ff7a637d0ecdb95d4e98f704d5450ba
2019-04-16 11:06:15 -07:00
Xiang Gao
ea2405c7dc Add torch.unique_consecutive (#19060)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/19045

Please review: VitalyFedyunin ngimel

This is independent on the #18649 series. This will cause merge conflicts in #18649 series, but please merge this first, and I will resolve the merge conflicts there.

The new feature is exposed in `_unique2_temporary_will_remove_soon` and `_unique_dim2_temporary_will_remove_soon`. But not at `torch.unique` yet. I will take care of the API after #18649 series get merged completely.

Benchmark on a tensor of shape `torch.Size([15320, 2])`:

```python
print(torch.__version__)
print()
a = tensor.sort().values.to('cpu')
print('cpu, sorted_input=False:')
%timeit torch._unique2_temporary_will_remove_soon(a)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True, return_counts=True)
print()
print('cpu, sorted_input=True:')
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_counts=True)
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True, return_counts=True)
print()
a = a.to('cuda')
print('cuda, sorted_input=False:')
%timeit torch._unique2_temporary_will_remove_soon(a); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, return_inverse=True, return_counts=True); torch.cuda.synchronize()
print()
print('cuda, sorted_input=True:')
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique2_temporary_will_remove_soon(a, sorted_input=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
1.1.0a0+2addccc

cpu, sorted_input=False:
340 µs ± 5.88 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
717 µs ± 14.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
52.3 ms ± 2.75 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
52.3 ms ± 1.79 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

cpu, sorted_input=True:
32.8 µs ± 285 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
49.9 µs ± 557 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
51.6 µs ± 1.08 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
78 µs ± 782 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

cuda, sorted_input=False:
213 µs ± 1.52 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
291 µs ± 3.81 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
250 µs ± 1.05 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
321 µs ± 1.59 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

cuda, sorted_input=True:
45.6 µs ± 2.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
110 µs ± 2.47 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
82 µs ± 857 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
143 µs ± 409 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

```python
print(torch.__version__)
print()
a1, a2 = tensor.unbind(1)
indices = (a1 * tensor.max() + a2).sort().indices
a = tensor.index_select(0, indices).to('cpu')
print('cpu, sorted_input=False:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_counts=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True, return_counts=True)
print()
print('cpu, sorted_input=True:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_counts=True)
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True, return_counts=True)
print()
a = a.to('cuda')
print('cuda, sorted_input=False:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, return_inverse=True, return_counts=True); torch.cuda.synchronize()
print()
print('cuda, sorted_input=True:')
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_counts=True); torch.cuda.synchronize()
%timeit torch._unique_dim2_temporary_will_remove_soon(a, dim=0, sorted_input=True, return_inverse=True, return_counts=True); torch.cuda.synchronize()
```

```
cpu, sorted_input=False:
55.4 ms ± 1.12 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.8 ms ± 616 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.2 ms ± 402 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.1 ms ± 725 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

cpu, sorted_input=True:
54.7 ms ± 585 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
55.2 ms ± 1.23 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
54.5 ms ± 865 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
54.9 ms ± 577 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

cuda, sorted_input=False:
171 µs ± 783 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
220 µs ± 1.65 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
203 µs ± 2.95 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
251 µs ± 2.83 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

cuda, sorted_input=True:
59.6 µs ± 757 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
113 µs ± 431 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
93.2 µs ± 2.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
147 µs ± 2.81 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```
The CPU implementation of `unique_dim` is super slow, see https://github.com/pytorch/pytorch/issues/18987, but this PR will not worry about this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19060

Differential Revision: D14866909

Pulled By: ezyang

fbshipit-source-id: d20012cec68c37b05cf770a6f4d6524f910b950f
2019-04-10 07:36:08 -07:00
Vitaly Fedyunin
b7c830b916 Revert "Adding pin_memory kwarg to zeros, ones, empty,... (#18854)
Summary:
This reverts commit c484cf43a0.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18854

Differential Revision: D14778393

Pulled By: VitalyFedyunin

fbshipit-source-id: 4b5a1f5b1c091bbc4a8e75614734cc011d26b452
2019-04-05 06:25:33 -07:00
Vitaly Fedyunin
c484cf43a0 Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors. (#18455)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18455

Reviewed By: ezyang

Differential Revision: D14672084

Pulled By: VitalyFedyunin

fbshipit-source-id: 9d0997ec00f59500ee018f8b851934d334012124
2019-04-02 08:48:19 -07:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
Edward Yang
4404762d7d Rename IntList to IntArrayRef. (#16751)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751

This was made more complicated by the fact that ivalue::IntList
is a thing.  So I had to fix all of the sites where we referring
to IValue post facto.

The following codemods were run, in this order:

```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```

Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752

Reviewed By: dzhulgakov

Differential Revision: D13954363

fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
2019-02-05 14:54:34 -08:00
Edward Yang
6c04224cd8 Revert "Move outplace ops to ATen (#12413)" (#16731)
Summary:
This reverts commit f660d3ae19.

cc zasdfgbnm

Reasoning at https://github.com/pytorch/pytorch/pull/12413#issuecomment-460424129
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16731

Differential Revision: D13948022

Pulled By: ezyang

fbshipit-source-id: b10669cf03679e306850314b7b5b08bed0839e19
2019-02-04 19:30:04 -08:00
Xiang Gao
f660d3ae19 Move outplace ops to ATen (#12413)
Summary:
So that things like below can be JITable, and available in C++ API:

```python
import torch

torch.jit.script
def f(x, y, z):
    x.index_add(0, y, z)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12413

Differential Revision: D13899948

Pulled By: suo

fbshipit-source-id: b0006b4bee2d1085c813733e1037e2dcde4ce626
2019-01-31 16:09:45 -08:00
Thomas Viehmann
6a6983ed7f create type hint stub files for module torch (#12500)
Summary:
We have:

- This is an initial stab at creating a type stub `torch/__init__.pyi` .
- This is only tested on Python 3, since that's the only Python version mypy
  works on.
- So far, we only aim at doing this for torch functions and torch.Tensor.
- Quite a few methods and functions have to be typed manually. These are
  done in `torch/__init__.pyi.in`

For me, PyCharm (the non-paid one) didn't seem to indicate errors in the .pyi when opening and seemed to be able to get the type hint for the few functions I tried, but I don't use PyCharm for my usual PyTorch activities, so I didn't extensively try this out.

An example of a generated PYI is at [this gist](https://gist.github.com/ezyang/bf9b6a5fa8827c52152858169bcb61b1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12500

Differential Revision: D13695553

Pulled By: ezyang

fbshipit-source-id: 4566c71913ede4e4c23ebc4a72c17151f94e8e21
2019-01-29 12:14:17 -08:00