This PR introduces CustomOp, a wrapper around a dispatcher operator that allows
users to define custom operators. It adds the skeleton for CustomOp and
some very simple behavior: as of this PR:
- one can create a CustomOp for an operator that does not have inplace or aliasing
- give it CPU/CUDA and Meta implementations
- and trace it into a graph via make_fx.
The design follows
https://docs.google.com/document/d/19Uc5OUCA187q9BZggJb70RT2ZoSTDoG5QQkJkZwd25M/edit
Concretely, we implement the following things mentioned in the doc in this PR:
- Entrypoint 1 (CustomOp.define, creating a new custom operator)
- impl (to define device-specific code) and impl_meta (to define meta
formulas)
The goal for the short term is to get the code to a state where it can be trialed
by the export folks. On top of this PR, the blockers are:
- adding Entrypoint 3 (CustomOp.from_existing)
- adding a way to do data-dependent shape formulas
These will come in future PRs since this one is getting long.
Things that will come in the longer-near-term (before 2.1):
- adding the other entrypoints mentioned in the doc (2 & 3)
- more safety checks and better error messages
- support for views and mutation
- support for defining autograd formulas
- support for functionalization
- making this API public (it's private right now).
Test Plan:
- added a new test case, TestCustomOp. It mostly tests a bunch of error
cases.
- added OpInfos for custom operators and hooked these up to
test_proxy_tensor to test that they work with make_fx. These custom
operators were based off of the ones in the autograd_function_db.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98440
Approved by: https://github.com/ezyang
In C++ we have TORCH_LIBRARY_FRAGMENT. This PR adds the same
functionality to the Python torch.library API.
The motivation for this is: for the simple custom op API, we don't want
users to need to deal with Library objects. One way to hide this from
users is to create library fragments.
Test Plan:
- tests that you can create multiple fragments and def+impl operators on each.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98439
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
Running an operator registered in python returning a symint will result in the following error:
```
RuntimeError: Unable to cast Python instance of type <class 'torch.SymInt'> to C++ type 'long'
```
The interaction of 2 things make the issue being triggered:
- We use boxed kernel here. For boxed kernel, we need convert py::object to IValue in torch/csrc/autograd/python_variable.cpp pushPyOutToStack .
- In the schema parsing code in torch/csrc/jit/frontend/schema_type_parser.cpp SchemaTypeParser::parseFakeAndRealType , if a SymInt is found, we register a Int type instead (not sure why we do this), and register SymInt as the real type.
The result is we would convert an SymInt to int in pushPyOutToStack and cause the issue.
The fix is to use real type when we convert py::object to IValue.
BTW, registering the same op using C++ API does not trigger the issue.
```
TORCH_LIBRARY(clib, m) {
m.def("sqsum(SymInt a, SymInt b) -> SymInt", [](SymInt a, SymInt b) -> SymInt {
return a * a + b * b;
});
}
```
The reason is, the kernel registered in C++ is unboxed kernel and it does not trigger the code path above that converts an py::object to IValue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95240
Approved by: https://github.com/larryliu0820, https://github.com/ezyang
Applies some more harmless pyupgrades. This one gets rid of deprecated aliases in unit_tests and more upgrades yield for loops into yield from generators which are more performance and propagates more information / exceptions from original generator. This is the modern recommended way of forwarding generators.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94309
Approved by: https://github.com/albanD
We would handle py::error_already_set correctly from pybind11 bindings,
but not from our regular TH bindings, which meant that anything from
an inner pybind11 function call was getting unconditionally transformed
into a RuntimeError. Not too many cases where we do this, but
PySymNodeImpl was one of them.
To test this, I need to raise a non-RuntimeError from a function which
is invoked from pybind11 and then propagated to a non-pybind11 call
site. I introduce GuardOnDataDependentSymNode for expressly this
purpose (this is how I discovered the bug anyway.)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93238
Approved by: https://github.com/Skylion007, https://github.com/albanD
Previously, our handling for contiguity was inconsistent in the following ways:
- is_strides_like 2d/3d and is_non_overlapping_and_dense always were computed
based on sizes_and_strides_, even if you had symbolic ints
- Furthermore, even if you set custom policy for strides, these quantities were
not overridable by subclasses
- Furthermore, we didn't even store these fields on ExtraMeta
- We duplicate implementations of compute_contiguous (plain, channels last,
channels last 3d)
- We inconsistently called refresh_numel()/refresh_contiguous(), versus
recomputing it ourselves
This factor makes a consistent strategy for all of the boolean fields, and
for numel computation. After this refactor:
- All layout boolean fields are interposable via strides policy
and can be overridden from Python; you will never access a garbage field
- All layout boolean fields are on ExtraMeta
- You can always call refresh_numel/contiguous, no matter if your Tensor is
contiguous or not
- The numel/layout boolean fields are always populated consistently with
the sizes strides fields (either on Tensor or ExtraMeta), even if you
have custom policy
- There is only one implementation of the actual computation logic
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D39907696](https://our.internmc.facebook.com/intern/diff/D39907696)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85858
Approved by: https://github.com/albanD
Based on @ezyang's suggestion, mode stack now has "one true mode" which is the _only_ mode that can ever be active at the C++ level. That mode's torch dispatch is just to take the top mode in the stack, reenable itself (if we aren't at the end of the mode stack), and run the top mode's torch_{dispatch|function}
This maintains that in the middle of a mode's torch dispatch, the mode itself will not be active. It changes the function the user has to call to see what the current mode is (no longer queries the C++, it's python only) but allows the user to also see the entire mode stack easily
Removes `enable_torch_dispatch_mode` and `.restore()` since neither makes sense in this new setup
### Background
Why do we want this? Well, a pretty common pattern that was coming up was that users had to do something like
```python
## PRE-PR UX
def f(mode):
with mode.restore(): # user needs to understand this restore thing?
...
with Mode() as m:
pass
f(m)
```
Many users were getting error from forgetting to call `.restore` or from forgetting to add the (tbh weird) "mode instantiation" step where they use the mode as a context manager with an empty body. Really, they wanted to treat modes like context managers and just write
```python
## FROM FEEDBACK, USER DESIRED CODE. POSSIBLE POST-PR
def f(mode):
with mode:
...
f(Mode())
```
** Technical Details **
With the old mode stack, we basically had a linked list so the mode itself could only be used once and had a fixed parent. In this new design, the mode stack is just a python list that we're pushing to and popping from. There's only one mode that's ever active at the C++ level and it runs the next mode in the Python list. The modes don't have state on them anymore
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84774
Approved by: https://github.com/ezyang, https://github.com/zou3519
Signed-off-by: Edward Z. Yang <ezyangfb.com>
From @ezyang's original PR:
There are a number of situations where we have non-backend kernels (e.g., CompositeImplicitAutograd, batching rules) which we would like to port to Python, but we have no way to integrate these ports with the overall system while using preexisting C++ registrations otherwise. This PR changes that by introducing a Python dispatcher (which can have its own kernels directly in Python), which can be interpose over ordinary C++ dispatch. The ingredients:
We introduce a new PythonDispatcher dispatch key, that has the same tenor as FuncTorchDynamicLayerFrontMode: it works by getting triggered before every other dispatch key in the dispatch key, and shunting to a Python implementation
The Python dispatcher is a per-interpreter global object that is enabled/disabled via the guard EnablePythonDispatcher/DisablePythonDispatcher. We don't make it compositional as I have no idea what a compositional version of this feature would look like. Because it is global, we don't need to memory manage it and so I use a simpler SafePyHandle (newly added) to control access to this pointer from non-Python C++. Like __torch_dispatch__, we use PyInterpreter to get to the Python interpreter to handle the dispatch.
I need to reimplement dispatch table computation logic in Python. To do this, I expose a lot more helper functions for doing computations on alias dispatch keys and similar. I also improve the pybind11 handling for DispatchKey so that you can either accept the pybind11 bound enum or a string; this simplifies our binding code. See https://github.com/pybind/pybind11/issues/483#issuecomment-1237418106 for how this works; the technique is generally useful.
I need to be able to call backend fallbacks. I do this by permitting you to call at a dispatch key which doesn't have a kernel for the operator; if the kernel doesn't exist, we check the backend fallback table instead.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84826
Approved by: https://github.com/ezyang
Make it so that it is valid to set metadata after detach calls, like `x.detach().resize_(...)`.
This technically lifts some restrictions around `.data`. This PR means that you can now technically call `x.data.resize_(...)`, which can now directly resize `x` instead of erroring.
My understanding: Before the tensor-variable merge, when `x` and `x.data` were really different tensors, you could resize `x.data` independently of `x`, and during the merge, this error was added to avoid silent confusing behavior changes.
It was agreed that this error has been around long enough (several years) that it's acceptable to drop. cc @albanD @ezyang.
(Ed already had a prototype PR [here](https://github.com/pytorch/pytorch/pull/83545) - I ended up making one to try to slog through test failures).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83590
Approved by: https://github.com/ezyang
I noticed I was missing tensor creations with modes when I tried
to delete proxy tensor. This was the cause.
Hypothetically, all PyInterpreter calls could get this treatment.
But I think it only matters for detach; the rest do not return
Tensors and most modes will not be interested in them.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83372
Approved by: https://github.com/zou3519
Fixes#81774
`TensorOptions` arguments in the JIT schema are optional, but in the Python API these were being translated to non-optional but with a default value. This change makes the arguments accept `None` for consistency with the JIT schema. However, it also means that `dtype=c10::nullopt` was previously completely untested so this also fixes several related bugs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82241
Approved by: https://github.com/ngimel
Currently we have 2 ways of doing the same thing for torch dispatch and function modes:
`with push_torch_dispatch_mode(X)` or `with X.push(...)`
is now the equivalent of doing
`with X()`
This removes the first API (which is older and private so we don't need to go through a deprecation cycle)
There is some risk here that this might land race with a PR that uses the old API but in general it seems like most are using the `with X()` API or `enable_torch_dispatch_mode(X())` which isn't getting removed.
EDIT: left the `with X.push(...)` API since there were ~3 land races with that over the past day or so. But made it give a warning and ask users to use the other API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78215
Approved by: https://github.com/ezyang
This PR is doing a few interrelated things, all of which are necessary to get correctness. Read the comment in torch/fx/experimental/proxy_tensor.py for the high level overview.
Let's break down the parts of this PR:
* Bug fix where `enable_torch_dispatch_mode` with `None` doesn't work. This make `enable_torch_dispatch_mode(current_mode.inner)` work which is the basis for how we temporarily disable fake tensor mode.
* Bug fix for when fake tensor mode is combined with a non-mode tensor subclass. This actually could be ablated from this PR but it affects where the logic for allowing non fake tensor inputs with lift goes, so it's all in here in one go. There are some relevant tests for the fix in fake tensor, but it turns out I didn't need this because I'm always using proxy tensors as a mode (which ensures the ordering is right.)
* New `lift_fresh` view operator. Note that like lift, we have to manually write the functionalize kernel for these functions.
* The actual change, which is to save constants when we see them in the proxy tensor mode, and then propagate them as we go (because otherwise you'll handle mutations on constants incorrectly--see test.)
This is mildly BC-breaking if anyone was previously interposing on
at::lift, but this operator was relatively new and I checked
functorch which has no explicit reference to lift. So I think it
should not be too disruptive.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81192
Approved by: https://github.com/samdow, https://github.com/bdhirsh
I noticed that in some situations torch dispatch modes were being
invoked with a mode active, which isn't supposed to happen (we
disable modes before calling into the user mode.) I also noticed that
I was getting a warning that I had a deprecated non-static definition of
torch dispatch on an argument even though there wasn't any.
It turns out this is because modes were part of the overloaded arguments
list in the Python fallback kernel for torch dispatch. This is wrong;
instead we should rely on the actual dispatching function to consult
modes. This makes the code simpler.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80992
Approved by: https://github.com/zou3519
We don't have any coverage for meta tensor correctness for backwards
because torch function mode can only allow us to interpose on
Python torch API calls, but backwards invocations happen from C++.
To make this possible, I add torch_dispatch_meta test which runs the
tests with __torch_dispatch__
While doing this, I needed to generate fresh expected failure / skip
lists for the new test suite, and I discovered that my original
scaffolding for this purpose was woefully insufficient. So I rewrote
how the test framework worked, and at the same time rewrote the
__torch_function__ code to also use the new logic. Here's whats
new:
- Expected failure / skip is now done on a per function call basis,
rather than the entire test. This means that separate OpInfo
samples for a function don't affect each other.
- There are now only two lists: expect failure list (where the test
consistently fails on all runs) and skip list (where the test
sometimes passes and fails.
- We explicitly notate the dtype that failed. I considered detecting
when something failed on all dtypes, but this was complicated and
listing everything out seemed to be nice and simple. To keep the
dtypes short, I introduce a shorthand notation for dtypes.
- Conversion to meta tensors is factored into its own class
MetaConverter
- To regenerate the expected failure / skip lists, just run with
PYTORCH_COLLECT_EXPECT and filter on a specific test type
(test_meta or test_dispatch_meta) for whichever you want to update.
Other misc fixes:
- Fix max_pool1d to work with BFloat16 in all circumstances, by making
it dispatch and then fixing a minor compile error (constexpr doesn't
work with BFloat16)
- Add resolve_name for turning random torch API functions into string
names
- Add push classmethod to the Mode classes, so that you can more easily
push a mode onto the mode stack
- Add some more skips for missing LAPACK
- Added an API to let you query if there's already a registration for
a function, added a test to check that we register_meta for all
decompositions (except detach, that decomp is wrong lol), and then
update all the necessary sites to make the test pass.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77477
Approved by: https://github.com/zou3519
Double-header bug fix:
- As reported by jansel, dtypes are still showing up as integers
when the schema is an optional dtype. This is simple enough to
fix and I added a test for it. But while I was at it...
- I noticed that the THPMemoryFormat_new idiom with "unused" name
doesn't actually work, the repr of the returned memory format
object is wrong and this shows up when we try to log the args/kwargs.
So I fixed memory format to do it properly along with everything
else.
Fixes https://github.com/pytorch/pytorch/issues/77135
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77543
Approved by: https://github.com/albanD, https://github.com/jansel
You can now do a lot of crazy things about redefining the behavior of an operator, and still be fast in cuda !!!
Example 1: swapping where's branches
```
code_string = "template <typename T> T inverted_where(bool cond, T a, T b){ return !cond ? a : b; }"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::where.self', jitted_fn, "CUDA")
# torch.where is now overridden
```
Example 2: approximate gelu with relu
```
code_string = "template <typename T> T fast_gelu(T a){ return a > 0 ? a : 0;}"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::gelu', jitted_fn, "CUDA")
# torch.nn.GELU and torch.nn.function.gelu are now overridden
```
Example 3: clipping output for numerical unstable kernels
```
code_string = "template <typename T> T clipped_exp(T a){ return a > T(10.0) ? T(22026.4657948) : exp(a); }"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::exp', jitted_fn, "CUDA")
# torch.exp(x) and x.exp() are now overridden
```
Example 4: Simulate buggy hardware behaviors
```
code_string = "template <typename T> T buggy_add(T a, T b){ return a + b + T(1); }"
jitted_fn = torch.cuda.jiterator._create_jit_fn(code_string)
my_lib = torch.library.Library("aten", "IMPL")
my_lib.impl('aten::add.Tensor', jitted_fn, "CUDA")
torch.add(x, y), "x + y" and x.add(y) are now overridden
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77121
Approved by: https://github.com/anjali411
For the most part, PrimTorch refs have the same signature as their
ATen equivalents. I modify most PrimTorch refs to register themselves
as decompositions, using the prim name they wrap to find the aten name
(except for a few cases where the prim/aten names mismatch). There are
some exclusions, falling into one of two categories:
- The torch equivalent was already implemented as a CompositeImplicitAutograd
decomposition in C++
- The ref doesn't support enough features (e.g., the real deal has more
kwargs / overloads than are currently implemented)
PrimTorch refs are written as a single function that supports all
overloads, and this style is convenient for cases where we have a bundle
of overloads for what morally is a single overload with a Union type
on an argument (which we ought to have supported in
native_functions.yaml but blah); to support registering a single decomp
for all the overloads, we modify register_decomposition to register
to ALL overloads if you pass it an overload packet. This is technically
BC breaking but no tests started failing because of it.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76835
Approved by: https://github.com/Chillee, https://github.com/mruberry
Whether or not this is a reasonable operation to do in the presence of
subclasses is a good question in and of itself, but this fixes an
obvious invariant violation, which is that if a Tensor reports that
it is a tensor subclass, it had better have the Python dispatch key.
Previously, the dispatch key would have gotten unconditionally cleared;
now we preserve what ever the original bit was.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75644
Approved by: https://github.com/albanD
Summary:
Following triage review discussion, it would be best for these tests to not be triaged high priority by automation, but by the triagers in the oncall.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74555
Reviewed By: albanD
Differential Revision: D35099202
Pulled By: janeyx99
fbshipit-source-id: 657a0317141de3a598476a6f601ec26cc26231b1
(cherry picked from commit 057519cb2494d0f9a0b169f359ac87ba9e89f088)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71708
In Python 3.2, a number of asserts were deprecated.
In Python 3.11, these asserts are deleted completely. The files in this change still use the deprecated asserts.
Switch over to the supported syntax for 3.2 onwards.
Test Plan: Tested on the internal test suite runner.
Reviewed By: ajtulloch
Differential Revision: D33503694
fbshipit-source-id: a150f296033260acf8365d77b837ce0679f57361
(cherry picked from commit abf60ed97409265222915d8265aaabedd625fd93)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73850
Previously, torch.Tensor was treated as if it were torch.FloatTensor
(where Float is whatever the default dtype was). This is not good
behavior for tensor subclasses, which inherit from torch.Tensor and
will want to super() call into it and will only notice later that
only float works as a dtype. So in this PR I relax the behavior
for this case to make the torch.Tensor constructor more useful for
subclasses.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D34707396
Pulled By: ezyang
fbshipit-source-id: a995d601007b6fcd0317d89f66ca7e08c4d6053e
(cherry picked from commit e8d0d7b3e8b17681b931cbe4f5729de2e80cf3de)
I was working on an explanation of how to call into the "super"
implementation of some given ATen operation inside of __torch_dispatch__
(https://github.com/albanD/subclass_zoo/blob/main/trivial_tensors.py)
and I kept thinking to myself "Why doesn't just calling super() on
__torch_dispatch__ work"? Well, after this patch, it does! The idea
is if you don't actually unwrap the input tensors, you can call
super().__torch_dispatch__ to get at the original behavior.
Internally, this is implemented by disabling PythonKey and then
redispatching. This implementation of disabled_torch_dispatch is
not /quite/ right, and some reasons why are commented in the code.
There is then some extra work I have to do to make sure we recognize
disabled_torch_dispatch as the "default" implementation (so we don't
start slapping PythonKey on all tensors, including base Tensors),
which is modeled the same way as how disabled_torch_function is done.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73684
Approved by: albanD
Summary:
Reland of https://github.com/pytorch/pytorch/pull/72623 that was reverted for the tls cleanup was removed.
From close inspection on the counting of the number of available keys, I think there is one more since the guard is actually one after the last usable key. With this update assert, the last updated key will still be <=63 which will fit just fine.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72832
Reviewed By: H-Huang
Differential Revision: D34228571
Pulled By: albanD
fbshipit-source-id: ce5e10a841ea87386727346cfc8d9327252574c4
(cherry picked from commit 59d3b86353)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72622
This contain a version of the test for next PR that doesn't work. To see the change in behavior more easily.
Test Plan: Imported from OSS
Reviewed By: samdow
Differential Revision: D34214954
Pulled By: albanD
fbshipit-source-id: 4d72f2d20e12c57ca7b63852ffe0c8aa61aa593b
(cherry picked from commit b5d792d103)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72620
Clarify how LoggingTensor works with autograd.
The updated comment should cover the semantic changes.
Test Plan: Imported from OSS
Reviewed By: samdow
Differential Revision: D34214956
Pulled By: albanD
fbshipit-source-id: 730d0a68f4228d2a84758e6807d869a34cbc1b31
(cherry picked from commit 66110bf16b)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71707
Why?
- detach should behave like jax.stop_gradient in functorch. Because it
does not detach all the way through, functorch (as well as a Tensor
Subclass wrapping a Tensor subclass) won't see it after the first
layer/subclass handles it.
How?
- This PR changes detach to dispatch all the way through to the backend.
- This PR also modifies native::detach to call shallow_copy_and_detach
instead of native::alias. This is because today, the semantics of detach
and alias are differently -- they differ only by
allow_tensor_metadata_change. In the future, we may choose to deprecate
this flag.
- NB: Before and after this PR, detach() shows up twice in
torch_dispatch: https://github.com/pytorch/pytorch/issues/71725. This is
not a regression so I didn't want to fix it in this PR because it is
weird to fix.
Test Plan: - added new tests; run existing tests
Reviewed By: albanD
Differential Revision: D33752860
Pulled By: zou3519
fbshipit-source-id: 40cc2dc8232e75a02586a4ba5b0ef5f16cb76617
(cherry picked from commit f88aae426e)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68945
This PR enables the Python conversion functions for `Storage` (specifically `UntypedStorage`) and also cleans up some remnants of the deprecated typed storages from `DynamicTypes.cpp`.
ghstack-source-id: 147245110
Test Plan: Run the existing unit and integration tests.
Reviewed By: albanD
Differential Revision: D32676505
fbshipit-source-id: 3a3f6db4fb0da5c78dd406c96ab70bdc37015521
(cherry picked from commit d6427b94cf)
Summary:
The error message was changed following a PR comment. And since the test doesn't run on CI, I forgot to update the test to catch the new error message.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69565
Reviewed By: mrshenli
Differential Revision: D32932982
Pulled By: albanD
fbshipit-source-id: a1da72b0ca735e72b481bc944039233094f1c422
Summary:
As per title. This in particular allows to more easily override backward function for which the underlying backend returns `None`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67793
Reviewed By: zou3519
Differential Revision: D32242962
Pulled By: albanD
fbshipit-source-id: 6e114def90ee9499161e1303d301ba7fd003ff89
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68268
Previously, `_make_wrapper_subclass` ignored the storage offset it was
passed. This PR fixes that by updating TensorMaker::computeStorageSize()
and TensorMaker::make_tensor() to take into account storage_offset.
Test Plan: - added test
Reviewed By: albanD, bdhirsh
Differential Revision: D32396330
Pulled By: zou3519
fbshipit-source-id: 2c85bc4066044fe6cb5ab0fc192de6c9069855fd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66101
Updated description:
This PR tests the functionalization pass in python in two ways. For each of the test programs that I have in `test_functionalization.py`, it:
- runs the program with and without functionalization, and asserts the outputs and (potentially mutated) inputs are equal in both cases
- runs the program with `LoggingTensor`, and uses expecttests on the resulting graph. I manually confirm that the graphs look reasonable and only contain functional ops.
Mechanically, the changes include:
- factoring out `LoggingTensor` into a testing util so it can be re-used in multiple tests
- adding some private python api's in the `torch` namespace as hooks that I can use during testing
In the original version of this PR, I also added some fixes to the `_make_subclass()` function in python: allowing you to pass in strides and storage_offset. I kept them in mainly because the changes were already there.
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D31942095
Pulled By: bdhirsh
fbshipit-source-id: 90ff4c88d461089704922e779571eee09c21d707