Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**
This was requested by someone at Facebook; this lint is turned
on for Facebook by default. "Sure, why not."
I had to noqa a number of imports in __init__. Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it. Left for future work.
Be careful! flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments. flake8-3 will
report an import unused; flake8-2 will not. For now, I just
noqa'd all these sites.
All the changes were done by hand.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14687478
fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
Summary:
applySelect does modify the tensor and removes the top most dimension which makes it complicated to track just using dim and need to use another parameter as real_dim to signify original dimension
fixes#16192
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16495
Differential Revision: D13897182
Pulled By: gchanan
fbshipit-source-id: 105581dbbff6b431cc8e2539a07e0058161e53a1
Summary:
```
The most significant change is that this fixes the error message when
indexing an empty tensor with an out-of-bounds index. For example:
x = torch.ones(10, 0)
x[:, [3, 4]]
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14441
Differential Revision: D13226737
Pulled By: colesbury
fbshipit-source-id: d1c4a35a30e3217e3d1727d13f6b354a4a3b2a24
Summary:
This speeds-up "advanced" indexing (indexing a tensor by a tensor)
on CPU and GPU. There's still a bunch of work to do, including
speeding up indexing by a byte (boolean) mask and speeding up the derivative
calculation for advanced indexing.
Here's some speed comparisons to indexing on master using a little [benchmark script](https://gist.github.com/colesbury/c369db72aad594e5e032c8fda557d909) with 16 OpenMP threads and on a P100. The test cases are listed as (input shape -> output shape).
| Test case | CPU (old vs. new) | CUDA (old vs. new) |
|-----------------------|---------------------|------------------------|
| 1024x1024 -> 512x1024 | 225 us vs. **57 us** | 297 us vs. **47 us** |
| 1024x1024 -> 1024x512 | 208 us vs. **153 us** | 335 us vs. **54 us** |
| 50x50 -> 20000x50 | 617 us vs. **77 us** | 239 us vs. **54 us** |
| 50x50 -> 50x20000 | 575 us vs. **236 us** | 262 us vs. **58 us** |
| 2x5x10 -> 10 | 65 us vs. **18 us** | 612 us vs. **93 us** |
See #11647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13420
Reviewed By: soumith
Differential Revision: D13088936
Pulled By: colesbury
fbshipit-source-id: 0a5c2ee9aa54e15f96d06692d1694c3b24b924e2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12794
common.py is used in base_module for almost all tests in test/. The
name of this file is so common that can easily conflict with other dependencies
if they happen to have another common.py in the base module. Rename the file to
avoid conflict.
Reviewed By: orionr
Differential Revision: D10438204
fbshipit-source-id: 6a996c14980722330be0a9fd3a54c20af4b3d380
Summary:
Following through on warning that indexing 0-dim tensor would be an
error in PyTorch 0.5 and to use `item()` instead
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11679
Reviewed By: soumith
Differential Revision: D9833570
Pulled By: driazati
fbshipit-source-id: ac19f811fa7320d30b7f60cf66b596d6de684d86
Summary:
These could use some autograd tests, which are coming in a later PR, but using them in autograd is probably pretty rare.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9947
Reviewed By: ezyang
Differential Revision: D9032778
Pulled By: gchanan
fbshipit-source-id: fa5a6509d3bac31ea4fae25143e82de62daabfbd
Summary:
This PR implements and tests N-dimensional empty tensors for indexing, factories, and reductions if compiled with -DUSE_TH_SIZE_ZERO_DIM.
Still remaining to add:
1) TensorShape functions
2) Simple linear algebra functions (matrix multiply variants)
3) Other functions that operate over a dimension (but don't reduce).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9209
Reviewed By: ezyang
Differential Revision: D8751257
Pulled By: gchanan
fbshipit-source-id: 2113374dc7af6caf31a99bf67b3893f130a29e23
Summary:
Booleaning indexing was special cased to handle a single boolean value, but didn't generally work given multiple booleans.
This PR unifies the behavior with slicing. Note that only 'True' and torch.tensor(True) behave like NumPy due to the lack of n-dimensional empty tensors.
The corresponding tests for false values have been added, but are guarded behind a flag until we add n-dimensional empty tensors.
Closes https://github.com/pytorch/pytorch/pull/8920
Reviewed By: ezyang
Differential Revision: D8661876
Pulled By: gchanan
fbshipit-source-id: 0dc8a45a303aa41f729d04ab8908cfaf2e3ce3d7
* Fix performance regression on simple cases of indexing
Dispatches to the old kernels
* Adapt JIT test
The test was expected to fail, but due to the change in the previous diff, it would now dispatch to index_select, which succeeds. I modified the function to go through the advanced indexing codepath
* Only do checks once, properly AutoNoGil, AutoGPU.
* Codemod to update our codebase to 0.4 standard
* Update some of the test scri[ts
* remove Variable in test_clip_grad_value
* fix _symbolic_override_wrapper_maker
* Add numpy.array-like type inference to torch.tensor.
* Temporary fix for int/double types.
* Treat python floats as the default (scalar) dtype.
* Also make 0-length sequences the default scalar type and add more tests.
* Add type inference to sparse_coo_tensor.
* Fix sparse test.
* Remove allow_variables.
* Check numpy platform bits.
* Address review comments.
* Make suggested changes to constraints.
* More checking windows builds.
* Fix test for windows.
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
This better maintains backwards compatibility when Tensors and Variables
are merged. For example:
>>> loss = var.sum().data[0]
Currently, `var.sum().data` is 1-dim so indexing. Once scalars are
enabled and Variable and Tensor are merged it will be zero-dim. This
change allows that expression to continue working (with a warning). In
the future, the canonical way to compute that expression will be:
>>> loss = float(var.sum())
Or an equivalent alternative:
>>> loss = var.sum().item()
Also fixes a few error cases.
1) Have 0-dim byte tensors behave like Py_TRUE, Py_FALSE
1) Py_TRUE now properly returns a copy from getitem
3) setitem now properly shapes the LHS consistent with the RHS (this doesn't really matter outside of error messages having the proper shape)
4) setitem supports numpy-style copy_to broadcasting (cuts off prefix 1s from src), so e.g. you can setitem (1,1,2,3) to (2,3) even though
that doesn't follow the normal inplace broadcasting rules.
Implements basic and advanced indexing using ATen tensors/variables.
Basic indexing is translated at the Python-binding level
(python_variable_indexing.cpp) to slice/squeeze/unsqueeze/select calls.
Advanced indexing is implemented in ATen in terms of take() and put()
calls.