Commit Graph

19 Commits

Author SHA1 Message Date
Jane Xu
15608d8cb4 Add guardrails preventing complex params in LBFGS & SparseAdam (#118161)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118161
Approved by: https://github.com/mikaylagawarecki
ghstack dependencies: #118160
2024-01-24 21:22:47 +00:00
Jane Xu
17ecd1e9cd Migrate test_complex_optimizer to OptimizerInfo (#118160)
This PR does what it says and more.

1. We increase coverage by a LOT! Previously, complex was not tested for many many configs, including foreach + maximize at the same time. Or the fused impls. Or just random configs people forgot about.
2. I rearranged the maximize conditional and the _view_as_real to preserve list-ness. This is needed for _view_as_real to function properly, I did add a comment in the Files Changed. This new order also just...makes more aesthetic sense.
3. Note that LBFGS and SparseAdam are skipped--they don't support complex and now we know.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118160
Approved by: https://github.com/mikaylagawarecki
2024-01-24 21:22:47 +00:00
Jane Xu
fc30c4d769 Migrate forloop directional tests to OptimizerInfo (#117410)
This PR is another step towards modernizing our optimizer tests by tackling the simplest foreach tests. The replaced tests are now removed in `test/optim/test_optim.py`.

**Changes in coverage?** Yes!
- This PR _decreases_ coverage (!!!!) by only checking the direction on the forloop implementations vs both the forloop and foreach. Why? I believe it should be sufficient to check the forloop only, as the foreach parity is already checked in the `foreach_matches_forloop` test.
- This PR also _increases_ coverage for SparseAdam with contiguous params on CUDA, which was previously forbidden due to an old old bug that has since been fixed.

What will it take to fully remove `test_basic_cases`?
- We need to flavor the tests with LRSchedulers
- Testing for param groups --> which all just distinguish between lrs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117410
Approved by: https://github.com/albanD
2024-01-24 01:28:40 +00:00
Jane Xu
c6be5d55a5 Migrate param_group testing to OptimizerInfo (#117675)
Today, our param_group testing does the equivalent of pitting weight and bias with different optimizer hyperparams and then check that the overall result is going the right direction based on maximize.

This PR introduces two tests to encompass coverage:
1. For every optimizer input (no differentiable), always force bias to have 0 weight_decay, and then check that the direction is expected. This is basically a replica to today's tests, but is more methodical as the test is a real use case.
2. To ensure that the different groups have distinct behavior, I added another test where lr is basically 0 in default group, and ensure that the param in the default group doesn't move while loss does.

Together, these tests do a better job of testing param groups than today's tests, **though we do lose some flavors**. For example, RMSProp also pits centered=True vs False across the param_groups, Adadelta has a variation on rho, and ASGD has a variation for t0. I don't think this is really a loss, as the previous test was just testing for direction and our new tests test stronger guarantees.

The leftover param group configs are used in conjunction with LRSchedulers.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117675
Approved by: https://github.com/albanD
2024-01-22 23:48:46 +00:00
Michael Lazos
aaae2d8bb6 Add compilable and capturable foreach adamax with tests (#117835)
Based off of https://github.com/pytorch/pytorch/pull/110345

Fixes https://github.com/pytorch/pytorch/issues/117812

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117835
Approved by: https://github.com/janeyx99
2024-01-20 05:29:05 +00:00
Masaki Kozuki
1d14adfa66 [mta] Fused SGD (#116585)
depends on #116583

rel:
- #94791

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116585
Approved by: https://github.com/janeyx99
2024-01-16 23:54:38 +00:00
Jane Xu
c329eddcb9 Migrate the rest of state_dict testing to OptimizerInfo (#117186)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117186
Approved by: https://github.com/albanD
ghstack dependencies: #116509
2024-01-12 22:32:37 +00:00
Jane Xu
bcf1f312a0 Migrate nontensor step and CUDA params state_dict tests to OptimizerInfo (#116509)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116509
Approved by: https://github.com/albanD
2024-01-12 22:32:37 +00:00
Jane Xu
90df7c008a Migrate state_dict bc test to OptimizerInfo, increase coverage (#116500)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116500
Approved by: https://github.com/albanD
2024-01-10 08:19:27 +00:00
Jane Xu
4af1c27fa8 Migrate repr, deterministic state_dict test to OptimizerInfo (#116496)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116496
Approved by: https://github.com/albanD
ghstack dependencies: #116471
2023-12-28 19:49:04 +00:00
Jane Xu
f3c4395358 [BE] Add helper in common_optimizers to get all optim inputs (#116471)
This will be a common utility in test_optim.py. Printing out the optimizer inputs when using this helper looks reasonable:

For local test plan, click below.
<details>

```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (d186986c)]$ python test/test_optim.py -vv -k test_step_is_noop_when_params_have_no_grad
test_step_is_noop_when_params_have_no_grad_ASGD_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.02, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.02, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.02, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'t0': 100, 'foreach': False, 'differentiable': False}, desc=t0
params=None, kwargs={'t0': 100, 'foreach': True, 'differentiable': False}, desc=t0 & foreach
params=None, kwargs={'t0': 100, 'foreach': False, 'differentiable': True}, desc=t0 & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Adadelta_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'rho': 0.95, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=rho
params=None, kwargs={'rho': 0.95, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=rho & foreach
params=None, kwargs={'rho': 0.95, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=rho & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Adagrad_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'initial_accumulator_value': 0.1, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=initial_accumulator_value
params=None, kwargs={'initial_accumulator_value': 0.1, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=initial_accumulator_value & foreach
params=None, kwargs={'initial_accumulator_value': 0.1, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=initial_accumulator_value & differentiable
params=None, kwargs={'lr': 0.1, 'lr_decay': 0.5, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=lr_decay
params=None, kwargs={'lr': 0.1, 'lr_decay': 0.5, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=lr_decay & foreach
params=None, kwargs={'lr': 0.1, 'lr_decay': 0.5, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=lr_decay & differentiable
ok
test_step_is_noop_when_params_have_no_grad_AdamW_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': True, 'differentiable': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': True}, desc=amsgrad & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Adam_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': True, 'differentiable': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': True}, desc=amsgrad & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Adamax_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.001, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_LBFGS_cpu_float32 (__main__.TestOptimRenewedCPU) ... ok
test_step_is_noop_when_params_have_no_grad_NAdam_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.001, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'momentum_decay': 0.006, 'foreach': False, 'differentiable': False}, desc=non-zero momentum_decay
params=None, kwargs={'momentum_decay': 0.006, 'foreach': True, 'differentiable': False}, desc=non-zero momentum_decay & foreach
params=None, kwargs={'momentum_decay': 0.006, 'foreach': False, 'differentiable': True}, desc=non-zero momentum_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'foreach': False, 'differentiable': False}, desc=weight_decay
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'foreach': True, 'differentiable': False}, desc=weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'foreach': False, 'differentiable': True}, desc=weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': False}, desc=decoupled_weight_decay
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'decoupled_weight_decay': True, 'foreach': True, 'differentiable': False}, desc=decoupled_weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': True}, desc=decoupled_weight_decay & differentiable
ok
test_step_is_noop_when_params_have_no_grad_RAdam_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.002, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.002, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.002, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'eps': 1e-06, 'foreach': False, 'differentiable': False}, desc=non-default eps
params=None, kwargs={'eps': 1e-06, 'foreach': True, 'differentiable': False}, desc=non-default eps & foreach
params=None, kwargs={'eps': 1e-06, 'foreach': False, 'differentiable': True}, desc=non-default eps & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': False}, desc=decoupled_weight_decay
params=None, kwargs={'weight_decay': 0.9, 'decoupled_weight_decay': True, 'foreach': True, 'differentiable': False}, desc=decoupled_weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': True}, desc=decoupled_weight_decay & differentiable
ok
test_step_is_noop_when_params_have_no_grad_RMSprop_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.001, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'foreach': False, 'differentiable': False}, desc=centered
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'foreach': True, 'differentiable': False}, desc=centered & foreach
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'foreach': False, 'differentiable': True}, desc=centered & differentiable
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'foreach': False, 'differentiable': False}, desc=momentum
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'foreach': True, 'differentiable': False}, desc=momentum & foreach
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'foreach': False, 'differentiable': True}, desc=momentum & differentiable
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Rprop_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.0002, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.0002, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.0002, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'etas': (0.5, 1.5), 'foreach': False, 'differentiable': False}, desc=non-default etas
params=None, kwargs={'etas': (0.5, 1.5), 'foreach': True, 'differentiable': False}, desc=non-default etas & foreach
params=None, kwargs={'etas': (0.5, 1.5), 'foreach': False, 'differentiable': True}, desc=non-default etas & differentiable
params=None, kwargs={'step_sizes': (2e-06, 100), 'foreach': False, 'differentiable': False}, desc=non-default step_sizes
params=None, kwargs={'step_sizes': (2e-06, 100), 'foreach': True, 'differentiable': False}, desc=non-default step_sizes & foreach
params=None, kwargs={'step_sizes': (2e-06, 100), 'foreach': False, 'differentiable': True}, desc=non-default step_sizes & differentiable
params=None, kwargs={'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_SGD_cpu_float32 (__main__.TestOptimRenewedCPU) ... params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'foreach': False, 'differentiable': False}, desc=momentum
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'foreach': True, 'differentiable': False}, desc=momentum & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'foreach': False, 'differentiable': True}, desc=momentum & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'dampening': 0.5, 'foreach': False, 'differentiable': False}, desc=dampening
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'dampening': 0.5, 'foreach': True, 'differentiable': False}, desc=dampening & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'dampening': 0.5, 'foreach': False, 'differentiable': True}, desc=dampening & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=non-zero weight_decay
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=non-zero weight_decay & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=non-zero weight_decay & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nesterov
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nesterov & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nesterov & differentiable
params=None, kwargs={'lr': 0.01, 'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'lr': 0.01, 'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'lr': 0.01, 'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_SparseAdam_cpu_float32 (__main__.TestOptimRenewedCPU) ... ok
test_step_is_noop_when_params_have_no_grad_ASGD_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.02, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.02, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.02, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'t0': 100, 'foreach': False, 'differentiable': False}, desc=t0
params=None, kwargs={'t0': 100, 'foreach': True, 'differentiable': False}, desc=t0 & foreach
params=None, kwargs={'t0': 100, 'foreach': False, 'differentiable': True}, desc=t0 & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Adadelta_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'rho': 0.95, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=rho
params=None, kwargs={'rho': 0.95, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=rho & foreach
params=None, kwargs={'rho': 0.95, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=rho & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Adagrad_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'initial_accumulator_value': 0.1, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=initial_accumulator_value
params=None, kwargs={'initial_accumulator_value': 0.1, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=initial_accumulator_value & foreach
params=None, kwargs={'initial_accumulator_value': 0.1, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=initial_accumulator_value & differentiable
params=None, kwargs={'lr': 0.1, 'lr_decay': 0.5, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=lr_decay
params=None, kwargs={'lr': 0.1, 'lr_decay': 0.5, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=lr_decay & foreach
params=None, kwargs={'lr': 0.1, 'lr_decay': 0.5, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=lr_decay & differentiable
ok
test_step_is_noop_when_params_have_no_grad_AdamW_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
ok
test_step_is_noop_when_params_have_no_grad_Adam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.9, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
ok
test_step_is_noop_when_params_have_no_grad_Adamax_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.001, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_LBFGS_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_step_is_noop_when_params_have_no_grad_NAdam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.001, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'momentum_decay': 0.006, 'foreach': False, 'differentiable': False}, desc=non-zero momentum_decay
params=None, kwargs={'momentum_decay': 0.006, 'foreach': True, 'differentiable': False}, desc=non-zero momentum_decay & foreach
params=None, kwargs={'momentum_decay': 0.006, 'foreach': False, 'differentiable': True}, desc=non-zero momentum_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'foreach': False, 'differentiable': False}, desc=weight_decay
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'foreach': True, 'differentiable': False}, desc=weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'foreach': False, 'differentiable': True}, desc=weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': False}, desc=decoupled_weight_decay
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'decoupled_weight_decay': True, 'foreach': True, 'differentiable': False}, desc=decoupled_weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'momentum_decay': 0.006, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': True}, desc=decoupled_weight_decay & differentiable
ok
test_step_is_noop_when_params_have_no_grad_RAdam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.002, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.002, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.002, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'eps': 1e-06, 'foreach': False, 'differentiable': False}, desc=non-default eps
params=None, kwargs={'eps': 1e-06, 'foreach': True, 'differentiable': False}, desc=non-default eps & foreach
params=None, kwargs={'eps': 1e-06, 'foreach': False, 'differentiable': True}, desc=non-default eps & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': False}, desc=decoupled_weight_decay
params=None, kwargs={'weight_decay': 0.9, 'decoupled_weight_decay': True, 'foreach': True, 'differentiable': False}, desc=decoupled_weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'decoupled_weight_decay': True, 'foreach': False, 'differentiable': True}, desc=decoupled_weight_decay & differentiable
ok
test_step_is_noop_when_params_have_no_grad_RMSprop_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.001, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.001, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'foreach': False, 'differentiable': False}, desc=centered
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'foreach': True, 'differentiable': False}, desc=centered & foreach
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'foreach': False, 'differentiable': True}, desc=centered & differentiable
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'foreach': False, 'differentiable': False}, desc=momentum
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'foreach': True, 'differentiable': False}, desc=momentum & foreach
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'foreach': False, 'differentiable': True}, desc=momentum & differentiable
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.9, 'centered': True, 'momentum': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_Rprop_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.0002, 'foreach': False, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.0002, 'foreach': True, 'differentiable': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.0002, 'foreach': False, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'etas': (0.5, 1.5), 'foreach': False, 'differentiable': False}, desc=non-default etas
params=None, kwargs={'etas': (0.5, 1.5), 'foreach': True, 'differentiable': False}, desc=non-default etas & foreach
params=None, kwargs={'etas': (0.5, 1.5), 'foreach': False, 'differentiable': True}, desc=non-default etas & differentiable
params=None, kwargs={'step_sizes': (2e-06, 100), 'foreach': False, 'differentiable': False}, desc=non-default step_sizes
params=None, kwargs={'step_sizes': (2e-06, 100), 'foreach': True, 'differentiable': False}, desc=non-default step_sizes & foreach
params=None, kwargs={'step_sizes': (2e-06, 100), 'foreach': False, 'differentiable': True}, desc=non-default step_sizes & differentiable
params=None, kwargs={'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_SGD_cuda_float32 (__main__.TestOptimRenewedCUDA) ... params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False}, desc=default
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False}, desc=default & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'foreach': False, 'differentiable': False}, desc=momentum
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'foreach': True, 'differentiable': False}, desc=momentum & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'foreach': False, 'differentiable': True}, desc=momentum & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'dampening': 0.5, 'foreach': False, 'differentiable': False}, desc=dampening
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'dampening': 0.5, 'foreach': True, 'differentiable': False}, desc=dampening & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'dampening': 0.5, 'foreach': False, 'differentiable': True}, desc=dampening & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=non-zero weight_decay
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=non-zero weight_decay & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=non-zero weight_decay & differentiable
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.9, 'foreach': False, 'differentiable': False}, desc=nesterov
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.9, 'foreach': True, 'differentiable': False}, desc=nesterov & foreach
params=None, kwargs={'lr': 0.01, 'momentum': 0.9, 'nesterov': True, 'weight_decay': 0.9, 'foreach': False, 'differentiable': True}, desc=nesterov & differentiable
params=None, kwargs={'lr': 0.01, 'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': False}, desc=maximize
params=None, kwargs={'lr': 0.01, 'weight_decay': 0.9, 'maximize': True, 'foreach': True, 'differentiable': False}, desc=maximize & foreach
params=None, kwargs={'lr': 0.01, 'weight_decay': 0.9, 'maximize': True, 'foreach': False, 'differentiable': True}, desc=maximize & differentiable
ok
test_step_is_noop_when_params_have_no_grad_SparseAdam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok

----------------------------------------------------------------------
Ran 26 tests in 19.089s

OK
```

</details>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116471
Approved by: https://github.com/albanD
2023-12-28 19:49:04 +00:00
Jane Xu
44b98c09ca [BE] migrate all assertRaises tests to OptimizerInfo test_errors (#116315)
Removes a part of the sparse adam test and the following three tests: `test_fused_optimizer_raises`, `test_duplicate_params_across_param_groups`, `test_duplicate_params_in_one_param_group`

```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (d2d129de)]$ python test/test_optim.py -k test_fused_optimizer_raises -k test_duplicate_params_across_param_groups -k test_duplicate_params_in_one_param_group
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
...
----------------------------------------------------------------------
Ran 3 tests in 0.023s

OK
```

Increases coverage by testing the duplicate param tests on ALL the optims instead of just one each. Also fixes SparseAdam bug which was accidentally calling torch.unbind through list instead of putting params in a list. This bug was caught by migrating the weird warning stuff to just one easy warning context manager, which checks that nothing else gets raised.

The new test_errors does not run slower than before, overhead is still king:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (d2d129de)]$ python test/test_optim.py -k test_errors
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
..........................
----------------------------------------------------------------------
Ran 26 tests in 10.337s

OK
```

Compared to test_errors BEFORE my commit :p
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (b47aa696)]$ python test/test_optim.py -k test_errors
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
.............sssssssssssss
----------------------------------------------------------------------
Ran 26 tests in 11.980s

OK (skipped=13)
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (b47aa696)]$
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116315
Approved by: https://github.com/mikaylagawarecki
2023-12-27 00:08:31 +00:00
Jane Xu
edf1ea622d Move step is noop tests (#115299)
As stated. I do notice there is perhaps opportunity to abstract, but the tests as written are also super understandable and more abstraction might not be desirable.

This PR _increases coverage_. The original tests each tested 12 default configs (left out Rprop). Now the tests test ~80 configs, and then foreach + fused on top of that! Test time, we basically increase over 10-fold, but this test is tiny so we are not worried:

Old:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5ca9672c)]$ python test/test_optim.py -k test_step_is_noop_when_params_have_no_grad
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
.
----------------------------------------------------------------------
Ran 1 test in 0.028s

OK
```

New (includes the old test):
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5ca9672c)]$ python test/test_optim.py -k test_step_is_noop_when_params_have_no_grad
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
...........................
----------------------------------------------------------------------
Ran 27 tests in 0.456s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115299
Approved by: https://github.com/albanD
ghstack dependencies: #114802, #115023, #115025
2023-12-20 22:49:44 +00:00
Jane Xu
8f3a0594e9 Move tests depending on listed configs to OptimizerInfo (#115025)
Removing 4 tests:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (7539011b)]$ python test/test_optim.py -v -k test_fused_optimizers_with_large_tensors -k test_fused_optimizers_with_varying_tensors -k test_multi_tensor_optimizers_with_large_tensors -k test_multi_tensor_optimizers_with_varying_tensors
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
test_fused_optimizers_with_large_tensors (optim.test_optim.TestOptim) ... ok
test_fused_optimizers_with_varying_tensors (optim.test_optim.TestOptim) ... ok
test_multi_tensor_optimizers_with_large_tensors (optim.test_optim.TestOptim) ... ok
test_multi_tensor_optimizers_with_varying_tensors (optim.test_optim.TestOptim) ... ok

----------------------------------------------------------------------
Ran 4 tests in 22.731s

OK
```

For the same 4 but more granular:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (7539011b)]$ python test/test_optim.py  -v -k test_fused_large_tensor -k test_fused_mixed_device_dtype -k test_foreach_large_tensor -k test_foreach_mixed_device_dtype
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
test_foreach_large_tensor_ASGD_cpu_float16 (__main__.TestOptimRenewedCPU) ... skipped 'Only runs on cuda'
....
test_fused_mixed_device_dtype_Adam_cpu_float32 (__main__.TestOptimRenewedCPU) ... skipped 'Only runs on cuda'
test_foreach_large_tensor_ASGD_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_Adadelta_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_Adagrad_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_AdamW_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_Adam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_NAdam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_RAdam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_RMSprop_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_Rprop_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_large_tensor_SGD_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_ASGD_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_Adadelta_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_Adagrad_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_AdamW_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_Adam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_Adamax_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_NAdam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_RAdam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_RMSprop_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_Rprop_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_mixed_device_dtype_SGD_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_fused_large_tensor_AdamW_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_fused_large_tensor_Adam_cuda_float16 (__main__.TestOptimRenewedCUDA) ... ok
test_fused_mixed_device_dtype_AdamW_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok
test_fused_mixed_device_dtype_Adam_cuda_float32 (__main__.TestOptimRenewedCUDA) ... ok

----------------------------------------------------------------------
Ran 50 tests in 50.785s

OK (skipped=25)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115025
Approved by: https://github.com/albanD
ghstack dependencies: #114802, #115023
2023-12-20 22:49:44 +00:00
Jane Xu
05d60931b3 Migrate test_peak_mem_multi_tensor_optimizers to OptimizerInfo (#115023)
Replace the following:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (1bbf1c6f)]$ python test/test_optim.py -k test_peak_mem_multi_tensor_optimizers
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
.
----------------------------------------------------------------------
Ran 1 test in 38.599s

OK
```

with 11 tests (one for each foreach optim :))
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (1bbf1c6f)]$ python test/test_optim.py -k TestOptimRenewedCUDA.test_foreach_memory
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
...........
----------------------------------------------------------------------
Ran 11 tests in 39.293s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115023
Approved by: https://github.com/albanD
ghstack dependencies: #114802
2023-12-20 22:49:44 +00:00
Jane Xu
4fb92b591d [BE] remove redundant _test_derived_optimizers by migrating more to OptimizerInfo (#114802)
New tests look like:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (af8fca04)]$ python test/test_optim.py -v -k TestOptimRenewedCUDA.test_fused
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
test_fused_AdamW_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_fused_Adam_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok

----------------------------------------------------------------------
Ran 2 tests in 34.591s

OK
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (af8fca04)]$ python test/test_optim.py
-v -k test_set_default_dtype_works_with_foreach
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
test_set_default_dtype_works_with_foreach_ASGD_cpu_float64 (__main__.TestOptimRenewedCPU) ... skipped 'Only runs on cuda'
...
test_set_default_dtype_works_with_foreach_ASGD_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_Adadelta_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_Adagrad_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_AdamW_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_Adam_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_Adamax_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_NAdam_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_RAdam_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_RMSprop_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_Rprop_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_set_default_dtype_works_with_foreach_SGD_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok

----------------------------------------------------------------------
Ran 22 tests in 32.915s

OK (skipped=11)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114802
Approved by: https://github.com/albanD
2023-12-20 22:49:44 +00:00
Jane Xu
056a882cb9 add markDynamoStrictTest to TestOptimRenewed, removing flakiness (#115947)
fixes #115406 fixes #115394 fixes #115393 fixes #115392 fixes #115391

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115947
Approved by: https://github.com/albanD, https://github.com/zou3519
2023-12-16 01:33:32 +00:00
Jane Xu
21cca2494d Move test_multi_tensor_optimizers to use OptimizerInfos (#114797)
This PR aims for parity+ compared to the old testing for the simplest foreach test case.

Test coverage increase: we now test foreach optimizers with CPU as well as on GPU.

Before:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (19136605)]$ python test/test_optim.py -v -k test_multi_tensor_optimizers
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
test_multi_tensor_optimizers (optim.test_optim.TestOptim) ... ok

----------------------------------------------------------------------
Ran 1 test in 7.253s

OK
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (19136605)]$
```

Now, we get granular test cases at the cost of overhead!
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (19136605)]$ python test/test_optim.py -v -k test_foreach
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
test_foreach_ASGD_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_Adadelta_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_Adagrad_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_AdamW_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_Adam_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_Adamax_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_NAdam_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_RAdam_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_RMSprop_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_Rprop_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_SGD_cpu_float64 (__main__.TestOptimRenewedCPU) ... ok
test_foreach_ASGD_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_Adadelta_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_Adagrad_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_AdamW_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_Adam_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_Adamax_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_NAdam_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_RAdam_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_RMSprop_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_Rprop_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok
test_foreach_SGD_cuda_float64 (__main__.TestOptimRenewedCUDA) ... ok

----------------------------------------------------------------------
Ran 22 tests in 30.954s

OK
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (19136605)]$
```

Why the increase in time?
Two reasons:
1. overhead. Any _CUDA_ *Info test (OpInfo, ModuleInfo, OptimizerInfo) will wrap itself with the `CudaNonDefaultStream` policy, and `CudaNonDefaultStream.__enter__` when called for the first time will go through all visible CUDA devices and synchronize each of them, thus forcing the CUDAContext to be init'd. Doing this for all 8 devices takes ~10-15s. Also, test parametrization costs a little overhead too, but not to the level init'ing CUDA context does.
2. We test more! Now, we have 72 configs (in the foreach optimizer world) whereas we only had 59 before.

Next steps for the future:
- consider adding more Tensor LR configs (like a Tensor LR without capturable in the single tensor case)
- this is likely the next PR or 2: migrate all uses of _test_derived_optimizers in test_optim to TestOptimRenewed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114797
Approved by: https://github.com/albanD
2023-12-07 19:37:56 +00:00
Jane Xu
d78fe039eb Introduce OptimizerInfos + add a test_errors (#114178)
Introduce OptimizerInfos + use them to refactor out the error testing.

Why OptimizerInfos?
- cleaner, easier way to test all configs of optimizers
- would plug in well with devicetype to auto-enable tests for devices like MPS, meta
- would allow for more granular testing. currently, lots of functionality is tested in `_test_basic_cases` and some of that should be broken down more.

What did I do for error testing?
- I moved out some error cases from `_test_basic_cases` into a new test_errors parametrized test.
- The new test has to live in TestOptimRenewed (bikeshedding welcome) because the parametrized tests need to take in device and dtype and hook correctly, and not all tests in TestOptim do that.
- TestOptimRenewed also is migrating to the toplevel test/test_optim.py now because importing TestOptimRenewed does not work (because of test instantiation, TestOptimRenewed gets replaced with TestOptimRenewedDevice for CPU, CUDA, and whatever other device).

Is there any change in test coverage?
- INCREASE: The error case where a single Parameter (vs a container of them) are passed in has now expanded to all optims instead of only LBFGS
- DECREASE: Not much. The only thing is we no longer test two error cases for foreach=True AND foreach=False, which I think is redundant. (Highlighted in comments)

Possible but not urgent next step: test ALL possible error cases by going through all the constructors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114178
Approved by: https://github.com/albanD
2023-12-05 22:58:36 +00:00