Commit Graph

14 Commits

Author SHA1 Message Date
Vasiliy Kuznetsov
4779553921 Revert "[quant] Remove nn.quantized.ReLU module and nn.quantized.functional.relu (#47415)" (#47949)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47949

This reverts commit 1478e5ec2a.

Test Plan: Imported from OSS

Reviewed By: supriyar

Differential Revision: D24966363

Pulled By: vkuzo

fbshipit-source-id: ca1126f699eef84027a15df35962728296c8a790
2020-11-14 08:40:30 -08:00
Jerry Zhang
1478e5ec2a [quant] Remove nn.quantized.ReLU module and nn.quantized.functional.relu (#47415)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47415

nn.ReLU works for both float and quantized input, we don't want to define an nn.quantized.ReLU
that does the same thing as nn.ReLU, similarly for nn.quantized.functional.relu

this also removes the numerical inconsistency for models quantizes nn.ReLU independently in qat mode

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D24747035

fbshipit-source-id: b8fdf13e513a0d5f0c4c6c9835635bdf9fdc2769
2020-11-12 10:56:30 -08:00
Jerry Zhang
dd77d5a1d4 [quant][refactor] factor out get_combined_dict function (#47781)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47781

Test Plan: Imported from OSS

Reviewed By: supriyar

Differential Revision: D24900303

fbshipit-source-id: 1a2cb0ec536384abcd140e0d073f0965ed2800cd
2020-11-11 21:01:31 -08:00
Jerry Zhang
0cba3e3704 [quant][graphmode][fx] Add support for qat convbn{relu}1d (#47248)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47248

Test Plan: Imported from OSS

Reviewed By: vkuzo

Differential Revision: D24696524

fbshipit-source-id: 684db12be201307acbdc89a44192cf2270491dba
2020-11-03 22:43:33 -08:00
Jerry Zhang
53a5f08e0c [quant][eagermode] Avoid inserting fakequant for sigmoid/hardsigmoid/tanh in eval mode (#47297)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47297

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D24708270

fbshipit-source-id: a19b6dbe07d5c80f3cc78a987742d345d86e1cd1
2020-11-03 21:33:35 -08:00
Jerry Zhang
6b50ccc41c [quant][graphmode][fx] Support sigmoid/hardsigmoid/tanh in qat (#46738) (#46871)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46871

Test Plan:
Imported from OSS

Imported from OSS

Reviewed By: vkuzo

Differential Revision: D24547180

fbshipit-source-id: d2eb9aa74c6e5436204376b1a2ebcc6188d3562f
2020-10-26 23:52:07 -07:00
Alban Desmaison
25db74bf5e Revert D24486972: [quant][graphmode][fx] Support sigmoid/hardsigmoid/tanh in qat
Test Plan: revert-hammer

Differential Revision:
D24486972 (e927b62e73)

Original commit changeset: c9f139bfdd54

fbshipit-source-id: 2a75f5ec93d55a62b40d1cdd49adcf65436058f7
2020-10-26 12:47:05 -07:00
Jerry Zhang
e927b62e73 [quant][graphmode][fx] Support sigmoid/hardsigmoid/tanh in qat (#46738)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46738

Test Plan: Imported from OSS

Reviewed By: raghuramank100

Differential Revision: D24486972

fbshipit-source-id: c9f139bfdd54973da1a93a45e32937595dbe67fc
2020-10-26 12:04:42 -07:00
Jerry Zhang
746febdeac [quant][graphmode][fx] Add additional_object_mapping argument to convert (#46338)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46338

Should we merge quantized module and quantized operator configurations?

Test Plan: Imported from OSS

Reviewed By: vkuzo

Differential Revision: D24317435

fbshipit-source-id: 3575251fe9d80a6628b8c3243c2ed92ea5e921e3
2020-10-21 16:39:07 -07:00
Jerry Zhang
f9446cb15a [quant][refactor] Remove register api and rename get_*_mapping to get_default_*_mapping (#46337)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46337

We plan to pass around the mappings instead of using global registration api to keep
the mappings local to the transformations user is performing

Test Plan: Imported from OSS

Reviewed By: vkuzo

Differential Revision: D24317436

fbshipit-source-id: 81569b88f05eeeaa9595447e482a12827aeb961f
2020-10-20 15:53:47 -07:00
Zafar
635aebdfab [quant] Refactoring the mappings files (#44847)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44847

Test Plan: Imported from OSS

Reviewed By: jerryzh168

Differential Revision: D23747007

Pulled By: z-a-f

fbshipit-source-id: 7d8fcc84a77454cc1479e5158f5a62eda5824a87
2020-10-14 13:15:34 -07:00
Jerry Zhang
0da6730f02 [quant][graphmode][fx][eagermode] Add leaky relu support in quantization workflows (#45712)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45712

Eager mode will still be able to use functional leaky relu, but it will be less accurate than
LeakyReLU module.
FX graph mode will support both leaky relu functional and module

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D24069961

fbshipit-source-id: 8d91c3c50c0bcd068ba3072378ebb4da9549be3b
2020-10-06 12:16:04 -07:00
Zafar
2b1f25885e [quant] Fix ConvTranspose mapping (#44844)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44844

Test Plan: Imported from OSS

Reviewed By: jerryzh168

Differential Revision: D23746466

Pulled By: z-a-f

fbshipit-source-id: cb84e0fef5ab82e8ed8dd118d9fb21ee7b480ef7
2020-09-22 11:59:42 -07:00
Jerry Zhang
0c58a017bd [quant][eagermode][refactor] Add set/get method for quantization and fusion mappings (#43990)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43990

Allow user to register custom quantization and fusion patterns

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D23485344

fbshipit-source-id: 4f0174ee6d8000d83de0f73cb370e9a1941d54aa
2020-09-10 21:29:39 -07:00