Summary:
Fixes https://github.com/pytorch/pytorch/issues/63341.
This PR adds a new test, `test_noncontigous_samples`, that runs ops forward and backward and compares their outputs and grads between "normal" contiguous SampleInputs and noncontiguous SampleInputs. This test should preclude the need for noncontiguous SampleInputs going forward.
The test was added by generalizing the `.numpy()` transform on SampleInputs to support a new `.noncontiguous()` transform and copying forward/backward patterns from other tests in test_ops.py. It also discovered that many SampleInputs were incorrectly reusing tensors, so those have been revised. SampleInputs creating noncontiguous tensors for testing have also been altered to no longer do so.
In addition, this test discovered the following high priority silent correctness issues:
- https://github.com/pytorch/pytorch/issues/67432
- https://github.com/pytorch/pytorch/issues/67517
- https://github.com/pytorch/pytorch/issues/67513
- https://github.com/pytorch/pytorch/issues/67512
- https://github.com/pytorch/pytorch/issues/67470
It also identified the following issues:
- https://github.com/pytorch/pytorch/issues/67539
The pow OpInfo also incorrectly specified that pow supported the bool datatype, and this has been fixed. Its SampleInputs were written in a way that made requests for boolean SampleInputs return type promoting inputs that never actually tried to compute pow in bool.
This PR suggests we should add the following guidance for writing SampleInputs:
- ensure that all SampleInputs are independent of each other (don't reuse tensors)
- ensure that all SampleInput tensors have no grad or backward functions (no autograd history) -- they should be leaves
- prefer keeping sample inputs simple where possible, a good set of handwritten samples that test interesting cases may be better than an exhaustive but hard to read and maintain programmatic enumeration
- keep code readable by using functools.partial and writing simple inline helpers; break up large statements into a more readable series of smaller statements; especially don't write complicated generator expressions with a `for` at the end!
fyi kshitij12345 krshrimali pmeier anjali411 saketh-are zou3519 dagitses
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67434
Reviewed By: ngimel
Differential Revision: D32014557
Pulled By: mruberry
fbshipit-source-id: b17e19adc1d41e24441f0765af13d381fef5e3c1
Summary:
CAFFE2 has been deprecated for a while, but still included in every PyTorch build.
We should stop building it by default, although CI should still validate that caffe2 code is buildable.
Build even fewer dependencies when compiling mobile builds without Caffe2
Introduce `TEST_CAFFE2` in torch.common.utils
Skip `TestQuantizedEmbeddingOps` and `TestJit.test_old_models_bc` is code is compiled without Caffe2
Should be landed after https://github.com/pytorch/builder/pull/864
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66658
Reviewed By: driazati, seemethere, janeyx99
Differential Revision: D31669156
Pulled By: malfet
fbshipit-source-id: 1cc45e2d402daf913a4685eb9f841cc3863e458d
Summary:
Fixes https://github.com/pytorch/pytorch/issues/62533.
In very rare cases, the decorator for detecting memory leak is throwing assertion, even when the test is passing, and the memory is being freed with a tiny delay. The issue is not being reproduced in internal testing, but shows up sometimes in CI environment.
Reducing the severity of such detection to warning, so as not to fail the CI tests, as the actual test is not failing, rather only the check inside the decorator is failing.
Limiting the change to ROCM only for now.
cc jeffdaily sunway513 jithunnair-amd ROCmSupport
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65973
Reviewed By: anjali411
Differential Revision: D31776154
Pulled By: malfet
fbshipit-source-id: 432199fca17669648463c4177c62adb553cacefd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66798
get_cycles_per_ms is copied and used in a few places, move it to common_utils so that it can be used as a shared util function
ghstack-source-id: 140790599
Test Plan: unit tests
Reviewed By: pritamdamania87
Differential Revision: D31706870
fbshipit-source-id: e8dccecb13862646a19aaadd7bad7c8f414fd4ab
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64181
This PR replaces all the calls to:
- `transpose(-2, -1)` or `transpose(-1, -2)` by `mT()` in C++ and `mT` in Python
- `conj().transpose(-2, -1)` or `transpose(-2, -1).conj()` or `conj().transpose(-1, -2)` or `transpose(-1, -2).conj()` by `mH()` in C++ and `mH` in Python.
It also simplifies two pieces of code, and fixes one bug where a pair
of parentheses were missing in the function `make_symmetric_matrices`.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D31692896
Pulled By: anjali411
fbshipit-source-id: e9112c42343663d442dc5bd53ff2b492094b434a
Summary:
Fixes https://github.com/pytorch/pytorch/issues/64883
Adds a `warn_only` kwarg to `use_deterministic_algorithms`. When enabled, calling an operation that does not have a deterministic implementation will raise a warning, rather than an error.
`torch.testing._internal.common_device_type.expectedAlertNondeterministic` is also refactored and documented in this PR to make it easier to use and understand.
cc mruberry kurtamohler
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66233
Reviewed By: bdhirsh
Differential Revision: D31616481
Pulled By: mruberry
fbshipit-source-id: 059634a82d54407492b1d8df08f059c758d0a420
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030
Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible
Fixes https://github.com/pytorch/pytorch/issues/47442
* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls. `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.
Original pull request: https://github.com/pytorch/pytorch/pull/59671
Reviewed By: soulitzer, ngimel
Differential Revision: D29466819
Pulled By: ezyang
fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
Summary:
Could be useful for the future.
Next steps: document it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65791
Reviewed By: suo
Differential Revision: D31254115
Pulled By: janeyx99
fbshipit-source-id: 715c18b4505f2be6328aa0be25976116d6956b25
Summary:
And replace two existing usages in the codebase with it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64942
Reviewed By: jbschlosser
Differential Revision: D30906382
Pulled By: malfet
fbshipit-source-id: e7f20f53aff734b0379eded361255543dab4fa4b
Summary:
- Added 2D-Convolution NHWC support
- on ROCm 4.3, with `PYTORCH_MIOPEN_SUGGEST_NHWC=1` flag
- May need to force MIOpen to search for solutions ( see examples below for flags )
**PYTORCH_MIOPEN_SUGGEST_NHWC Environment Flag**
MIOpen does not officially support NHWC yet, although convolution support has been added to tip-of-tree of MIOpen. This flag is intended to be a short-lived flag to explicitly turn on NHWC support until ROCm officially supports NHWC and performance is verified.
**Examples**
1. Example usage 1 : Run test on ROCm4.3
`PYTORCH_TEST_WITH_ROCM=1 PYTORCH_MIOPEN_SUGGEST_NHWC=1 MIOPEN_FIND_ENFORCE=4 MIOPEN_DEBUG_CONV_GEMM=0 MIOPEN_FIND_MODE=1 pytest test_nn.py -v -k "test_conv_cudnn_nhwc" `
2. Example usage 2: Run the following with `PYTORCH_MIOPEN_SUGGEST_NHWC=1` on ROCm4.3.
```
#!/usr/bin/env python3
import torch
model = torch.nn.Conv2d(8, 4, 3).cuda().half()
model = model.to(memory_format=torch.channels_last)
input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float32, requires_grad=True)
input = input.to(device="cuda", memory_format=torch.channels_last, dtype=torch.float16)
# should print True for is_contiguous(channels_last), and strides must match NHWC format
print(input.is_contiguous(memory_format=torch.channels_last), input.shape, input.stride() )
out = model(input)
# should print True for is_contiguous(channels_last), and strides must match NHWC format
print("Contiguous channel last :", out.is_contiguous(memory_format=torch.channels_last), " out shape :", out.shape, "out stride :", out.stride() )
```
See https://pytorch.org/tutorials/intermediate/memory_format_tutorial.html for more examples.
cc jeffdaily sunway513 jithunnair-amd ROCmSupport
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63617
Reviewed By: saketh-are
Differential Revision: D30730800
Pulled By: ezyang
fbshipit-source-id: 61906a0f30be8299e6547d312ae6ac91cc7c3238
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45945
Creates a new thread to run -h or --help with unittest.main if the help flag is present, and keeps the add_help default for parameters.
Includes both python unittest and parser parameters in --help and -h flag and will remain up to date since both messages are displayed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64297
Test Plan:
Imported from GitHub
`python test/test_spectral_ops.py --help`
Output:
```
% python test/test_spectral_ops.py --help
usage: test_spectral_ops.py [-h] [-v] [-q] [--locals] [-f] [-c] [-b] [-k TESTNAMEPATTERNS] [tests [tests ...]]
positional arguments:
tests a list of any number of test modules, classes and test methods.
optional arguments:
-h, --help show this help message and exit
-v, --verbose Verbose output
-q, --quiet Quiet output
--locals Show local variables in tracebacks
-f, --failfast Stop on first fail or error
-c, --catch Catch Ctrl-C and display results so far
-b, --buffer Buffer stdout and stderr during tests
-k TESTNAMEPATTERNS Only run tests which match the given substring
Examples:
test_spectral_ops.py - run default set of tests
test_spectral_ops.py MyTestSuite - run suite 'MyTestSuite'
test_spectral_ops.py MyTestCase.testSomething - run MyTestCase.testSomething
test_spectral_ops.py MyTestCase - run all 'test*' test methods
in MyTestCase
usage: test_spectral_ops.py [-h] [--subprocess] [--seed SEED] [--accept] [--jit_executor JIT_EXECUTOR] [--repeat REPEAT]
[--test_bailouts] [--save-xml [SAVE_XML]] [--discover-tests] [--log-suffix LOG_SUFFIX]
[--run-parallel RUN_PARALLEL] [--import-slow-tests [IMPORT_SLOW_TESTS]]
[--import-disabled-tests [IMPORT_DISABLED_TESTS]]
optional arguments:
-h, --help show this help message and exit
--subprocess whether to run each test in a subprocess
--seed SEED
--accept
--jit_executor JIT_EXECUTOR
--repeat REPEAT
--test_bailouts
--save-xml [SAVE_XML]
--discover-tests
--log-suffix LOG_SUFFIX
--run-parallel RUN_PARALLEL
--import-slow-tests [IMPORT_SLOW_TESTS]
--import-disabled-tests [IMPORT_DISABLED_TESTS]
```
Also ran some other tests to make sure tests still worked, and other tests with --help or -h flag
Reviewed By: seemethere
Differential Revision: D30677776
Pulled By: PatrickKan
fbshipit-source-id: eb3d6e3fa677137ec703ec3a23808efb99acc896
Summary:
Realized we were missing ROCm as a platform on which one could disable a flaky test. (like how this issue specifies windows https://github.com/pytorch/pytorch/issues/61655)
cc jeffdaily sunway513 jithunnair-amd ROCmSupport
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63813
Reviewed By: seemethere
Differential Revision: D30498478
Pulled By: janeyx99
fbshipit-source-id: f1abe8677e1ddd01de3291e1618272ad8e287dc4
Summary:
We currently build breakpad from [this fork](https://github.com/driazati/breakpad) to include extra logic to restore signal handlers that were previously present. With some [new additions](https://github.com/google/breakpad/compare/main...driazati:main) this fork now includes a CMake based build, so we can add breakpad as a proper dependency rather than rely on including it in Docker images as a system library which is error prone (we have a bunch of images) and hard to extend to MacOS / Windows. This also includes some changes to the crash handling code to support MacOS / Windows in a similar way to Linux.
```python
import torch
# On Windows this writes crashes to C:\Users\<user>\AppData\pytorch_crashes
# On MacOS/Linux this writes crashes to /tmp/pytorch_crashes
torch.utils._crash_handler.enable_minidumps()
# Easy way to cause a segfault and trigger the handler
torch.bincount(input=torch.tensor([9223372036854775807]))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63186
Reviewed By: malfet, seemethere
Differential Revision: D30318404
Pulled By: driazati
fbshipit-source-id: 0d7daf3701cfaba5451cc529a0730272ab1eb1dc
Summary:
**TODOs:**
* [x] Do not clamp inputs for low and high when given and valid.
* [x] Devise rules for modifying `low` and `high` when extremals/invalid values passed.
* [x] Testing with `test_references_numerics_hard` with the revised changes. _(I've tested locally, the changes will take place in a separate PR though after offline discussion with mruberry)_
* [x] Revise comments/documentation for `make_tensor`
See https://github.com/pytorch/pytorch/issues/61758 for tracker issue.
cc: mruberry pmeier
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61108
Reviewed By: VitalyFedyunin
Differential Revision: D30296167
Pulled By: mruberry
fbshipit-source-id: 67e8d15b173209a9c97ca013231494a5fa99f8c7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62051
The goal here is to enable opt-asan for "spawn" based unit tests since
this works for "spawn" unlike "dev-asan". As a result, we can run ASAN for
"spawn" unit tests as well.
This means we can completely remove fork unit tests from the code base since
the only purpose for these tests was to run ASAN.
ghstack-source-id: 135523770
Test Plan: waitforbuildbot
Reviewed By: SciPioneer
Differential Revision: D29854514
fbshipit-source-id: 02a5bfcfae2afc21badecff77082c7a6ad83636b
Summary:
Part 1 of fixing https://github.com/pytorch/pytorch/issues/62359
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62686
Test Plan:
1. Check out this PR and run `python setup.py install`.
2. The test we will be running requires CUDA. If you don't have CUDA, you can try this on another device or simply comment out the skipIf statement before the `test_jit_cuda_extension` test in `test_cpp_extensions_jit.py`
3. Run: `IN_CI=1 python test/run_test.py -i test_cpp_extensions_jit -- -k test_jit_cuda_extension` and notice that it should skip. If it doesn't skip, edit test/.pytorch-disabled-tests.json: modify the platforms list of the first issue (61655) to include whatever platform you are on (macos or linux), and just run `python test/test_cpp_extensions_jit.py -v -k test_jit_cuda_extension --import-disabled-tests` to make sure it skips.
4. Now `export PYTORCH_IGNORE_DISABLED_ISSUES=61655` or `export PYTORCH_IGNORE_DISABLED_ISSUES=34952,61655`.
5. `rm test/.pytorch-*` to clear the cached files.
6. Run the same command as in step 5 and note that it SHOULDN'T skip. It should run.
Reviewed By: walterddr, samestep
Differential Revision: D30108773
Pulled By: janeyx99
fbshipit-source-id: dbf015a266f57577dc9283b0cdff720083b5c0cb
Summary:
Adds a new `ModuleInfo`-based test to `test_modules.py`.
The test passes `device` and `dtype` to each module during instantiation, ensuring that the kwargs are applied to any newly-created parameters or buffers. Note that the `device` and `dtype` kwargs should only be present when a module creates parameters or buffers; the test uses some mock magic to identify this.
Originally lifted from `test/test_module_init.py`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62340
Reviewed By: malfet
Differential Revision: D30022543
Pulled By: jbschlosser
fbshipit-source-id: 77e5d46d6b11c16dc39d19a1c650ee48c26c54c1
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61991
Continuation of https://github.com/pytorch/pytorch/pull/61887 and
removing unittest.skip as much as possible.
ghstack-source-id: 134759368
Test Plan: waitforbuildbot
Reviewed By: SciPioneer
Differential Revision: D29831860
fbshipit-source-id: fe57a7d56d4423924a2dec10bb670137ace0c9a4
Summary:
This creates `torch.cuda.set_warn_on_synchronization()` function that would warn or error when synchronizing operation is performed. We could wrap it in a context manager for ease of use, but it would be a lie, because it sets global, and not thread-local state. Since it's intended for debugging, maybe that's ok though.
As all `torch.cuda.*` functions, it's going through CPython, not pybind, so the argument is converted to long before being passed to c10 function. I'll make python argument a python enum class, but without pybind it'll still have to go thourgh long conversion.
For a test script
```
import torch
torch.cuda.set_warn_on_synchronization(1)
x=torch.randn(10, device="cuda")
x.nonzero()
y=torch.randn((), device="cuda")
if y:
print("something")
torch.multinomial(x.abs(), 10, replacement=False)
torch.randperm(20000, device="cuda")
ind = torch.randint(10, (3,), device="cuda")
mask = torch.randint(2, (10,), device="cuda", dtype=torch.bool)
val = torch.randn((), device="cuda")
x[mask]=1.
x[mask] = val
torch.cuda.synchronize()
```
the output is
```
/../playground/sync_warn_test.py:4: UserWarning: called a synchronizing operation (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:145.)
x.nonzero()
/../playground/sync_warn_test.py:7: UserWarning: called a synchronizing operation (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:145.)
if y:
something
/../playground/sync_warn_test.py:9: UserWarning: called a synchronizing operation (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:145.)
torch.multinomial(x.abs(), 10, replacement=False)
/../playground/sync_warn_test.py:15: UserWarning: called a synchronizing operation (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:145.)
x[mask] = val
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62092
Reviewed By: mruberry
Differential Revision: D29968792
Pulled By: ngimel
fbshipit-source-id: cc6f817212c164727ed99ecf6ab050dc29631b9e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61887
1) Introduced a `sandcastle_skip_if` decorator that ensures these
tests just get passed on sandcastle.
2) Fixed all test files under `test/distributed` to not use `unittest.skip`
Overall goal is to avoid using skips since sandcastle tags these tests as
continuously skipping.
ghstack-source-id: 134382237
Test Plan: waitforbuildbot
Reviewed By: SciPioneer
Differential Revision: D29784152
fbshipit-source-id: 17b4df6c5a55ff1d1e8e1de128fa679c3dfbcb7d
Summary:
### Issue
Build PyTorch wheel packages during build stage for pull requests and install during test stage.
### Fix
Update all tests which call lib*.so (under `./build folder`), change to call lib*.so in `{ent}/pytorch/lib/python3.8/site-packages/torch`
### Diff
This diff starts to update test_fx, test_backend and test_torchbind first to check if current ci pass
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61960
Test Plan: check of all ci workflows pass
Reviewed By: malfet, saketh-are
Differential Revision: D29823235
Pulled By: tktrungna
fbshipit-source-id: e7f652def698e303d4843fbaedf4859f5eca2fd9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61903
### Remaining Tasks
- [ ] Collate results of benchmarks on two Intel Xeon machines (with & without CUDA, to check if CPU throttling causes issues with GPUs) - make graphs, including Roofline model plots (Intel Advisor can't make them with libgomp, though, but with Intel OpenMP).
### Summary
1. This draft PR produces binaries with with 3 types of ATen kernels - default, AVX2, AVX512 . Using the environment variable `ATEN_AVX512_256=TRUE` also results in 3 types of kernels, but the compiler can use 32 ymm registers for AVX2, instead of the default 16. ATen kernels for `CPU_CAPABILITY_AVX` have been removed.
2. `nansum` is not using AVX512 kernel right now, as it has poorer accuracy for Float16, than does AVX2 or DEFAULT, whose respective accuracies aren't very good either (#59415).
It was more convenient to disable AVX512 dispatch for all dtypes of `nansum` for now.
3. On Windows , ATen Quantized AVX512 kernels are not being used, as quantization tests are flaky. If `--continue-through-failure` is used, then `test_compare_model_outputs_functional_static` fails. But if this test is skipped, `test_compare_model_outputs_conv_static` fails. If both these tests are skipped, then a third one fails. These are hard to debug right now due to not having access to a Windows machine with AVX512 support, so it was more convenient to disable AVX512 dispatch of all ATen Quantized kernels on Windows for now.
4. One test is currently being skipped -
[test_lstm` in `quantization.bc](https://github.com/pytorch/pytorch/issues/59098) - It fails only on Cascade Lake machines, irrespective of the `ATEN_CPU_CAPABILITY` used, because FBGEMM uses `AVX512_VNNI` on machines that support it. The value of `reduce_range` should be used as `False` on such machines.
The list of the changes is at https://gist.github.com/imaginary-person/4b4fda660534f0493bf9573d511a878d.
Credits to ezyang for proposing `AVX512_256` - these use AVX2 intrinsics but benefit from 32 registers, instead of the 16 ymm registers that AVX2 uses.
Credits to limo1996 for the initial proposal, and for optimizing `hsub_pd` & `hadd_pd`, which didn't have direct AVX512 equivalents, and are being used in some kernels. He also refactored `vec/functional.h` to remove duplicated code.
Credits to quickwritereader for helping fix 4 failing complex multiplication & division tests.
### Testing
1. `vec_test_all_types` was modified to test basic AVX512 support, as tests already existed for AVX2.
Only one test had to be modified, as it was hardcoded for AVX2.
2. `pytorch_linux_bionic_py3_8_gcc9_coverage_test1` & `pytorch_linux_bionic_py3_8_gcc9_coverage_test2` are now using `linux.2xlarge` instances, as they support AVX512. They were used for testing AVX512 kernels, as AVX512 kernels are being used by default in both of the CI checks. Windows CI checks had already been using machines with AVX512 support.
### Would the downclocking caused by AVX512 pose an issue?
I think it's important to note that AVX2 causes downclocking as well, and the additional downclocking caused by AVX512 may not hamper performance on some Skylake machines & beyond, because of the double vector-size. I think that [this post with verifiable references is a must-read](https://community.intel.com/t5/Software-Tuning-Performance/Unexpected-power-vs-cores-profile-for-MKL-kernels-on-modern-Xeon/m-p/1133869/highlight/true#M6450). Also, AVX512 would _probably not_ hurt performance on a high-end machine, [but measurements are recommended](https://lemire.me/blog/2018/09/07/avx-512-when-and-how-to-use-these-new-instructions/). In case it does, `ATEN_AVX512_256=TRUE` can be used for building PyTorch, as AVX2 can then use 32 ymm registers instead of the default 16. [FBGEMM uses `AVX512_256` only on Xeon D processors](https://github.com/pytorch/FBGEMM/pull/209), which are said to have poor AVX512 performance.
This [official data](https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf) is for the Intel Skylake family, and the first link helps understand its significance. Cascade Lake & Ice Lake SP Xeon processors are said to be even better when it comes to AVX512 performance.
Here is the corresponding data for [Cascade Lake](https://cdrdv2.intel.com/v1/dl/getContent/338848) -


The corresponding data isn't publicly available for Intel Xeon SP 3rd gen (Ice Lake SP), but [Intel mentioned that the 3rd gen has frequency improvements pertaining to AVX512](https://newsroom.intel.com/wp-content/uploads/sites/11/2021/04/3rd-Gen-Intel-Xeon-Scalable-Platform-Press-Presentation-281884.pdf). Ice Lake SP machines also have 48 KB L1D caches, so that's another reason for AVX512 performance to be better on them.
### Is PyTorch always faster with AVX512?
No, but then PyTorch is not always faster with AVX2 either. Please refer to #60202. The benefit from vectorization is apparent with with small tensors that fit in caches or in kernels that are more compute heavy. For instance, AVX512 or AVX2 would yield no benefit for adding two 64 MB tensors, but adding two 1 MB tensors would do well with AVX2, and even more so with AVX512.
It seems that memory-bound computations, such as adding two 64 MB tensors can be slow with vectorization (depending upon the number of threads used), as the effects of downclocking can then be observed.
Original pull request: https://github.com/pytorch/pytorch/pull/56992
Reviewed By: soulitzer
Differential Revision: D29266289
Pulled By: ezyang
fbshipit-source-id: 2d5e8d1c2307252f22423bbc14f136c67c3e6184
Summary:
it should not error out if the file is not found.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61610
Reviewed By: samestep
Differential Revision: D29687958
Pulled By: walterddr
fbshipit-source-id: 17cacba8daa131df9bfb37fd58d6e4870ff75198
Summary:
and into tools/ folder
Currently run_tests.py invokes tools/test_selections.py
1. download and analyze what test_file to run
2. download and parse S3 stats and pass the info to local files.
3. common_utils.py uses download S3 stats to determine what test cases to run.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61479
Reviewed By: janeyx99
Differential Revision: D29661986
Pulled By: walterddr
fbshipit-source-id: bebd8c474bcc2444e135bfd2fa4bdd1eefafe595
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60990
This makes the breakpad build more explicit in its messaging and hints to cmake where to look for the library (it wasn't able to find it without `PATHS` on CI even though that works locally). This also adds a smoke test that will fail if breakpad isn't present on a CI job where it is expected (e.g. binary builds).
Test Plan: Imported from OSS
Reviewed By: malfet
Differential Revision: D29514316
Pulled By: driazati
fbshipit-source-id: 79514363334788f311ba5d4f25deed3452f0c3eb
Summary:
This PR will ideally add `ref` argument to `OpInfo` base class. The idea is to add reference checks for all the ops _eligible_. For more discussion, please check https://github.com/pytorch/pytorch/issues/58294
* [x] Migrate (but not removing yet) and modify helper functions from `UnaryUfuncOpInfo` class to `OpInfo` base class.
* [x] Test the reference checks for multiple ops. (also decide a list of different and eligible ops for this)
* [x] Handle possible edge cases (for example: `uint64` isn't implemented in PyTorch but is there in NumPy, and this needs to be handled -- more on this later) -- _Update_: We decided that these reference tests should only test for values and not types.
* [x] Create a sample PR for a single (of all different categories?) on adding reference functions to the eligible ops. -- _Update_: This is being done in this PR only.
* [x] ~Remove reference tests from `test_unary_ufuncs.py` and test to make sure that nothing breaks.~ (*Update*: We won't be touching Unary Ufunc reference tests in this PR)
* [x] Add comments, remove unnecessary prints/comments (added for debugging).
Note: To keep the PR description short, examples of edge cases encountered have been mentioned in the comments below.
cc: mruberry pmeier kshitij12345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59369
Reviewed By: ngimel
Differential Revision: D29347252
Pulled By: mruberry
fbshipit-source-id: 69719deddb1d23c53db45287a7e66c1bfe7e65bb
Summary:
`IS_PYTORCH_CI` and `IN_CI` are used randomly, however in some cases IN_CI is not currently set because it only exist in .circleci/scripts/setup_ci_environment.sh. This cleans up the 2 flags and only use IN_CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60279
Test Plan: CI
Reviewed By: seemethere
Differential Revision: D29239545
Pulled By: walterddr
fbshipit-source-id: a069424a2bb8790a3adfdaf0dc460301026bf8c7
Summary:
During development it is common practice to put `type: ignore` comments on lines that are correct, but `mypy` doesn't recognize this. This often stems from the fact, that the used `mypy` version wasn't able to handle the used pattern.
With every new release `mypy` gets better at handling complex code. In addition to fix all the previously accepted but now failing patterns, we should also revisit all `type: ignore` comments to see if they are still needed or not. Fortunately, we don't need to do it manually: by adding `warn_unused_ignores = True` to the configuration, `mypy` will error out in case it encounters an `type: ignore` that is no longer needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60006
Reviewed By: jbschlosser, malfet
Differential Revision: D29133237
Pulled By: albanD
fbshipit-source-id: 41e82edc5cd5affa7ccedad044b59b94dad4425a
Summary:
Do not reorder tests unless they are in IN_CI, this causes local development test ordering indeterministic. most of use branch out from viable strict not head of master.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59565
Reviewed By: ejguan
Differential Revision: D28943906
Pulled By: walterddr
fbshipit-source-id: e742e7ce4b3fc017d7563b01e93c4cd774d0a537
Summary:
The run-specified-test-cases option would allow us to specify a list of test cases to run by having a CSV with minimally two columns: test_filename and test_case_name.
This PR also adds .json to some files we use for better clarity.
Usage:
`python test/run_test.py --run-specified-test-cases <csv_file>` where the csv file can look like:
```
test_filename,test_case_name,test_total_time,windows_only_failure_sha_count,total_sha_count,windows_failure_count,linux_failure_count,windows_total_count,linux_total_count
test_cuda,test_cudnn_multiple_threads_same_device,8068.8409659525,46,3768,53,0,2181,6750
test_utils,test_load_standalone,8308.8062920459,14,4630,65,0,2718,8729
test_ops,test_forward_mode_AD_acosh_cuda_complex128,91.652619369806,11,1971,26,1,1197,3825
test_ops,test_forward_mode_AD_acos_cuda_complex128,91.825633094915,11,1971,26,1,1197,3825
test_profiler,test_source,60.93786725749,9,4656,21,3,2742,8805
test_profiler,test_profiler_tracing,203.09352795241,9,4662,21,3,2737,8807
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59487
Test Plan:
Without specifying the option, everything should be as they were before.
Running `python test/run_test.py --run-specified-test-cases windows_smoke_tests.csv` resulted in this paste P420276949 (you can see internally). A snippet looks like:
```
(pytorch) janeyx@janeyx-mbp pytorch % python test/run_test.py --run-specified-test-cases windows_smoke_tests.csv
Loading specified test cases to run from windows_smoke_tests.csv.
Processed 28 test cases.
Running test_cpp_extensions_jit ... [2021-06-04 17:24:41.213644]
Executing ['/Users/janeyx/miniconda3/envs/pytorch/bin/python', 'test_cpp_extensions_jit.py', '-k', 'test_jit_cuda_archflags'] ... [2021-06-04 17:24:41.213781]
s
----------------------------------------------------------------------
Ran 1 test in 0.000s
OK (skipped=1)
...
```
With pytest, an example executable would be:
`Running test_dataloader ... [2021-06-04 17:37:57.643039]
Executing ['/Users/janeyx/miniconda3/envs/pytorch/bin/python', '-m', 'pytest', 'test_dataloader.py', '-v', '-k', 'test_segfault or test_timeout'] ... [2021-06-04 17:37:57.643327]`
Reviewed By: samestep
Differential Revision: D28913223
Pulled By: janeyx99
fbshipit-source-id: 0d1f9910973426b8756815c697b483160517b127