Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51124
Original commit changeset: 1c7133627da2
Test Plan: Test locally with interpreter_test and on CI
Reviewed By: suo
Differential Revision: D26077905
fbshipit-source-id: fae83bf9822d79e9a9b5641bc5191a7f3fdea78d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50458
libinterpreter.so contains a frozen python distribution including
torch-python bindings.
Freezing refers to serializing bytecode of python standard library modules as
well as the torch python library and embedding them in the library code. This
library can then be dlopened multiple times in one process context, each
interpreter having its own python state and GIL. In addition, each python
environment is sealed off from the filesystem and can only import the frozen
modules included in the distribution.
This change relies on newly added frozenpython, a cpython 3.8.6 fork built for this purpose. Frozenpython provides libpython3.8-frozen.a which
contains frozen bytecode and object code for the python standard library.
Building on top of frozen python, the frozen torch-python bindings are added in
this diff, providing each embedded interpreter with a copy of the torch
bindings. Each interpreter is intended to share one instance of libtorch and
the underlying tensor libraries.
Known issues
- Autograd is not expected to work with the embedded interpreter currently, as it manages
its own python interactions and needs to coordinate with the duplicated python
states in each of the interpreters.
- Distributed and cuda stuff is disabled in libinterpreter.so build, needs to be revisited
- __file__ is not supported in the context of embedded python since there are no
files for the underlying library modules.
using __file__
- __version__ is not properly supported in the embedded torch-python, just a
workaround for now
Test Plan: tested locally and on CI with cmake and buck builds running torch::deploy interpreter_test
Reviewed By: ailzhang
Differential Revision: D25850783
fbshipit-source-id: a4656377caff25b73913daae7ae2f88bcab8fd88
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32260
This makes it so you can actually pass the custom class as an arg to ScriptFunctions
Test Plan: Imported from OSS
Differential Revision: D19424252
Pulled By: jamesr66a
fbshipit-source-id: c3530186619655781dedbea03c2ad321aaff1cb8
Summary:
I have some test code in there as well, along with a script "test_libtorch" to run it. You'll need to modify `test_libtorch` to point to where you have `pytorch` built. I currently require that `pybind11` is included as a subdirectory of the test, but added it to the `.gitignore` to make this reviewable.
Currently, something like this works:
```cpp
struct Foo {
int x, y;
Foo(): x(2), y(5){}
Foo(int x_, int y_) : x(x_), y(y_) {}
void display() {
cout<<"x: "<<x<<' '<<"y: "<<y<<endl;
}
int64_t add(int64_t z) {
return (x+y)*z;
}
};
static auto test = torch::jit::class_<Foo>("Foo")
.def(torch::jit::init<int64_t, int64_t>())
.def("display", &Foo::display)
.def("add", &Foo::add)
.def("combine", &Foo::combine);
```
with
```py
torch.jit.script
def f(x):
val = torch._C.Foo(5, 3)
val.display()
print(val.add(3))
```
results in
```
x: 5 y: 3
24
```
Current issues:
- [x] The python class created by torchscript doesn't interactly properly with the surrounding code.
```
torch.jit.script
def f(x):
val = torch._C.Foo(5, 3)
return val
```
- [x] Doesn't properly take in non-pointer classes. Can't define this function signature in cpp (We don't want to support this I believe).
```cpp
void combine(Foo x) {
```
- [x] Has some issues with memory for blobs when constructing multiple objects (fix constant propagation pass to not treat capsules as the same object).
```py
torch.jit.script
def f(x):
val = torch._C.Foo(5, 3)
val2 = torch._C.Foo(100, 0)
val.display()
print(val.add(3))
```
- [ ] Can't define multiple constructors (need to define overload string. Currently not possible since we don't support overloaded methods).
- [x] `init` is a little bit different syntax than `pybind`. `.init<...>()` instead of `.def(py::init<>())`
- [x] I couldn't figure out how to add some files into the build so they'd be copied to the `include/` directories, so I symlinked them manually.
- [ ] Currently, the conversion from Python into Torchscript doesn't work.
- [ ] Torchbind also currently requires Python/Pybind dependency. Fixing this would probably involve some kind of macro to bind into Python when possible.
- [ ] We pass back into Python by value, currently. There's no way of passing by reference.
- [x] Currently can only register one method with the same type signature. This is because we create a `static auto opRegistry`, and the function is templated on the type signature.
Somewhat blocked on https://github.com/pytorch/pytorch/pull/21177. We currently use some structures that will be refactored by his PR (namely `return_type_to_ivalue` and `ivalue_to_arg_type`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21098
Differential Revision: D16634872
Pulled By: Chillee
fbshipit-source-id: 1408bb89ea649c27d560df59e2cf9920467fe1de
Summary:
Changes the approach for resolving builtin ops so that the following works
```
add = torch.add
script
def foo(x):
return add(x, x)
```
This handles cases when people alias torch and torch.nn.functional to
shorter names.
This works by building a table of id -> builtin name for the know builtin
ops in torch, torch.nn.functional, and for any user-defined
op created by accessing in torch.ops.foo.bar
This allows us to clean up many SugaredValue types in the compiler.
Notes:
* we now consider any attributes on python modules to be constants
(e.g. math.pi, and torch.double).
* fixes a bug where we incorrectly allowed attribute lookup on arbitrary
pyton objects. It is now restricted to modules only.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10927
Differential Revision: D9527522
Pulled By: zdevito
fbshipit-source-id: 0280422af08b4b0f48f302766d5a9c0deee47660
Summary:
This is the last step in the custom operator implementation: providing a way to build from C++ and Python. For this I:
1. Created a `FindTorch.cmake` taken largely from ebetica with a CMake function to easily create simple custom op libraries
2. Created a ` torch/op.h` header for easy inclusion of necessary headers,
3. Created a test directory `pytorch/test/custom_operator` which includes the basic setup for a custom op.
1. It defines an op in `op.{h,cpp}`
2. Registers it with the JIT using `RegisterOperators`
3. Builds it into a shared library via a `CMakeLists.txt`
4. Binds it into Python using a `setup.py`. This step makes use of our C++ extension setup that we already have. No work, yey!
The pure C++ and the Python builds are separate and not coupled in any way.
zdevito soumith dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10226
Differential Revision: D9296839
Pulled By: goldsborough
fbshipit-source-id: 32f74cafb6e3d86cada8dfca8136d0dfb1f197a0