Commit Graph

97 Commits

Author SHA1 Message Date
James Reed
1235aa4fca Expose dim() on type and use it in ONNX symbolics (#15933)
Summary:
While integrating fork/join into production translation, we found that trying to export `transpose()` where the input is of `TensorType` (rather than `CompleteTensorType`) failed. This is not ideal, since `TensorType` still contains the number of dimensions of the tensor, and that's all the `transpose` symbolic needs.

This PR introduces a pybind binding for `dim()` on `TensorType` (and `CompleteTensorType` by inheritance). We now use this in places where it logically makes sense in the symbolics: those symbolics which only require knowledge of the number of dimensions rather than concrete sizes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15933

Differential Revision: D13639657

Pulled By: jamesr66a

fbshipit-source-id: 6e50e407e93060085fd00a686a928764d0ec888d
2019-01-11 14:54:19 -08:00
David Riazati
76feb8c40f Allow List arguments to Python Ops (#15721)
Summary:
Adds `List` to eval environment for type lines and allows `List` to be used on PythonOps (follows the same style as the `Tuple` code), fixes #15661
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15721

Differential Revision: D13578540

Pulled By: driazati

fbshipit-source-id: fce54dc3c0931d8b017b2e3483f0ac53826dda94
2019-01-07 13:51:53 -08:00
Will Feng
7b87ecae37 Move autograd metadata from VariableImpl to TensorImpl (#13827)
Summary:
Changes originally in this PR:
1. Move Variable::Impl data members into TensorImpl as `AutogradMeta` struct
2. Change Variable::Impl functions to use data members in `AutogradMeta` struct
3. Add `shallow_copy_and_detach()` function to each subclass of TensorImpl
4. Do shallow copy when the user calls `make_variable(tensor)` / `make_variable_view(tensor)` / `variable.set_data(tensor)` / `variable.detach()`

Changes moved from https://github.com/pytorch/pytorch/pull/13645:
1. Add a flag to Variable to disallow size/stride/storage_ptr changes from in-place operations such as `resize_` / `resize_as_` / `set_` / `transpose_`, and set this flag to true when people call `tensor.data` in Python.
2. Write text in the docs to actively discourage changing the shape or storage of `tensor_detached` and expecting `tensor` to also be updated.

This is the 1st+2nd PR mentioned in https://github.com/pytorch/pytorch/issues/13638.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13827

Differential Revision: D13507173

Pulled By: yf225

fbshipit-source-id: b177b08438d534a8197e34e1ad4a837e2db0ed6a
2018-12-26 16:34:24 -08:00
Michael Suo
f636dc9276 clang format world (#15524)
Summary:
The PR clang-formats everything in `torch/csrc/jit/` and adds it to the pre-commit hook.

Here is a list of non-mechanical changes:
- I went over each file and fixed up whenever I could tell that clang-format was clobbering comment formatting.
- Made the macros in register_prim_ops a little more clang-format friendly by omitting trailing commas
- Refactored autodiff.cpp to use a helper class with explicit state rather than a bunch of capturing lambdas
- Small improvements to the precommit hook clang-format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15524

Differential Revision: D13547989

Pulled By: suo

fbshipit-source-id: 3ff1541bb06433ccfe6de6e33f29227a2b5bb493
2018-12-26 06:55:01 -08:00
Zachary DeVito
056cfaf3ff Method returns a single argument (#15289)
Summary:
This PR changes Method (just Method not all graphs) to always have a single
return argument.

This is part 1 in a set of changes that will enable us to have better handling if early return statements.
The simplification that this change provides greatly reduces the work for the next step.

This change makes it so that Method and Python handle multiple returns in the same way:
* 0 - None
* 1 - <single value>
* many - Tuple[...]

The result is that a lot of special-case handling in compiler.cpp and its
bindings can be removed. It also fixes several bugs in return handling,
including one where return values were not always checked against their
attributed values.

Notes:
* inferTypeFrom is renamed to be more accurate and discourage use.
* This has uncovered some bugs in other components, which are noted in
  the diff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15289

Differential Revision: D13481649

Pulled By: zdevito

fbshipit-source-id: 0e2242a40bb28cca2d0e8be48bede96195e4858c
2018-12-18 10:44:09 -08:00
Peter Goldsborough
7a61306031 Enable all clang-tidy performance checks (#15198)
Summary:
This PR adds the final set of clang-tidy checks we should add for our codebase: a last set of performance-related checks. Most fixes here are around changing `auto` to `const auto&` in a few places where unnecessary copies were made, and adding `reserve()` calls before loops doing repeated `push_back()`. Also a few cases of calling `std::string::find` with a single-character string literal instead of a single char, which uses a less efficient string search algorithm meant for searching larger substrings.

![image](https://user-images.githubusercontent.com/6429851/49978940-adc1a780-ff01-11e8-99da-a4e431361f07.png)

ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15198

Differential Revision: D13468797

Pulled By: goldsborough

fbshipit-source-id: 2bed1ea1c7c162b7f3e0e1026f17125e88c4d5b2
2018-12-14 13:32:47 -08:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Peter Goldsborough
d6c53328f9 Large scale fix of python-related files in torch/csrc/
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14515

Differential Revision: D13247966

Pulled By: goldsborough

fbshipit-source-id: 7a127c508fc576a7a92626dd6b729f660162d628
2018-12-07 13:04:46 -08:00
Zachary DeVito
78d594f46c Implement Device as a type in the script (#14666)
Summary:
[ note:  stacked on expect files changes, will unstack once they land ]
This adds DeviceObjType (cannot use DeviceType it is already an enum)
to the type hierarchy and an isDevice/toDevice pair to IValue.
Previous hacks which used an int[] to represent Device are removed
and at::Device is used instead.

Note: the behavior or .to is only a subset of python, we need to
fix the aten op so that it accepts Option[Device] and Optional[ScalarType].
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14666

Reviewed By: suo

Differential Revision: D13290405

Pulled By: zdevito

fbshipit-source-id: 68b4381b292f5418a6a46aaa077f1c902750b134
2018-12-03 16:54:40 -08:00
Zachary DeVito
fd31eae9ad Switch import/export to python printing (#14400)
Summary:
Stacked on https://github.com/pytorch/pytorch/pull/14378, only look at the last commit.

This changes the way methods are defined in TorchScript archives to use
PythonPrint rather than ONNX protobufs.

It also updates torch.proto to directly document the tensor data
structure actually being serialized.

Notes:
* because PythonPrint prints all the methods at once per module, this
  removes MethodDef in favor of a single torchscript_area and a separate
  caffe2_graphs entry. Note that NetDef's already have method names,
  so there is no need or a separate method name entry.
* This switches cpp/pickle area to RecordRef (references to a file in
  the container format) since it is possible the data in these arenas
  may be large and not suited to json ouput.
* Removes 'annotations' -- annotations should be re-added on the first
  commit that actually has a practical use for them. In the current state
  it is unlikely they are representing the right information.
* Some expect files have changed because PythonPrint is preserving more
  debug name information for parameter names.
* MethodEncoder (the ONNX output format) has been deleted. There is still
  some cleanup possible combining EncoderBase and GraphEncode now that there
  is only a single pathway using EncoderBase.
* This incorporates the changes from #14397
  to define TensorDef
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14400

Reviewed By: suo

Differential Revision: D13231800

Pulled By: zdevito

fbshipit-source-id: af5c1152d0bd6bca8b06c4703f59b161bb19f571
2018-11-29 17:53:49 -08:00
Zachary DeVito
e22cc7c072 Print default values and introduce ir view classes (#14176)
Summary:
[Stacked commit, only review the last commit]

This PR adds support for printing default values in python printing as well as the logic
for parsing default values back in using the parser. For simplicity, this PR simply
creates a subgraph of the constant expressions and then runs that graph to generate the defaults.
A more lightweight approach should be possible later, but would require more machinery.

To make reading code in the printer easier, this also add ir_views.h.
Similar to tree_views.h these classes can provide views of some commonly used IR nodes
that have complicated structure and common operations on that structure.

Currently it has only read-only views for prim::If and prim::Loop,
but we should eventually add helpers to manipulate If/Loop nodes as well.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14176

Differential Revision: D13198455

Pulled By: zdevito

fbshipit-source-id: dc99ab9692804ccaedb60a55040c0b89ac7a6a6d
2018-11-27 11:48:27 -08:00
Michael Suo
33d091f432 shape analysis fix (#14325)
Summary:
This PR is deceptively large because of an indenting change. The actual change is small; I will highlight it inline
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14325

Differential Revision: D13183296

Pulled By: suo

fbshipit-source-id: fcbf6d5317954694ec83e6b8cc1c989f2d8ac298
2018-11-23 11:24:24 -08:00
Sebastian Messmer
08b77d3844 Use ADL to find toString (#14021)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14021

I'm planning to move at::Scalar to c10, and there's a at::toString(Scalar) defined.
Unfortunately, we call it by specifying at::toString() instead of relying on ADL.
This diff changes that to prepare the actual move.

Reviewed By: ezyang

Differential Revision: D13015239

fbshipit-source-id: f2a09f43a96bc5ef20ec2c4c88f7790fd5a04870
2018-11-21 23:08:52 -08:00
Zachary DeVito
0573169e23 Import a method from an python_print string (#13959)
Summary:
* Add hooks to get a callback whenever a valid graph is produced in the compiler or through tracing. These hooks can be used to pretty_print and then reparse every graph our tests produce to check that the serialization function works correctly. Currently this is guarded by an environment variable since there are a few remaining failures.
* Fix printing bugs: True and False rather than 1 and 0, print 0. for floating point zero
* Change behavior of NoneType. It is now no longer a subtype of Optional but instead implicitly converts to it, returning a prim::Node with an Option[T] type for some specific T. This allows functions like `_unwrap_optional` to correctly match against a None while still deriving the right type.
* Fix a bug where empty blocks did not correctly emit "pass" in printer.
* Fix a bug where prim::Undefine sometimes cannot be printed as None because it is being used in a schema-less op. This should be fixable once Optional[T] always uses the same None object.
* Other minor printing bugs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13959

Reviewed By: jamesr66a

Differential Revision: D13073519

Pulled By: zdevito

fbshipit-source-id: 4167a6b614f2e87b4d21823275a26be5ba4fc3dd
2018-11-15 16:11:37 -08:00
Bram Wasti
1616587540 Redo jit/type and utils/functional to ATen/core (#13455)
Summary:
This is a redo of the previous move which broke OS X and Windows tests -- RTTI seemed to be broken
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13455

Differential Revision: D12883775

Pulled By: bwasti

fbshipit-source-id: 2b6c65e8150e6f89624c6ee99c389335c6fb4bb8
2018-11-07 18:11:29 -08:00
Michael Suo
57e162da56 Switch mutable lists to new mutable schema (#13406)
Summary:
Goodbye, World! This PR removes the world tokens and associated pass and switches lists over to the new mutability/aliasing annotations.

Should resolve #12780 since we are disabling optimization pending alias analysis.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13406

Differential Revision: D12886463

Pulled By: suo

fbshipit-source-id: e64e55905aebdcad273b39862df3209f823f5408
2018-11-01 19:41:04 -07:00
Edward Yang
c0e24443f7 Revert D10459665: [c10] Redo jit/type and utils/functional to ATen/core
Differential Revision:
D10459665

Original commit changeset: 563dec9987aa

fbshipit-source-id: bea1dac93ebe73c9e09753d641f04f722d80aef7
2018-11-01 07:26:54 -07:00
Bram Wasti
10a6a3e404 Redo jit/type and utils/functional to ATen/core (#12862)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12862

This is a redo of the previous move in a way that doesn't migrate the namespace -- also will check for the windows cudnn build failure

Reviewed By: Yangqing

Differential Revision: D10459665

fbshipit-source-id: 563dec9987aa979702e6d71072ee2f4b2d969d69
2018-10-31 19:57:43 -07:00
James Sun
4d62eef505 Add Future to IValue (#12976)
Summary:
Future now is an IValue. prim::Wait now is replaced by aten::wait

This PR is built on top of #12925
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12976

Differential Revision: D10861483

Pulled By: highker

fbshipit-source-id: 9e17926a625bc502fb12335ef9ce819f25776be7
2018-10-27 10:00:35 -07:00
Wanchao Liang
4e1c64caee Add c10::optional to type syntax (#12582)
Summary:
This PR adds optional type to ATen native, autograd, JIT schema and Python Arg parser, closes #9513. It allows us to use optional default values (including None) for function signature and implementations like clamp, etc., and also let us remove the python_default_init hack.

Follow up:

remove python_default_init completely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12582

Differential Revision: D10417423

Pulled By: wanchaol

fbshipit-source-id: 1c80f0727bb528188b47c595629e2996be269b89
2018-10-25 16:08:29 -07:00
Yangqing Jia
713e706618 Move exception to C10 (#12354)
Summary:
There are still a few work to be done:

- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h

This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:

(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.

Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354

Reviewed By: orionr

Differential Revision: D10238910

Pulled By: Yangqing

fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
2018-10-15 13:33:18 -07:00
Zachary DeVito
bd09ab6687 Remove stages from IR, they are not longer used
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12352

Differential Revision: D10219743

Pulled By: zdevito

fbshipit-source-id: 4d9441dc3748616f9b1f0734c65ec1a7abb0d663
2018-10-05 13:58:15 -07:00
David Riazati
d1ac1eba3b Add bool type to IR (#11834)
Summary:
This PR adds a bool type to `IValue` and puts it into place.

* changes conds for `prim::If` and `prim::Loop` to use `bool` type
* changes operators that take `bool`s to match their native ops
* fixes ambiguous `aten` ops `aten::std` and `aten::var`
	* fixes tests in `test_jit.py TestJitGenerated`
		```
		'test_std_dim',
		'test_std_dim_1d',
		'test_std_dim_1d_neg0',
		'test_std_dim_neg0',
		'test_var_dim',
		'test_var_dim_1d',
		'test_var_dim_1d_neg0',
		'test_var_dim_neg0'
		```
* adds `prim::BoolToTensor` and `prim::TensorToBool`

apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11834

Differential Revision: D9928570

Pulled By: driazati

fbshipit-source-id: 373c53df2f1a8ffa9e33d9a517002fbeef25f3eb
2018-10-03 12:40:03 -07:00
Michael Suo
7f35e92af2 mutable lists (#10700)
Summary:
This PR implements the design that we discussed. Changes:
- Added a World token IValue and type. The IValue is basically a dummy struct for now, in the future we may extend it (say, add thread-local state).
- Effectful ops explicitly declare they are mutable by having World tokens as inputs and outputs in their schema.
- Purely functional ops that use mutable values will get "fenced" and the world token will be threaded through the fences
- AnnotateEffects pass which wires up all the world tokens together.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10700

Reviewed By: eellison

Differential Revision: D9547881

Pulled By: michaelsuo

fbshipit-source-id: ebbd786c31f15bf45e2ddb0c188438ff2f5f3c88
2018-09-27 19:25:13 -07:00
Zachary DeVito
478803a75f Introduce type variables to implement generic list operators (#12040)
Summary:
We generate specialized list operations for int, float, and Tensor lists so that small lists of integers like the arguments to conv do not involve tons of boxing code.

This PR adds a fallback GenericList for List types that contain any other type. It does so by adding type variables to `jit::Type`, and machinery for matching/replacing the type variables during `tryMatchSchema` and operator lookup.

It also modifies the builtin list ops to include a fallback that works on a GenericList object that simply holds IValues. This is distinguished from IValue's tuple type so that conversion to/from Python still happens losslessly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12040

Differential Revision: D10037098

Pulled By: zdevito

fbshipit-source-id: 0c5f2864d12e7d33554bf34cc29e5fb700dde150
2018-09-26 17:02:51 -07:00
Hong Xu
3417a1e7e4 Prepend a "const" to a for loop in printPyObject. (#11857)
Summary:
As pytuple should be a constant type (since obj is constant), potential errors would occur without
this const decorator, e.g., when compiling against PyPy. Although PyPy is not supported yet, it
would still be useful if we remove this compilation issue (out of very few numbers of compilation
issues) to allow hackers playing with them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11857

Differential Revision: D10024149

Pulled By: soumith

fbshipit-source-id: aa7e08e58f6369233a11477113351dccd3854ba8
2018-09-24 23:12:57 -07:00
Adam Paszke
7efbf3a827 Specialize ArgumentSpecs on tuple elements too (#11863)
Summary:
This is pretty important because a common situation of passing LSTM hidden states as a tuple completely trashes performance of a network.

Cleans up all our propagation/undef specialization passes, at a cost of increased complexity of `ArgumentSpec` and `GraphExecutor`. An alternative would be to simply flatten all tuple inputs to a graph ahead of time, but that might just end up being confusing in the future (you never know if you're working with a graph that can have tuple or not).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11863

Differential Revision: D9992814

Pulled By: apaszke

fbshipit-source-id: 0a565a3b23e32f8fa72c0534e07c1ce6187739fc
2018-09-21 14:19:58 -07:00
David Riazati
a79f5d77ad Add pretty printer for JIT IR (#10319)
Summary:
Adds some pretty-printing capability to the IR graph to make debugging easier/more human readable, see `torch/csrc/jit/test_jit.cpp:925` and onwards for example outputs. Results aren't perfect yet but it's a start.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10319

Reviewed By: zdevito

Differential Revision: D9558402

Pulled By: driazati

fbshipit-source-id: 1d61c02818daa4c9bdca36d1477d1734cfc7d043
2018-09-18 17:39:44 -07:00
Zachary DeVito
289a8c9b7d Allow train/eval, and non-Tensor arguments to python functions (#11505)
Summary:
This whitelists train/eval functions in script modules, and tests that nested nn.Modules still work.

This also changes the code for calling python functions from script to allow non-tensor inputs/outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11505

Differential Revision: D9765466

Pulled By: zdevito

fbshipit-source-id: 1177bff931324422b69e18fa0bbaa82e3c98ec69
2018-09-11 15:05:09 -07:00
Adam Paszke
0ddbe668cd Improve shape analysis to cover all most commonly used ops (#11358)
Summary:
[Here's a list](https://gist.github.com/apaszke/f0821840bdcc67a977832dc58acc1b85) of ops that are in `register_aten_ops.cpp`, but aren't supported in shape prop. Everything else should work now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11358

Differential Revision: D9753693

Pulled By: apaszke

fbshipit-source-id: efeae0126ce16cb56b8797fc5246405588bcae3c
2018-09-11 06:02:39 -07:00
Zachary DeVito
7de0332e10 Add initial documentation for JIT (#11357)
Summary:
In addition to documentation, this cleans up a few error message formats.
It also adds infra to find which operators are supported by the JIT automatically, which is then used in the generation of the docs.

The wording and formatting of the docs is not yet polished, but having this will allow our document writers to make faster progress.

Followup PRs will polish the docs and fix formatting issues.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11357

Differential Revision: D9721277

Pulled By: zdevito

fbshipit-source-id: 153a0d5be1efb314511bcfc0cec48643d78ea48b
2018-09-07 14:27:47 -07:00
Adam Paszke
3081c8ea1d Lower trivial differentiable subgraphs (#11110)
Summary:
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11110

Differential Revision: D9616408

Pulled By: apaszke

fbshipit-source-id: f1ae77d698bf0ada32f2c1c3f587e46a4f57a867
2018-08-31 14:55:10 -07:00
Zachary DeVito
ae635b16f7 Record tensor factory functions in trace (#10935)
Summary:
Things like torch.zeros now appear in traces rather than constants.

To continue to support our current level of ONNX export, we run
constant prop to turn these back into constants where possible before
export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10935

Differential Revision: D9527427

Pulled By: zdevito

fbshipit-source-id: 552a8bcc01b911251dab7d7026faafdd7a3c758a
2018-08-29 17:10:24 -07:00
James Reed
beeec47041 Sanity checks for tracing (#10841)
Summary:
TODO: integrate into torch.onnx.export -- separate PR

*Problem:* We have a facility to trace PyTorch operations on Python code, but there are several failure modes where the trace is not representative of the actual underlying computation:

* The tracer encountered dynamic control flow
* Some computation escaped the tracer, and appeared as a Constant tensor node in the graph
* Some stateful function was traced, e.g. someone did an optimization in Python by memoizing function outputs

*Objective*: In an ideal world, this whole process would be automated and the user can trust that the system will magically capture the intended semantics from the program. Realistically speaking, we will likely have to settle with a human-in-the-loop error reporting system, allowing for the user to identify problems and modify the source code to allow for tracing.

*Stage 1* (this PR): Output-level checking & graph diff. torch.jit.trace gains a kwarg 'check_inputs', which is a list of tuples of input arguments. We will iterate through the list and trace the function again for each set of check inputs. We'll also interpret the original trace with these inputs and compare output values and graphs, printing a diff of the graph if there is a difference.

Examples:

```
torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(4, 5),)])
def foo(x):
    y = torch.arange(0, x.shape[0]).float()
    return x + y.unsqueeze(1)
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Graphs differed across invocations!
	Graph diff:
		  graph(%0 : Dynamic) {
		-   %1 : Dynamic = prim::Constant[value= 0  1  2 [ CPULongType{3} ]]()
		?                                                              ^
		+   %1 : Dynamic = prim::Constant[value= 0  1  2  3 [ CPULongType{4} ]]()
		?                                                +++              ^
		    %2 : int = prim::Constant[value=0]()
		    %3 : Dynamic = aten::_cast_Float(%1, %2)
		    %4 : int = prim::Constant[value=1]()
		    %5 : Dynamic = aten::unsqueeze(%3, %4)
		    %6 : int = prim::Constant[value=1]()
		    %7 : Dynamic = aten::add(%0, %5, %6)
		    return (%7);
		  }
	Node diff:
		- %1 : Dynamic = prim::Constant[value= 0  1  2 [ CPULongType{3} ]]()
		?                                                            ^
		+ %1 : Dynamic = prim::Constant[value= 0  1  2  3 [ CPULongType{4} ]]()
		?                                              +++              ^
	Trace source location:
		dank.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		dank.py(3): <module>
	Check source location:
		dank.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(281): check_trace
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(408): wrapper
		dank.py(3): <module>
ERROR: Tensor-valued Constant nodes differed in value across invocations. This often indicates that the tracer has encountered untraceable code.
	Node:
		%1 : Dynamic = prim::Constant[value= 0  1  2 [ CPULongType{3} ]]()
	Source Location:
		dank.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		dank.py(3): <module>
	Comparison exception:
		Not equal to tolerance rtol=1e-07, atol=0

		(shapes (3,), (4,) mismatch)
		 x: array([0, 1, 2])
		 y: array([0, 1, 2, 3])

```
==

```
torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(3, 4),)])
def foo(x):
    y = x.data
    return x + y
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
ERROR: Tensor-valued Constant nodes differed in value across invocations. This often indicates that the tracer has encountered untraceable code.
	Node:
		%1 : Dynamic = prim::Constant[value=<Tensor>]()
	Source Location:
		dank.py(6): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		dank.py(3): <module>
	Comparison exception:
		Not equal to tolerance rtol=1e-07, atol=0

		(mismatch 100.0%)
		 x: array([0.397137, 0.956105, 0.169478, 0.560292, 0.392568, 0.108441,
		       0.97645 , 0.34412 , 0.951246, 0.793061, 0.557595, 0.770245],
		      dtype=float32)
		 y: array([0.243178, 0.315964, 0.972041, 0.0215  , 0.927751, 0.457512,
		       0.951092, 0.97883 , 0.048688, 0.118066, 0.779345, 0.271272],
		      dtype=float32)
```

==

```
import torch

torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(4, 4),)])
def foo(x):
    for _ in range(x.size(0)):
        x = torch.neg(x)
    return x
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
ERROR: Graphs differed across invocations!
	Graph diff:
		  graph(%0 : Dynamic) {
		    %1 : Dynamic = aten::neg(%0)
		    %2 : Dynamic = aten::neg(%1)
		    %3 : Dynamic = aten::neg(%2)
		+   %4 : Dynamic = aten::neg(%3)
		-   return (%3);
		?            ^
		+   return (%4);
		?            ^
		  }
```

==

```
import torch

def foo(x):
    if not hasattr(foo, 'cache'):
        foo.cache = torch.neg(x)
    return x + foo.cache

traced = torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(3, 4),)])(foo)
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
ERROR: Graphs differed across invocations!
	Graph diff:
		  graph(%0 : Dynamic) {
		-   %1 : Dynamic = aten::neg(%0)
		+   %1 : Dynamic = prim::Constant[value=<Tensor>]()
		    %2 : int = prim::Constant[value=1]()
		    %3 : Dynamic = aten::add(%0, %1, %2)
		    return (%3);
		  }
	Node diff:
		- %1 : Dynamic = aten::neg(%0)
		+ %1 : Dynamic = prim::Constant[value=<Tensor>]()
	Trace source location:
		test.py(5): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(402): wrapper
		test.py(8): <module>
	Check source location:
		test.py(6): foo
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(281): check_trace
		/Users/jamesreed/onnx-fairseq/pytorch/torch/jit/__init__.py(408): wrapper
		test.py(8): <module>
```

The following two examples show instances where program semantics are lost in the Python -> trace transformation, and repeated invocation does not give us useful debug information. Further design in underway for catching these scenarios.

```
import torch

torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(3, 4),)])
def foo(x):
    for i in range(3):
        x[i, :] = torch.zeros(4)
    return x
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
Exception:
Not equal to tolerance rtol=1e-07, atol=0

(mismatch 100.0%)
 x: array([0.830221, 0.915481, 0.940281, 0.555241], dtype=float32)
 y: array([0., 0., 0., 0.], dtype=float32)
```

==

```
import torch

torch.jit.trace(torch.rand(3, 4), check_inputs=[(torch.rand(5, 6),)])
def foo(x):
    x.view(-1).add_(-x.view(-1))
    return x
```

```
torch.jit.TracingCheckError: Tracing failed sanity checks!
ERROR: Traced function outputs do not match the Python function outputs.
Exception:
Not equal to tolerance rtol=1e-07, atol=0

(mismatch 100.0%)
 x: array([0.734441, 0.445327, 0.640592, 0.30076 , 0.891674, 0.124771],
      dtype=float32)
 y: array([0., 0., 0., 0., 0., 0.], dtype=float32)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10841

Differential Revision: D9499945

Pulled By: jamesr66a

fbshipit-source-id: 1f842a32d0b0645259cc43b29700b86d99c59a45
2018-08-28 20:25:26 -07:00
Adam Paszke
c8b246abf3 Prevent JIT from overspecializing to every single size configuration (#10844)
Summary:
Please review the expects carefully to make sure there are no regressions. I tried to go over them one by one when they changed, but it's sometimes easy to miss finer details.

Summary of changes:

- Renamed `TensorType` to `CompleteTensorType`. Added a new `TensorType` which records only the scalar type, number of dimensions, and device of a value. The argument behind the rename is to encourage people to use `CompleteTensorType` less, as most passes will only have limited information available. To make transition easier `complete_type->cast<TensorType>()` works, and makes our passes work with both kinds of specialization if they don't need extra the extra detail.
- Renamed `ArgumentSpec` to `CompleteArgumentSpec`. Added a new `ArgumentSpec`, which matches argument only at the level of the new `TensorType`.
- Shape analysis can process graphs with both `CompleteTensorType` and `TensorType`.
- Fuser was a part that heavily relied on full shape information being available. Now, we simply try to fuse the largest possible graphs, and have to do run-time checks to make sure they match the code we generate. If they don't, we fall back to regular interpretation. The shape checks are implementing using an optimized method exploiting algebraic properties of shapes with broadcasting, and the relations of broadcasting with pointwise ops. A full written proof of correctness of the shape checking algorithm is included in a comment in `graph_fuser.cpp`.

zdevito ezyang mruberry ngimel csarofeen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10844

Differential Revision: D9498705

Pulled By: apaszke

fbshipit-source-id: 0c53c2fcebd871cc2a29c260f8d012276479cc61
2018-08-26 09:54:48 -07:00
Lu Fang
bdb11e716a Split the dependence of ONNX from test_operators.py (#10151)
Summary:
Now, run `python test/onnx/test_operators.py --no-onnx`, we won't introduce any onnx python dependence. (No onnx/protobuf python packages needs to be installed)

The major changes:
- output pbtxt from C++ exporter directly, so the floating format may be slightly different. (This should be fine, since it's just to guard ONNX exporting.)
- ONNX python packages are only imported if we run the ONNX related checks. Those checks are disabled when using `--no-onnx` flag.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10151

Reviewed By: jamesr66a

Differential Revision: D9130706

Pulled By: houseroad

fbshipit-source-id: ea28cf5db8399929179698ee535137f209e9ce6f
2018-08-14 12:54:44 -07:00
Roy Li
e9ad74357e Use serialization container in ir import export (#10394)
Summary:
Copy of #10191 because these changes didn't land with the diff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10394

Differential Revision: D9260816

Pulled By: li-roy

fbshipit-source-id: 7dc16919cfab6221fda1d44e98c5b900cfb40558
2018-08-10 00:09:30 -07:00
Roy Li
0e9c6898cb Export modules in ir with google protobuf
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/9746

Differential Revision: D9110006

Pulled By: li-roy

fbshipit-source-id: 8b9744c042f822fdfe959a7a7fef3d0baff4f639
2018-08-02 15:54:51 -07:00
Adam Paszke
5e5c15dd42 Add (constant size) TensorLists to JIT, use them in cat and stack nodes (#9948)
Summary:
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9948

Reviewed By: ezyang

Differential Revision: D9033666

Pulled By: apaszke

fbshipit-source-id: 02d75e391ed6dee62500842df50f0b6ee5e38846
2018-07-31 07:39:52 -07:00
Adam Paszke
8cb1eef7b9 Unify IR operator representation (stop using attributes in the JIT) (#9807)
Summary:
Based on top of #9763 (first 3 commits belong to that PR). The first commits from this PR are "Stop using attributes ..."

I tried to separate the changes into fairly meaningful commits. I can't split them up into smaller PRs, because everything starts working and all tests pass only after the whole sequence, but hopefully this will make reviewing somewhat easier.

Known issues/regressions/future tasks:
- `aten::lerp` and `aten::clamp` are no longer fusable
- `CreateAutodiffSubgraphs` needs a rewrite
  - It is much more strict now, and will miss a lot of opportunities, especially when viewing ops are involved. Our previous approach was "ignore the assumption on shape availability in gradient formulas to determine differentiability, and hope that shape prop will be robust enough to actually deliver them before we differentiate", which obviously doesn't scale well to more complex cases. We should either work on reducing the size dependency of grad formulas (feasible e.g. for `view`/`reshape`, unfeasible for `squeeze`/`unsqueeze`), or make `CreateAutodiffSubgraphs` integrate some kind of "I could integrate this node into an AD subgraph, but will I be able to infer the shape of its input" reasoning (kind of like a limited shape prop, that doesn't infer anything, and only tells if it *could* infer something).
  - It sometimes creates constant-only (or constants + one node) graphs, which is useless
- Broken `aten::add` in auto-batching, because it gained a non-tensor input. I changed the test for pointwise operations to use `aten::mul` instead, but I needed to disable the LSTM cell test. I'm not sure how scalar constants should be implemented in this case, because I don't fully understand our format. cc: ChunliF
- Graph import does some hacks to recover type of constants. This code should be removed once we'll gain the ability to export the IR along with value types.
- There's still a fair amount of dead code that can be removed. I didn't want to make this diff any bigger, and removing it is an easy task.
- Graph fuser could be improved to use signature matching (possibly using `OperatorSet`) instead of basing on node kinds.
- Manual constant propagation for the `ListConstruct` node in `torch/onnx/utils.py` should be replaced with a proper constant propagation pass (or we should ensure that the one we have handles at least this case before we remove this code).

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9807

Reviewed By: ezyang

Differential Revision: D9004285

Pulled By: apaszke

fbshipit-source-id: fe88026a765f6b687354add034c86402362508b7
2018-07-26 22:11:50 -07:00
Wanchao Liang
b7b61a8eb4 Change expect, cast on Type to return shared pointers, make isSubtypeOf accept TypePtr (#9786)
Summary:
Follow up task of #9584.

Commit 1:

- change expect/cast to return shared pointers instead of raw pointer
- isSubtypeOf accept TypePtr instead. Use `x->isSubtypeOf(NumberType::get())` rather than `x->isSubtypeOf(*NumberType::get())`

Commit 2:

- to address enable_shared_from_this pitfalls, we make the constructor private and expose the factory method to make sure user can only create it using our factory method.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9786

Reviewed By: zdevito

Differential Revision: D8980441

Pulled By: wanchaol

fbshipit-source-id: e5c923fc57a701014310e77cf29985b43bb25364
2018-07-26 18:09:45 -07:00
Adam Paszke
e39c8043dc Make GraphExecutors work on Stacks instead of variable_tensor_lists (#9763)
Summary:
This is blocking the IR operator unification, because I need to be able to pass scalars to backward functions.

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9763

Reviewed By: zou3519

Differential Revision: D8978457

Pulled By: apaszke

fbshipit-source-id: 570b4c3409322459cb0f2592069730a7d586ab20
2018-07-26 12:00:27 -07:00
James Reed
0b16b03b98 Plumb type annotations through script compilation (new) (#9547)
Summary:
Supersedes https://github.com/pytorch/pytorch/pull/9405
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9547

Reviewed By: zdevito

Differential Revision: D8900327

Pulled By: jamesr66a

fbshipit-source-id: a00a94615af4fbaec98ee3ede0cb54bcfd9108dd
2018-07-25 17:10:14 -07:00
Peter Goldsborough
f62bc01dfe Remove TORCH_ASSERT (#9575)
Summary:
I got some tensor->variable conversion exceptions from `torch/csrc/autograd/variable.h`, which used the `TORCH_ASSERTM` macros instead of `AT_CHECK`, so they didn't have backtraces. This was such a substantial loss for debugability that I decided to update the whole codebase to use the backtrace-enabled ATen macros instead of `TORCH_ASSERT` and `JIT_ASSERT`, the latter having been an alias of the former.

ezyang apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9575

Differential Revision: D8924566

Pulled By: goldsborough

fbshipit-source-id: 7a4013b13eec9dbf024cef94cf49fca72f61d441
2018-07-24 18:10:06 -07:00
Zachary DeVito
a949245a86 Switch interpreter to use IValue's primitive int/floats (#9718)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9718

This patch switches the interpreter to use IValue's primitive numbers rather than tensors for computing on integers and floats. In addition to preparing the interpreter for first-class support of other types, this cleans up the handling of primitive numbers, making it possible to just use the normal operator overloading dispatch to find the right implementation for numbers. As a result of this change, a lot of other functionality needed to be updated since it was the first time we use non-tensors in a lot of places in the code base.

Notes:
* Fixes code_template.py so that multi-line strings are indented correctly when used on a standalone line
* Cast operators (`int(x)`) now are functional. Some tests have addition conversions to integers because
we no longer allow implicit tensor -> integer conversions following the same convention as in python
* prim::ListConstruct/createList has been added to the interpreter for creating lists and this has
replaced aten::stack for integers lists
* gen_jit_dispatch.py has been refactored so that non-tensor types use operators on IValues to extract
the primitives
* IValue gains a .to<T> method that is the equivalent of tensor_as but for IValue instead of at::Tensor
* `constant_as<T>` is switched over to using IValues's `.to<T>` method, to make conversion from constant->IValue->C++ type
more consistent. This functionality combined with `toIValue(Value*)` replaces the `tensor_as` and `as_tensor` family of functions.
* conditional expressions (if, loop) and operators related to them are now computed on integers rather than tensors
* IValue gains constructors for constructing from at::Scalar and converting to it. However, IValue itself will always store
the scalars as a double or int64.
* To align with python 3 syntax, TK_INT, TK_FLOAT, and TK_BOOL have been removed from the parser, and int/float/bool are just treated as special identifiers in the compiler,
along with print. These are represented as special sugared values with a `call` method implemented. For int/float/bool this implements casting behavior.
* Dropped shared_from_this from Type/Module. They were not needed and they making debugging harder because they internally throw/catch exceptions.
* Shape propagation has been updated to support running nodes that include floating point primitive types, this required some refactoring of internal functions.
* TensorToNum and NumToTensor have actual implementations as operators now
* regster_prim_ops now contains implementations of math operators for float/int primitive types, and for mixed (prim <+> tensor) versions. This removes the need for special handling in compiler.cpp
* Primitive math is now entirely handled by letting the compiler choose the right overloads. This removes tons of special casing in the compiler.
* incorporates eellison's change to allow casting from return values. Due to the addition of primitive support, the code need slight modifications, so I just pre-merged it here.
* stack.h gains generic vararg versions of push/pop that know how to convert to/from C++ types:

```
at::Tensor a;
at::Scalar b;
pop(stack, a, b);
at::Tensor c = a + b;
push(stack, c);
```
apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9584

Reviewed By: apaszke

Differential Revision: D8910546

Pulled By: zdevito

fbshipit-source-id: 0f3e60d4d22217f196a8f606549430e43b7e7e30
2018-07-23 14:11:11 -07:00
Adam Paszke
aa7af94656 Make JIT tracing a thread-local property (#9414)
Summary:
As in the title. Lets us simplify a lot of code.

Depends on #9363, so please review only the last commit.

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9414

Reviewed By: zdevito

Differential Revision: D8836496

Pulled By: apaszke

fbshipit-source-id: 9b3c3d1f001a9dc522f8478abc005b6b86cfa3e3
2018-07-19 19:09:39 -07:00
Adam Paszke
b9f575fc33 Remove legacy code from the JIT (#9323)
Summary:
In particular, get rid of backward tracing and CppOp.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9323

Reviewed By: ezyang

Differential Revision: D8795935

Pulled By: apaszke

fbshipit-source-id: fb7a7eeee41902da35f2a8efd77262ca60fd6bbe
2018-07-11 10:25:38 -07:00
Zachary DeVito
efefd1d7cf Unify aten_dispatch and aten_schema into a single operator abstraction with human-readable schema. (#8885)
Summary:
This is a series of two commits that should probably be read separately. They are stacked on top of #9018 since the second commit requires it for correctness.

Commit 1
=======

This commit is the first in a series that will clean up how we handle declaring operators and intrinsics in the JIT to make it more modular and readable. This introduces readable declarations that can be used to register operators and switches gen_jit_dispatch to generate this schema. A follow up PR will remove the dispatch keys like "add-3" and resolve ops directly based on the registered schema, further simplifying the generation process.

* Switches schema over to parsed declarations, in the future this will allow something like:

```
  registry.register_intrinsic("foo(Tensor a, Tensor b) -> Tensor", [](Stack& stack) {
    ...
  })
```

This will allow the scalable registration of intrinsics for lists, tuples, and other ops, as long as meta-data for these ops (e.g. derivatives and size propagation routines).

The declarations resemble those used by PythonArgParser but have been singificantly cleaned up to minimize the number of types that can appear in the declaration. We should strive to get the other parts of PyTorch switched over to this restricted declaration set when possible, but it is too much to do in a single PR. My hope is that eventually we will use a very similar language to describe declarations in C10, and this can serve as a guide for that.

Parsing is done using the script lexer, so it is very robust to whitespace and extensible for future types.

This removes the other way we encoded schema, and makes it easier to see what schema are registered.

Current generated declarations: https://gist.github.com/zdevito/a96a17766fb3a098d69a91ee00abaaf6

* Switches how we handle attempting to use an integer in the place of a fixed-sized int list, such as in conv (e.g. 'int[3] stride=1'). Now that we can statically distinguish between int and Tensor, we handle the expansion as an implicit conversion in the compiler. This allows us to simplify the interpreter since it no longer needs to handle the conversion itself.

* Schema declarations have been changed so that they match the type system in the IR exactly. In particular, attribute_info which was used by liftConstantAttributes has been dropped and constant attributes are lifted purely based on the type of the input. Type conversions in compiler have been simplified due to this change.

* Error highlighting in ErrorReport now only reports at most 20 lines of code, to make reading where an error occurred easier.

Commit 2
=======

This commit unifies aten_dispatch and aten_schema into a single Operator object that both contains schema and implementation information. In the future we can use this object to also contain functionality like shape prop and autodiff needed by all operators. Operators are registered globally, and dispatch logic uses the schema information to figure out which variant to use. Descriptor keys, a frequent source of inscrutable debug errors, have been removed.

* Introduce Operator, to replace TensorOp. Unlike TensorOp, we use Operator for all op implementations, including primitives that may occur in the graphs. The only exceptions are ops that are only known to the interpreter like jumps, and GraphExecutors where we need to record additional debug info.

* Adds a global registry for Operator implementations. aten_dispatch.cpp turns into register_aten_ops.cpp, which registers all the Operators for aten with the operator registry. register_prim_ops.cpp now contains the implementations for primitive operators that used to be in the interpreter. This means that it is now safe to use `getOperation(node)` to lookup the true interpreter function for the node, which will simplify const-propagation passes.

* Remove addInterpreterOpHandler in favor of global operator registry.

* Instead of descriptors, we match Node arguments directly against FunctionSchema describing expected inputs in `matchSchema`. `matchSchema` knows how parse both attributes and positional inputs from a node and match it to the appropriate registered operator. Debug error messages when we try to run an invalid operator are significantly improved: they now automatically display the schema for the op with the same name that are registered.

* Merge aten_schema into regsiter_aten_ops. Each Operator takes a string schema which is parsed to determine when to dispatch to that op.

* Cleans up gen_jit_dispatch.py now that we do not need to write out descriptors.  In particular, skip_scalar_overloads can be removed since Richard's code sorts declarations to put Tensor, Tensor declarations first.

* remove matchSchemaAndLiftConstantAttributes and use emitBuiltinCall instead to remove code duplication

* refactor stack manipulation functions into a separate header file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8885

Reviewed By: jamesr66a

Differential Revision: D8751048

Pulled By: zdevito

fbshipit-source-id: 312aabfbf88307c5f6ab947b6caf691468b94557
2018-07-10 10:24:48 -07:00
Soumith Chintala
b5a123c06c
[jit] Add python bindings for Gradient and differentiate (#8830)
* improve assertion error message in jit::differentiate

* add python binding for Graph::copy

* add pybind for jit::differentiate and jit::Gradient
2018-06-25 18:09:29 -04:00
James Reed
04503962ff
[ONNX] Add an ATen fallback pathway for ONNX export (#8273)
* ATen fallback for ONNX export

* Move to enum

* Fix model test

* Add comment

* Address comments

BC interface
2018-06-12 22:59:45 -07:00