Summary:
This PR:
1. Handle None value attr in the WeakScriptModuleProxy
2. add back module tests that now passing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14715
Differential Revision: D13313573
Pulled By: wanchaol
fbshipit-source-id: a6b7892707350290a6d69b6f6270ad089bfc954b
Summary:
Commits:
1. In extension doc, get rid of all references of `Variable` s (Closes#6947 )
+ also add minor improvements
+ also added a section with links to cpp extension :) goldsborough
+ removed mentions of `autograd.Function.requires_grad` as it's not used anywhere and hardcoded to `return_Py_True`.
2. Fix several sphinx warnings
3. Change `*` in equations in `module/conv.py` to `\times`
4. Fix docs for `Fold` and `Unfold`.
+ Added better shape check for `Fold` (it previously may give bogus result when there are not enough blocks). Added test for the checks.
5. Fix doc saying `trtrs` not available for CUDA (#9247 )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9239
Reviewed By: soumith
Differential Revision: D8762492
Pulled By: SsnL
fbshipit-source-id: 13cd91128981a94493d5efdf250c40465f84346a
This PR enables users to print extra information of their subclassed nn.Module.
Now I simply insert the user-defined string at the ending of module name, which should be discussed in this PR.
Before this PR, users should redefine the __repr__ and copy&paste the source code from Module.
* Add support for extra information on Module
* Rewrite the repr method of Module
* Fix flake8
* Change the __repr__ to get_extra_repr in Linear
* Fix extra new-line for empty line
* Add test for __repr__ method
* Fix bug of block string indent
* Add indent for multi-line repr test.
* Address review comments
* Update tutorial for creating nn.Module
* Fix flake8, add extra_repr of bilinear
* Refactor DropoutNd
* Change to extra_repr in some Modules
* Fix flake8
* Refactor padding modules
* Refactor pooling module
* Fix typo
* Change to extra_repr
* Fix bug for GroupNorm
* Fix bug for LayerNorm
* Fix some minor errors in existing docs.
* Fix Convolution and Pooling docs in torch.nn.functional
* Cleaned up torch.nn.functional docs
* Address @SsnL 's comments
* Add multiplication sign missing in docs
* Fix more typos, and clear some warnings
* Change infinity symbol in LPPool2d
* Revert some changes in torch.nn.functional
* Few more minor changes
* Improvize documentation
1. Add formula for erf, erfinv
2. Make exp, expm1 similar to log, log1p
3. Symbol change in ge, le, ne, isnan
* Fix minor nit in the docstring
* More doc improvements
1. Added some formulae
2. Complete scanning till "Other Operations" in Tensor docs
* Add more changes
1. Modify all torch.Tensor wherever required
* Fix Conv docs
1. Fix minor nits in the references for LAPACK routines
* Improve Pooling docs
1. Fix lint error
* Improve docs for RNN, Normalization and Padding
1. Fix flake8 error for pooling
* Final fixes for torch.nn.* docs.
1. Improve Loss Function documentation
2. Improve Vision Layers documentation
* Fix lint error
* Improve docstrings in torch.nn.init
* Fix lint error
* Fix minor error in torch.nn.init.sparse
* Fix Activation and Utils Docs
1. Fix Math Errors
2. Add explicit clean to Makefile in docs to prevent running graph generation script
while cleaning
3. Fix utils docs
* Make PYCMD a Makefile argument, clear up prints in the build_activation_images.py
* Fix batch norm doc error
The nn.* counterpart of #5443 . Mostly removed Variable wrapper. Also added doc for nn.RReLU.
Notice that torch.randn(*, requires_grad=True) isn't documented until #5462 is done.
* at::maybe_data_ptr and Check.h => TensorUtils.h
* THNN support for optional BN running_*
* ATen support for optional BN running_*
* Python nn.* support for optional BN running_*; Improve IN and BN doc
* Add tests for IN and BN new option
* Layer Norm
* Fix LRN doc
* functional interface for LN and IN
* Layer norm tests
* fix BN double backward returning undefined tensors
* fix jit test using wrong dim inputs for BN
* add/improve BN, IN and LN GPU tests with half type
* Udpate docs to be consistent with Conv notation
Fix onnx
Clarified onnx symbokic wrapper
* fix typo
* Address comments
* Fix LaTex rendering in CosineAnnealingLR
Backslashes were interpreted by Python as escapes in the string, so \frac
turned into frac, which is not a valid LaTex command.
This could be fixed with double backslashes, but the easiest solution is to
just use a raw (r) docstring.
* Fix sphinx warnings for LRN doc headings
* Move LRN docstring from __init__ to class level
The docstring was not rendered by sphinx at
http://pytorch.org/docs/master/nn.html#torch.nn.LocalResponseNorm
because it was in the constructor.
* Remove superfluous backticks from LRN formula
Here's the command I used to invoke autopep8 (in parallel!):
git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i
Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.
Also configures flake8 to match pep8's behavior.
Also configures TravisCI to check the whole project for lint.
Uses the assignment syntax to get deterministic ordering of parameters.
The ordering of parameters using the constructor syntax is
non-deterministic because kwargs use dict() in Python 3.5 and earlier.