Commit Graph

14 Commits

Author SHA1 Message Date
SsnL
e982e46de3 Add multiprocessing_context= argument to DataLoader (#22990)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/22131
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22990

Differential Revision: D16539052

Pulled By: colesbury

fbshipit-source-id: b1c48ae2fb54065dd96a67be263254129e02eaa2
2019-07-29 12:58:40 -07:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
Pieter Noordhuis
220ce8046e Binding for prctl(PR_SET_PDEATHSIG) (#14491)
Summary:
If torch.multiprocessing.spawn is used to launch non-daemonic
processes (the default since #14391), the spawned children won't be
automatically terminated when the parent terminates.

On Linux, we can address this by setting PR_SET_PDEATHSIG, which
delivers a configurable signal to child processes when their parent
terminates.

Fixes #14394.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14491

Differential Revision: D13270374

Pulled By: pietern

fbshipit-source-id: 092c9d3c3cea2622c3766b467957bc27a1bd500c
2018-11-29 20:09:19 -08:00
Teng Li
778e23606b multiprocessing.spawn python version check (#14039)
Summary:
This will be super helpful to the user
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14039

Differential Revision: D13089200

Pulled By: teng-li

fbshipit-source-id: 29e7507bd8fe5a0c58a85c52f976bfca282b4c1b
2018-11-16 18:53:23 -08:00
Pieter Noordhuis
1caa341c68 Add torch.multiprocessing.spawn docs
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13846

Differential Revision: D13029595

Pulled By: pietern

fbshipit-source-id: b733b00f7070c18535c31801f20e6e717eec7748
2018-11-12 14:39:52 -08:00
Pieter Noordhuis
be424de869 Add torch.multiprocessing.spawn helper (#13518)
Summary:
This helper addresses a common pattern where one spawns N processes to
work on some common task (e.g. parallel preprocessing or multiple
training loops).

A straightforward approach is to use the multiprocessing API directly
and then consecutively call join on the resulting processes.

This pattern breaks down in the face of errors. If one of the
processes terminates with an exception or via some signal, and it is
not the first process that was launched, the join call on the first
process won't be affected. This helper seeks to solve this by waiting
on termination from any of the spawned processes. When any process
terminates with a non-zero exit status, it terminates the remaining
processes, and raises an exception in the parent process. If the
process terminated with an exception, it is propagated to the parent.
If the process terminated via a signal (e.g. SIGINT, SIGSEGV), this is
mentioned in the exception as well.

Requires Python >= 3.4.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13518

Reviewed By: orionr

Differential Revision: D12929045

Pulled By: pietern

fbshipit-source-id: 00df19fa16a568d1e22f37a2ba65677ab0cce3fd
2018-11-06 14:08:37 -08:00
peterjc123
aa911939a3 Improve Windows Compatibility (for csrc/scripts) (#2941) 2017-11-08 19:51:35 +01:00
Adam Paszke
58320d5082 Add multiprocessing docs 2017-01-03 18:31:08 -05:00
Sam Gross
24af02154c Use ForkingPickler for sharing tensor/storages across processes (#344)
This hooks into the (internal) ForkingPickler class in multiprocessing
to reduce tensors, storages, and CUDA events instead of our queue from
joblib. This makes it easier to use the standard multiprocessing classes
in later versions of Python.

This also exposes:

 - Tensor/Storage.share_memory_()
 - Module.share_memory()

These methods move the CPU tensors and storages to shared memory. If
you're using the "fork" method of multiprocessing, these objects can be
directly inherited instead of serialized through a queue.
2016-12-28 20:34:23 -05:00
Sam Gross
bb72ccf1a5 Support CUDA IPC in Python 3 (#203)
CUDA IPC only works with Python 3 using the "spawn" start method. You
can select the start method using the get_context method:

 import torch.multiprocessing as mp
 ctx = mp.get_context('spawn')
 queue = ctx.Queue()
 event = ctx.Event()
2016-12-19 20:42:53 -05:00
Sam Gross
8a09c45f28 Fix typo 2016-10-18 09:29:19 -07:00
Adam Paszke
e223564a55 Fix multiprocessing on OS X 2016-09-16 18:27:07 -04:00
Adam Paszke
58f507f9e3 Add file descriptor sharing mode to multiprocessing 2016-09-08 11:23:33 -07:00
Adam Paszke
f9d186d33a Add initial version of multiprocessing module 2016-08-31 19:46:08 -07:00