Commit Graph

10 Commits

Author SHA1 Message Date
Syed Tousif Ahmed
ae342fd076 Refactor Random Number Generators in ATen (#21364)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21364
ghimport-source-id: ca7d37e10190ba46dc8512f437404ca9216d3369

Differential Revision: D15696497

Pulled By: ezyang

fbshipit-source-id: 2e713b8566ae915e175b5a79ac1dd9b86cc2a23d
2019-06-12 13:01:30 -07:00
Edward Yang
517c7c9861 Canonicalize all includes in PyTorch. (#14849)
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.

I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.

I used the following script to do the canonicalization:

```
  import subprocess
  import re
  import os.path

  files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
  for fn in files:
      if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
          continue
      if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
          continue
      with open(fn, 'r') as f:
          c = f.read()
      def fmt(p):
          return "#include <{}>".format(p)
      def repl(m):
          p = m.group(1)
          if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
              return fmt(p)
          if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
              return fmt(p)
          for root in ["aten/src", "torch/lib", ""]:
              for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
                  new_p = os.path.relpath(os.path.join(bad_root, p), root)
                  if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
                      return fmt(new_p)
          print("ERROR: ", fn, p)
          return m.group(0)
      new_c = re.sub(r'#include "([^"]+)"', repl, c)
      if new_c != c:
          print(fn)
          with open(fn, 'w') as f:
              f.write(new_c)
```

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849

Reviewed By: dzhulgakov

Differential Revision: D13363445

Pulled By: ezyang

fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
2018-12-08 19:38:30 -08:00
Zachary DeVito
d985cf46f1
Add workaround to fix include warnings in Python 2 builds. (#6716) 2018-04-24 12:30:19 -07:00
Sam Gross
7588893ce2
Some additional clean-ups (#5505)
- Remove some uses of mega-header THP.h
 - Use HANDLE_TH_ERRORS in functions that may throw
 - Move NumPy includes to common header
 - Delete unused allocator
2018-03-05 17:45:02 -05:00
Sam Gross
5dedc648bb Compile DataLoader.cpp separately (#5507)
Don't #include DataLoader.cpp in Module.cpp
2018-03-02 05:54:33 -05:00
gchanan
1c96809cf8
Bind cauchy_, exponential_, normal_, uniform_ functions to THPVariable. (#3945)
* Bind cauchy_, exponential_, normal_, uniform_ functions to THPVariable.

Also changes the error messages around Generator parser; previously, you'd get an error
like: torch._C.Generator is not a torch.Generator; now the check is proper but returns
that only None is supported.

* Support passing Generators to ATen Variable-bound methods.

This involves changing THPGenerator to have an at::Generator rather than a THGenerator.
TH getRNGState, setRNGState are still called directly because they are not bound from ATen yet;
they should probably be on the Generators and return (opaque) GenerateState objects.

* Fix default values.

* Properly use THRandom_initialSeed.

* update standard gamma to use new default generator.
2017-12-07 14:34:51 -08:00
peterjc123
aa911939a3 Improve Windows Compatibility (for csrc/scripts) (#2941) 2017-11-08 19:51:35 +01:00
Sam Gross
47beb64b5c Use ATen generator as default CPU generator (#3135)
ATen has it's own default CPU RNG. Use this as the default in PyTorch so
that random functions called through ATen have the same behavior as
random functions called through TensorMethods
2017-10-16 14:22:58 -04:00
Adam Paszke
06ab3f962f Refactor _C extension to export some utilities 2016-09-21 08:36:54 -07:00
Adam Paszke
4f66ea42af Add random-related Tensor methods 2016-06-18 21:36:10 +02:00