There is one huge problem this fixes: today, sympify(symint)
produces a float(!!) because Sympy attempts to see if you can
coerce the symint to float in sympify and of course this works on
SymInt.
However, this also has another nontrivial effect: anywhere in Inductor
where sympy expressions are passed around, it is also valid to pass
around a SymInt now. I'm ambivalent about this: it's currently a
mistake to be passing around a SymInt when a sympy expression is
expected. But maybe this is fine?
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130166
Approved by: https://github.com/yf225
**Summary**
This PR mainly refactor 2 things:
1. Passing in weight's data type explicitly in `create_micro_gemm` as `input2.dtype`. When registering `CppMicroGemmConfig`, we will reuse `input.dtype` if `input2.dtype` is not explicitly registered.
2. Add an util function to get the output data type and compute data type from input data type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129221
Approved by: https://github.com/jgong5, https://github.com/jansel
ghstack dependencies: #128825, #129048, #129049, #129103, #129220
This PR adds an alternative backend for Inductor, adding Composable Kernel Universal GEMM instances to the autotune instance selection.
The implementation is heavily influenced by the series of PRs which adds CUTLASS backend (https://github.com/pytorch/pytorch/issues/106991). The main differences are
(1) customizing compiler for the ROCm platform
(2) customizing template code generation for Composable Kernel Universal GEMM instances.
We provide config tuning knobs for balancing between instance sources compilation time and finding the best instance.
### Testing
Install the ck library
```
pip install git+https://github.com/rocm/composable_kernel@develop
```
Run the test
```
TORCH_LOGS=+torch._inductor \
pytest --capture=tee-sys test/inductor/test_ck_backend.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125453
Approved by: https://github.com/eellison, https://github.com/jansel
Summary: Found during testing with remote caching: Use the same output logger object between graph.py and codecache.py since it's patched in `run_and_get_cpp_code`. That allows us to capture any logging produced from the codecache path when using `run_and_get_cpp_code`. I'm also fixing a few tests that were passing mistakenly because logging was missing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128794
Approved by: https://github.com/oulgen, https://github.com/leslie-fang-intel
In this PR, we abstracted the different types of aten operation parameters as `ParameterMetadata`. This structure intends to be used to represent and store the metadata of each aten operation parameter. Currently, it only supports `Tensor`, `TensorList`, and `Scalar`.
```C++
using ParameterMetadataValue = std::variant<TensorMetadata, std::vector<TensorMetadata>, c10::Scalar>;
```
With this PR, we can extend other parameter-type support in a more modularize way, like `string`, `int`, `double`, and other different types to be summarized as the following list. The list is collected from all aten operations and ordered by the number of being used.
- `Tensor`
- `bool`
- `int64_t`
- `TensorList`
- `Scalar`
- `c10::SymIntArrayRef`
- `::std::optional<Tensor>`
- `IntArrayRef`
- `double`
- `c10::SymInt`
- `::std::optional<ScalarType>`
- `::std::optional<double>`
- `::std::optional<bool>`
- `::std::optional<Layout>`
- `::std::optional<Device>`
- `::std::optional<int64_t>`
- `Dimname`
- `::std::optional<Generator>`
- `c10::string_view`
- `::std::optional<c10::string_view>`
- `OptionalIntArrayRef`
- `::std::optional<Scalar>`
- `OptionalSymIntArrayRef`
- `::std::optional<MemoryFormat>`
- `::std::optional<c10::SymInt>`
- `ScalarType`
- `ArrayRef<Scalar>`
- `DimnameList`
- `::std::optional<ArrayRef<double>>`
- `::std::array<bool,3>`
- `::std::optional<DimnameList>`
- `c10::List<::std::optional<Tensor>>`
- `::std::array<bool,2>`
- `Storage`
- `::std::array<bool,4>`
- `Device`
- `DeviceIndex`
- `ITensorListRef`
- `Stream`
- `Layout`
- `MemoryFormat`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125308
Approved by: https://github.com/jgong5, https://github.com/jansel
This PR implements "V0" of AOTAutogradCache. Given an input to AOTAutograd, we calculate a cache key, then save an AOTAutogradCacheEntry.
Each AOTAutogradCacheEntry has:
- A CompiledForward and optionally a CompiledBackward
- A bunch of metadata.
CompiledForward and CompiledBackward each save the *key* to the FXGraphCache associated with the compiled object. FXGraphCache populates this key field as long as it's able to return a compiled graph given a set of inputs. We then load the same object from the FXGraphCache on an AOTAutogradCache hit.
On cache miss:
- Run AOTAutograd, up to AOTAutogradDispatch.post_compile.
- Save an AOTAutogradCacheEntry to the cache after compiling the necessary portions and receiving a cache key from FXGraphCache. In this we *always* compile the backwards ahead of time. The PR above this one implements backward lazy caching, so that we only save to the cache after compiling the backward in a lazy backward scenario.
- Return the resulting object
On cache hit:
- Run AOTAutogradCacheEntry.post_compile() on the cache key.
- This attempts to load the forward and backward graphs from FXGraphCache
- As long as we successfully load from FXGraphCache, it's a hit. We then rewrap the callable with post compile wrappers using our saved metadata.
For now, we ignore the fakified out and debug wrappers. We only save to the cache if Fakified out is turned off.
V0 Guards behavior:
FXGraphCache serializes guards that are needed in the shape_env based on the symint inputs to the graph. The invariant that AOTAutograd uses here is that the sources for symints given to it by dynamo are exactly the same as the ones it passes to inductor, for both the forward and backward passes. (This does *not* mean that the tensor values passed in are the same: only that their symints are). That is, AOTAutograd and Inductor never create new guards based on symints with *different sources* than those passed to it by inductor.
We don't currently store any AOTAutograd specific guards: my hypothesis is that FXGraphCache already stores these, as any guards generated by AOTAutograd should already be in the shape_env before calling into inductor, and we don't generate new guards post inductor. If this is needed, I'll add it in another diff.
Testing:
We'll start with some basic unit tests, but I'll be adding more and more complicated testing as the next step.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126791
Approved by: https://github.com/bdhirsh
This PR implements "V0" of AOTAutogradCache. Given an input to AOTAutograd, we calculate a cache key, then save an AOTAutogradCacheEntry.
Each AOTAutogradCacheEntry has:
- A CompiledForward and optionally a CompiledBackward
- A bunch of metadata.
CompiledForward and CompiledBackward each save the *key* to the FXGraphCache associated with the compiled object. FXGraphCache populates this key field as long as it's able to return a compiled graph given a set of inputs. We then load the same object from the FXGraphCache on an AOTAutogradCache hit.
On cache miss:
- Run AOTAutograd, up to AOTAutogradDispatch.post_compile.
- Save an AOTAutogradCacheEntry to the cache after compiling the necessary portions and receiving a cache key from FXGraphCache. In this we *always* compile the backwards ahead of time. The PR above this one implements backward lazy caching, so that we only save to the cache after compiling the backward in a lazy backward scenario.
- Return the resulting object
On cache hit:
- Run AOTAutogradCacheEntry.post_compile() on the cache key.
- This attempts to load the forward and backward graphs from FXGraphCache
- As long as we successfully load from FXGraphCache, it's a hit. We then rewrap the callable with post compile wrappers using our saved metadata.
For now, we ignore the fakified out and debug wrappers. We only save to the cache if Fakified out is turned off.
V0 Guards behavior:
FXGraphCache serializes guards that are needed in the shape_env based on the symint inputs to the graph. The invariant that AOTAutograd uses here is that the sources for symints given to it by dynamo are exactly the same as the ones it passes to inductor, for both the forward and backward passes. (This does *not* mean that the tensor values passed in are the same: only that their symints are). That is, AOTAutograd and Inductor never create new guards based on symints with *different sources* than those passed to it by inductor.
We don't currently store any AOTAutograd specific guards: my hypothesis is that FXGraphCache already stores these, as any guards generated by AOTAutograd should already be in the shape_env before calling into inductor, and we don't generate new guards post inductor. If this is needed, I'll add it in another diff.
Testing:
We'll start with some basic unit tests, but I'll be adding more and more complicated testing as the next step.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126791
Approved by: https://github.com/bdhirsh
The FX graphs for some PT2 models are very complicated, Inductor usually goes through many passes of graph optimization to generate the final FX graph. It’s very difficult to see the change in each pass, and check if the optimized graph is correct and optimal.
GraphTransformObserver is an observer listening to all add/erase node events on GraphModule during a graph transform pass, and save the changed nodes. When the pass is done and if there is any change in the graph, GraphTransformObserver will save the SVG files of the input graph and the output graph for that pass.
This PR is to enable GraphTransformObserver for inductor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127962
Approved by: https://github.com/jansel
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
**Reland notes.** This requires this internal fbcode diff https://www.internalfb.com/phabricator/paste/view/P1403322587 but I cannot prepare the diff codev due to https://fb.workplace.com/groups/osssupport/posts/26343544518600814/
It also requires this Executorch PR https://github.com/pytorch/executorch/pull/3911 but the ET PR can be landed prior to this landing.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
https://github.com/pytorch/pytorch/pull/124272 set the alignment to the `consts_o` but if there're `data_size` of tensor in the `consts_o` non divisible by the alignment, the following tensors are not aligned anymore, resulting in poor performance on CPU.
We align the `data_size` as well in this PR and pad the serialized bytes. Since `size` of the tensor instead of the `data_size` is used when creating tensor from the serialized bytes ([link](f4d7cdc5e6/torch/csrc/inductor/aoti_runtime/model.h (L236-L259))), there won't be correctness issue. `data_size` is only used to record the [bytes_read](f4d7cdc5e6/torch/csrc/inductor/aoti_runtime/model.h (L217)).
This PR will improve the performance on CPU for 4 models in HF, 7 models in TIMM and 1 model in Torchbench.
For the unit test, I add a bias value the original `data_size` of which is not divisible by the alignment to test the correctness:
```
constants_info_[0].dtype = static_cast<int32_t>(at::kFloat);
constants_info_[0].data_size = 64; # was 40 before this PR
constants_info_[0].shape = {10};
constants_info_[1].dtype = static_cast<int32_t>(at::kFloat);
......
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127610
Approved by: https://github.com/jgong5, https://github.com/desertfire
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
Generic baseclass should always be last or unexpected issues can occur, especially in non-stub files (such as with MRO). Applies autofixes from the preview PYI059 rule to fix the issues in the codebase.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127685
Approved by: https://github.com/ezyang
As part of #125683, this PR adds the initial bf16/fp16 gemm template support with micro-gemm implemented with fused type casting and fp32 computation. It doesn't provide epilogue fusion support yet which will be added in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126068
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019
This pass was broken in a number of ways, as we were not generating
asserts whenever we took it, even though we need to. While doing so,
we found that the analysis we were using for choosing
whether to generate asserts or not for dynamic shapes was completely
broken.
Eliminating indirect indexing in this way allows for a number of optimisations.
In particular, we can now fuse against these kernels (indirect indexing disallows fusions).
The new strategy is as follows:
- We always propagate sympy expressions if we can.
- If an expression was an indirect_indexing, we call `check_bounds`
- We also call `check_bounds` within `CSEProxy.indirect_indexing`
- The checks are issued in the buffer where they would go if the were used in a load
- This makes them always be codegen'd before the load and stores
- In the case of stores, they will be generated potentially much earlier than the stores themselves, which is fine.
We add quite a few asserts to preexisting tests to strengthen them. In particular, we make sure
that issuing an assert plays well with all kinds of C++ vectorisation.
For now, we rely on the logic within `_maybe_evaluate_static` to prove
these bounds. This logic is rather limited though. In the future, we might want
to rely on Z3 here to be able to prove bounds in a more general way.
Supersedes https://github.com/pytorch/pytorch/pull/113068
Fixes https://github.com/pytorch/pytorch/issues/121251
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114471
Approved by: https://github.com/peterbell10
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
The main motivation for this refactor is that today, when generating templates, this is what happens.
```
def_kernel() # registers hook for fully generating function definition
store_output() # registers hook for generating the output store. *also* keeps a number of things generated on `self.body`.
```
Later on, when we codegen the template: f8c4c268da/torch/_inductor/codegen/simd.py (L1402)
```
epilogue_node.codegen() # Also writes to body!
template.finalize() # Calls the above two hooks for def_kernel and store_output, which then reads from the accumulated `self.body`
```
Today, this is fine, as long as `store_output` is the last function called in the template. However, there's a couple things we probably want to do with kernels that makes this annoying.
1. In FlexAttention backwards, we might want a `modification` to be positioned *after* the `store_output` (just logically from a code organization POV). This doesn't work today because `modification` also needs to codegen a subgraph, but writing to `body` here conflicts with `store_output`'s implicit saved state on `self.body`.
2. If we want to support prologue fusion, we need to go through a bunch of contortions today to call the template hook finalization a couple times (https://github.com/pytorch/pytorch/pull/121211/files#diff-73b89475038a5b4705da805f1217783883fb90398ee1164995db392fc4a342c1R322)
3. The current code also makes it quite difficult to support fusion into multiple output nodes.
To resolve this, I do two things:
1. I *remove* the default `self.body` on `TritonTemplateKernel`. Instead, I have a dict of `self.subgraph_bodies`, which can be enabled in a context with `TritonTemplateKernel.set_subgraph_body`. This allows multiple different template functions to write to their own isolated bodies.
2. I add functions that allow you to finalize specific hooks on `PartialRender`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127144
Approved by: https://github.com/jansel
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127122
Approved by: https://github.com/kit1980
As part of #125683, this PR adds the initial bf16/fp16 gemm template support with micro-gemm implemented with fused type casting and fp32 computation. It doesn't provide epilogue fusion support yet which will be added in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126068
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
As part of #125683, this PR adds the initial bf16/fp16 gemm template support with micro-gemm implemented with fused type casting and fp32 computation. It doesn't provide epilogue fusion support yet which will be added in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126068
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019