Summary:
This updates pdist to work for batched inputs, and updates the
documentation to reflect issues raised.
closes#9406
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12302
Reviewed By: ezyang
Differential Revision: D13528485
Pulled By: erikbrinkman
fbshipit-source-id: 63d93a6e1cc95b483fb58e9ff021758b341cd4de
Summary:
Addresses #918, interpolation results should be similar to tf
* Adds bicubic interpolation operator to `nn.functional.interpolate`
* Corresponding test in `test_nn.py`
The operator is added in legacy `TH` to be aligned with the other upsampling operators; they can be refactored/moved to ATen all at once when #10482 is resolved
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9849
Differential Revision: D9007525
Pulled By: driazati
fbshipit-source-id: 93ef49a34ce4e5ffd4bda94cd9a6ddc939f0a4cc
Summary:
This PR adds `None` buffers as parameters (similarly to #14715). It also cleans up a bunch of the `test_jit.py` tests that should be covered by `common_nn.py` and brings in `criterion_tests` to test loss functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14778
Differential Revision: D13330849
Pulled By: driazati
fbshipit-source-id: 924cc4cf94e0dcd11e811a55222fd2ebc42a9e76
Summary:
Fixes#6622 .
We used to average over all elements for kl divergence, which is not aligned with its math definition.
This PR corrects the default reduction behavior of KL divergence that it now naverages over batch dimension.
- In KL, default behavior `reduction=mean` averages over batch dimension. While for most other loss functions, `reduction=mean` averages over all elements.
- We used to support scalar tensor as well. For BC purpose, we still support it, no reduction is performed on scalar tensor.
- Added a new reduction mode called `batchmean` which has the correct behavior for KL. Add a warning to make `batchmean` as default for KL instead of `mean` in next major release.
- [deprecated]I chose to not add a new reduction option, since "mean over batch dimension" is kinda special, and it only makes sense in few cases like KL. We don't want to explain why there's a option "batchmean" but it's not applicable for all other functions. I'm open to discussion on this one, as I cannot think of a perfect solution for this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14457
Differential Revision: D13236016
Pulled By: ailzhang
fbshipit-source-id: 905cc7b3bfc35a11d7cf098b1ebc382170a087a7
Summary:
Remove no_grad_embedding_renorm_ from aten. Setting the derivatives of the inputs to false has different semantics from calling with no_grad(), because it will not error if an input is modified and then has it's grad accessed.
Instead, make a custom op, and use NoGradGuard.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14639
Differential Revision: D13285604
Pulled By: eellison
fbshipit-source-id: c7d343fe8f22e369669e92799f167674f124ffe7
Summary:
This PR adds a polyfill for `typing.List` for Python versions that don't
support `typing` as a builtin. It also moves the type defintions from
`annotations.py` so that they can be used in `torch.nn`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14482
Differential Revision: D13237570
Pulled By: driazati
fbshipit-source-id: 6575b7025c2d98198aee3b170f9c4323ad5314bd
Summary:
To convert `max_unpool` functions to weak script, this PR adds support
for `T` as default arguments for `BroadcastingListN[T]`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14361
Differential Revision: D13192231
Pulled By: driazati
fbshipit-source-id: a25b75a0e88ba3dfa22d6a83775e9778d735e249
Summary:
This PR adds weak modules for all activation modules and uses `test_nn` module tests to test weak modules that have been annotated with `weak_module` and therefore are in `torch._jit_internal._weak_types`
Also depends on #14379
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14238
Differential Revision: D13252887
Pulled By: driazati
fbshipit-source-id: e9638cf74089884a32b8f0f38396cf432c02c988
Summary:
Resubmitting PR #14415
The tests added for Embedding + EmbeddingBag had random numbers as input, which affected the random number generator & caused the flakey test to break.
Everything but the last two commits have already been accepted
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14509
Differential Revision: D13247917
Pulled By: eellison
fbshipit-source-id: ea6963c47f666c07687787e2fa82020cddc6aa15
Summary:
Add support for Embedding and EmbeddingBag in script. Both functions require with torch.no_grad(), which we don't have any plans to support in the near future. To work around this, I added a embedding_renorm function without derivatives.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14415
Reviewed By: wanchaol
Differential Revision: D13219647
Pulled By: eellison
fbshipit-source-id: c90706aa6fbd48686eb10f3efdb65844be7b8717
Summary:
This PR adds weak modules for all activation modules and uses `test_nn` module tests to test weak modules that have been annotated with `weak_module` and therefore are in `torch._jit_internal._weak_types`
Also depends on #14379
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14238
Differential Revision: D13192230
Pulled By: driazati
fbshipit-source-id: 36488960b6c91448b38c0fa65422539a93af8c5e
Summary:
This PR allows to overload functions based on the value of a parameter (so long as it is a constant). See max_pool1d for an example usage.
This is the first step in enabling the use of max_pool functions for the standard library that can return `Tensor` or `Tuple[Tensor, Tensor]` based on the `return_indices` flag. This will give the JIT identical results to the Python versions of the functions.
Fixes#14081
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14425
Differential Revision: D13222104
Pulled By: driazati
fbshipit-source-id: 8cb676b8b13ebcec3262234698edf4a7d7dcbbe1
Summary:
Port AffineGrid to C++, because script does not support compiling Function classes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14392
Differential Revision: D13219698
Pulled By: eellison
fbshipit-source-id: 3ddad8a84c72010b5a6c6f7f9712be614202faa6
Summary:
This PR allows to overload functions based on the value of a parameter (so long as it is a constant). See `max_pool1d` for an example usage.
This is the first step in enabling the use of `max_pool` functions for the standard library that can return `Tensor` or `Tuple[Tensor, Tensor]` based on the `return_indices` flag. This will give the JIT identical results to the Python versions of the functions.
Depends on #14232 for `Optional[BroadcastingList[T]]`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14081
Differential Revision: D13192228
Pulled By: driazati
fbshipit-source-id: fce33c400c1fd06e59747d98507c5fdcd8d4c113
Summary:
1. Support `Optional[BroadcastingList1[int]]` like type annotation to accept a int or a list[int]
2. Convert gumbel_softmax, lp pooling weak functions and modules
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14232
Differential Revision: D13164506
Pulled By: wanchaol
fbshipit-source-id: 6c2a2b9a0613bfe907dbb5934122656ce2b05700
Summary:
This PR inserts `prim::None` constants for undefined tensors. This comes in the standard library if an `Optional[Tensor]` is statically determined to be `None`:
```python
torch.jit.script
def fn(x=None):
# type: (Optional[Tensor]) -> Tensor
return torch.jit._unwrap_optional(x)
torch.jit.script
def fn2():
# type: () -> Tensor
return fn()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14120
Differential Revision: D13124625
Pulled By: driazati
fbshipit-source-id: 9eaa82e478c49c503f68ed89d8c770e8273ea569
Summary:
This PR did three things:
1. It export the BatchNorm functional and module, and rewrite some of the components to stay align with the current supported JIT features
2. In the process of export, add necessary compiler support for in_place op aug assign
4. change the test_jit behavior in add_module_test to utilize a single rng state during module initialization
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14016
Differential Revision: D13112064
Pulled By: wanchaol
fbshipit-source-id: 31e3aee5fbb509673c781e7dbb6d8884cfa55d91
Summary:
This PR did two thing:
1. it fix the optional import/export to include any type including tensor types (previously we only support base types), this is essential to unblock optional tensor type annotation in our test logic
2. it tries to export mult_margin_loss functional to serve as a example of optional undefined tensor use case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13877
Differential Revision: D13076090
Pulled By: wanchaol
fbshipit-source-id: c9597295efc8cf4b6462f99a93709aae8dcc0df8
Summary:
I'm now traveling and don't have access to a good computer to compile test by myself. Will see the outcome of CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12199
Differential Revision: D13062326
Pulled By: nairbv
fbshipit-source-id: 85873525caa94906ccaf2c739eb4cd55a72a4ffd
Summary:
Convert some more functions to match up with features added. Some
conversions were unsuccessful but the type line was left in for later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13707
Differential Revision: D13030210
Pulled By: driazati
fbshipit-source-id: 02d5712779b83b7f18d0d55539e336321335e0cc
Summary:
* Adds `OptionalType` support for import/export
* Optionals get exported along with their contained type, i.e. 'Optional[int]'
* Allows concrete types and `None` to be passed to an op that takes an optional
* Converts `softmax`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13647
Differential Revision: D12954672
Pulled By: driazati
fbshipit-source-id: 159e9bfb7f3e398bec3912d414c393098cc7455a
Summary:
This PR is a part of task to unblock standard library export.
* we treat None differently from Tensor and other types, when passing None as Tensor, it's an undefined tensor rather than the None IValue.
* Refine the type system so that we have correct tensor types hierarchy (Dynamic/Tensor/CompleteTensor), Dynamic should be at the top of the inheritance hierarchy.
* It also tries to export bilinear as an example of undefined tensor(None) input.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13650
Differential Revision: D12967026
Pulled By: wanchaol
fbshipit-source-id: 6aedccc7ce2a12fadd13d9e620c03e1260103a5a
Summary:
To support `_Reduction` in the jit this PR moves it out to a new file so that it goes through the paths for python modules in the script compiler and converts `F.ctc_loss` to weak script
Depends on #13484 for saving rng state
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13401
Differential Revision: D12868501
Pulled By: driazati
fbshipit-source-id: 23cec0fb135744578c73e31ac825e238db495d27
Summary:
This PR adds functions defined in `torch._C._nn` as builtin functions (including inplace variants). This allows for the conversion of more functions to weak script
NB: many `torch.nn.functional` functions will have to be slightly rewritten to avoid early returns (as with `threshold` in this PR)
Converts these functions to weak script:
* `threshold`
* `relu`
* `hardtanh`
* `relu6`
* `elu`
* `selu`
* `celu`
* `leaky_relu`
* `rrelu`
* `tanh`
* `sigmoid`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13322
Differential Revision: D12852203
Pulled By: driazati
fbshipit-source-id: 220670df32cb1ff39d120bdc04aa1bd41209c809
Summary:
To convert `nn.functional.dropout`
* `_VF` had to be exposed as a Python module so this PR adds a module class to forward to `torch._C._VariableFunctions`
* rng state between calls in the tests needed to be made consistent
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13484
Differential Revision: D12929622
Pulled By: driazati
fbshipit-source-id: 78b455db9c8856b94d2dda573fb7dc74d5784f56
Summary:
```
The previous threshold implementation was not vectorized or parallelized.
This speeds up ResNet-50 CPU inference [1] from ~88 ms to ~67 ms
CPU timings:
https://gist.github.com/colesbury/d0d1be6974841d62696dbde329a8fde8
1 thread (before vs. after)
10240: 17.4 us vs. 6.9 µs per loop
102400: 141 us vs. 39.8 µs per loop
16 threads (before vs. after)
10240: 17.4 us vs. 6.7 µs per loop
102400: 141 us vs. 14.3 µs per loop
CUDA timings are not measurably different.
[1]: compiled with MKL-DNN, 8 threads, batch norm merged into convolutions
https://gist.github.com/colesbury/8a64897dae97558b3b82da665048c782
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13182
Reviewed By: soumith
Differential Revision: D12825105
Pulled By: colesbury
fbshipit-source-id: 557da608ebb87db8a04adbb0d2882af4f2eb3c15
Summary:
Made the previous description for max_norm more precise, avoiding 'this' and describing what actually happens in the code.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13310
Differential Revision: D12840813
Pulled By: SsnL
fbshipit-source-id: 98090c884267a62ce93cd85da84252d46926dfa5
Summary:
1. Refactor DDPG predictor. Merge the critic predictor with ParametricDQNPredictor since they are the same
2. Fix bug where loss was multiplied by the batch size
3. Create DDPGFeedPredictor which uses the feed predictor output format
4. Add support for gridworld simulation memoization to DDPG. Also memoize normalization tables.
Reviewed By: kittipatv
Differential Revision: D10161240
fbshipit-source-id: 2813890043de1241c1fb9b9c2b6a897403f9fc12
Summary:
Addresses #9499. Completed work on the forward function, tests should be passing for that. Working on backward function now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10885
Differential Revision: D9643786
Pulled By: SsnL
fbshipit-source-id: 2930d6f3d2975c45b2ba7042c55773cbdc8fa3ac
Summary:
* Moves `weak_script` annotation to `torch/_jit_internal.py` folder to resolve dependency issue between `torch.jit` and `torch.nn`
* Add `torch._jit.weak_script` to `tanhshrink` and `softsign`, their tests now pass instead of giving an `unknown builtin op` error
* Blacklist converted `torch.nn.functional` functions from appearing in the builtin op list if they don't actually have corresponding `aten` ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12723
Differential Revision: D10452986
Pulled By: driazati
fbshipit-source-id: c7842bc2d3ba0aaf7ca6e1e228523dbed3d63c36
Summary:
include atomicAdd commentary as this is less well known
There is some discussion in #12207
Unfortunately, I cannot seem to get the ..include working in `_tensor_docs.py` and `_torch_docs.py`. I could use a hint for that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12217
Differential Revision: D10419739
Pulled By: SsnL
fbshipit-source-id: eecd04fb7486bd9c6ee64cd34859d61a0a97ec4e
Summary:
There were two problems with SN + DP:
1. In SN, the updated _u vector is saved back to module via a `setattr`. However, in DP, everything is run on a replica, so those updates are lost.
2. In DP, the buffers are broadcast via a `broadcast_coalesced`, so on replicas they are all views. Therefore, the `detach_` call won't work.
Fixes are:
1. Update _u vector in-place so, by the shared storage between 1st replica and the parallelized module, the update is retained
2. Do not call `detach_`.
3. Added comments in SN about the subtlety.
4. Added a note to the DP doc on this particular behavior of DP.
cc crcrpar taesung89 The controller you requested could not be found. yaoshengfu
Fixes https://github.com/pytorch/pytorch/issues/11476
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12671
Differential Revision: D10410232
Pulled By: SsnL
fbshipit-source-id: c447951844a30366d8c196bf9436340e88f3b6d9
Summary:
Add dtype argument to softmax/log_softmax functions.
Computing softmax in fp32 precision is necessary for mixed precision training, and converting output of the previous layer into fp32 and then reading it as fp32 in softmax is expensive, memory and perf-wise, this PR allows one to avoid it.
For most input data/dtype combinations, input data is converted to dtype and then softmax is computed. If input data is half type and dtype is fp32, kernels with the corresponding template arguments are called.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11719
Reviewed By: ezyang
Differential Revision: D10175514
Pulled By: zou3519
fbshipit-source-id: 06d285af91a0b659932236d41ad63b787eeed243
Summary:
- fixes https://github.com/pytorch/pytorch/issues/10723
- migrate PReLU to ATen and deprecate legacy PReLU
- performance:
CPU with weight.numel() = 1
```
>>> m = nn.PReLU()
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
100 loops, best of 100: 9.43 ms per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
10 loops, best of 100: 24.4 ms per loop
>>> m = nn.PReLU()
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
1000 loops, best of 100: 695 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
100 loops, best of 100: 2.47 ms per loop
```
CPU with weight.numel() = channels
```
>>> m = nn.PReLU(100)
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
1000 loops, best of 100: 603 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
100 loops, best of 100: 13.3 ms per loop
>>> m = nn.PReLU(100)
>>> x = torch.randn(100, 100, 100, requires_grad=True)
>>> %timeit -r 100 y = m(x)
1000 loops, best of 100: 655 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 y.backward(retain_graph=True)
100 loops, best of 100: 2.45 ms per loop
```
CUDA with weight.numel() = 1
```
>>> m = nn.PReLU().cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
10000 loops, best of 100: 187 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.01 ms per loop
>>> m = nn.PReLU().cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
1000 loops, best of 100: 195 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.28 ms per loop
```
CUDA with weight.numel() = channel
```
>>> m = nn.PReLU(100).cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
1000 loops, best of 100: 174 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.27 ms per loop
>>> m = nn.PReLU(100).cuda()
>>> x = torch.randn(100, 100, 100, requires_grad=True).cuda()
>>> %timeit -r 100 torch.cuda.synchronize(); y = m(x); torch.cuda.synchronize();
10000 loops, best of 100: 181 µs per loop
>>> y = m(x).sum()
>>> %timeit -r 100 torch.cuda.synchronize(); y.backward(retain_graph=True); torch.cuda.synchronize();
100 loops, best of 100: 2.26 ms per loop
```
The huge performance regression in CPU when weight.numel() = 1 is addressed by replacing at::CPU_tensor_apply* with parallelized kernels.
ezyang SsnL zou3519 soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11758
Differential Revision: D9995799
Pulled By: weiyangfb
fbshipit-source-id: d289937c78075f46a54dafbde92fab0cc4b5b86e
Summary:
Related to #11624 adding maxes to the function def of embedding_bag.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11784
Differential Revision: D9892598
Pulled By: ezyang
fbshipit-source-id: e6372ccf631826ddf1e1885b2f8f75f354a36c0b
Summary:
I'm reading the doc of `torch.nn.functional.pad` and it looks a bit confusing to me. Hopefully this PR makes it clearer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11623
Differential Revision: D9818255
Pulled By: soumith
fbshipit-source-id: 4f6b17b0211c6927007f44bfdf42df5f84d47536
Summary:
This also removes the usage of torch.onnx.symbolic_override in instance_norm. Fixes#8439.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10792
Differential Revision: D9800643
Pulled By: li-roy
fbshipit-source-id: fa13a57de5a31fbfa2d4d02639d214c867b9e1f1
Summary:
Ping ezyang
This addresses your comment in #114. Strangely, when running the doc build (`make html`) none of my changes are actually showing, could you point out what I'm doing wrong?
Once #11329 is merged it might make sense to link to the reproducibility note everywhere.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11434
Differential Revision: D9751208
Pulled By: ezyang
fbshipit-source-id: cc672472449564ff099323c39603e8ff2b2d35c9
Summary:
This PR does two things:
1. Replaces the implementation of the `Dropout` module with a call to the ATen function,
2. Replaces `Dropout2d` with a new `FeatureDropout` module that shall take the place of `Dropout2d` and `Dropout3d`. I contemplated calling it `Dropout2d` and making `Dropout3d` an alias for it, but similar to our decision for `BatchNorm{1,2,3}d` (c.f. https://github.com/pytorch/pytorch/pull/9188), we can deviate from Python PyTorch in favor of the ideal-world solution, which is to have a single module, since both actually just call `feature_dropout`.
I also replaced the implementation of `dropout3d` with a call to `dropout2d` in Python. The code is the same and it's easier for developers to parse than having to manually match the tokens to make sure it's really 100% the same code (which it is, if I matched the tokens correctly).
ebetica ezyang SsnL
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11458
Differential Revision: D9756603
Pulled By: goldsborough
fbshipit-source-id: fe847cd2cda2b6da8b06779255d76e32a974807c
Summary:
Also add single grad whitelist to the jit test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10782
Reviewed By: ezyang
Differential Revision: D9583378
Pulled By: erikbrinkman
fbshipit-source-id: 069e5ae68ea7f3524dec39cf1d5fe9cd53941944
Summary:
Test only for existence for now. I had to skip a lot of them so there a FIXME in the test.
Also I'm not testing torch.* because of namespace issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10311
Differential Revision: D9196341
Pulled By: SsnL
fbshipit-source-id: 9c2ca1ffe660bc1cc664474993f8a21198525ccc
Summary:
closes#9702 .
cc jph00
Commit structure:
1. Change the index calculation logic. I will explain using 1-D for simplicity.
Previously we have (in pseudo code):
```
// 1. get the float locations from grid
scalar_t x = from_grid()
// 2. find the integral surrounding indices
int x_left = floor(x)
int x_right = x_left + 1
// 3. calculate the linear interpolate weights
scalar_t w_left = x_right - x
scalar_t w_right = x - x_left
// 4. manipulate the integral surrounding indices if needed
// (e.g., clip for border padding_mode)
x_left = manipulate(x_left, padding_mode)
x_right = manipulate(x_right, padding_mode)
// 5. interpolate
output_val = interpolate(w_left, w_right, x_left, x_right)
```
This is actually incorrect (and also unintuitive) because it calculates the
weights before manipulate out-of-boundary indices. Fortunately, this
isn't manifested in both of the current supported modes, `'zeros'` and
`'border'` padding:
+ `'zeros'`: doesn't clip
+ `'border'`: clips, but for out-of-bound `x` both `x_left` and `x_right` are
clipped to the same value, so weights don't matter
But this is a problem with reflection padding, since after each time we reflect,
the values of `w_left` and `w_right` should be swapped.
So in this commit I change the algorithm to (numbers corresponding to the
ordering in the above pseudo-code)
```
1. get float location
4. clip the float location
2. find the integral surrounding indices
3. calculate the linear interpolate weights
```
In the backward, because of this change, I need to add new variables to track
`d manipulate_output / d manipulate_input`, which is basically a multiplier
on the gradient calculated for `grid`. From benchmarking this addition doesn't
cause obvious slow downs.
2. Implement reflection padding. The indices will keep being reflected until
they become within boundary.
Added variant of `clip_coordinates` and `reflect_coordinates` to be used in
backward. E.g.,
```cpp
// clip_coordinates_set_grad works similarly to clip_coordinates except that
// it also returns the `d output / d input` via pointer argument `grad_in`.
// This is useful in the backward pass of grid_sampler.
scalar_t clip_coordinates_set_grad(scalar_t in, int64_t clip_limit, scalar_t *grad_in)
```
For example, if `in` is clipped in `'border'` mode, `grad_in` is set to `0`.
If `in` is reflected **odd** times in `'reflection'` mode, `grad_in`
is set to `-1`.
3. Implement nearest interpolation.
4. Add test cases
5. Add better input checking
Discussed with goldsborough for moving `operator<<` of `at::Device`,
`at::DeviceType` and `at::Layout` into `at` namespace. (Otherwise
`AT_CHECK` can't find them.)
6. Support empty tensors. cc gchanan
+ Make empty tensors not acceptable by cudnn.
+ Add `AT_ASSERT(kernel block size > 0)` if using `GET_BLOCKS`
+ Cache `numel` in `TensorGeometry`
I was going to use `numel` to test if cudnn descriptor should accept a
tensor, but it isn't used eventually. I can revert this if needed.
7. Add more test cases, including on input checking and empty tensors
8. Remove an obsolete comment
9. Update docs. Manually tested by generating docs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10051
Differential Revision: D9123950
Pulled By: SsnL
fbshipit-source-id: ac3b4a0a36b39b5d02e83666cc6730111ce216f6
Summary:
- fixes#9141, #9301
- use logsigmoid at multilabel_soft_margin_loss to make it more stable (NOT fixing legacy MultiLabelSoftMarginCriterion)
- return (N) instead of (N, C) to match the same behavior as MultiMarginLoss
- Note that with this PR, the following behavior is expected:
```
loss = F.multilabel_soft_margin_loss(outputs, labels, reduction='none')
loss_mean = F.multilabel_soft_margin_loss(outputs, labels, reduction='elementwise_mean')
loss_sum = F.multilabel_soft_margin_loss(outputs, labels, reduction='sum')
loss.sum() == loss_sum # True
loss.mean() == loss_mean # True
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9965
Differential Revision: D9038402
Pulled By: weiyangfb
fbshipit-source-id: 0fa94c7b3cd370ea62bd6333f1a0e9bd0b8ccbb9
Summary:
There is a regression in softmin in 0.4.1 that was not present in 0.4.0. The behavior of softmin(x) should match softmax(-x) however instead it is implemented (in v0.4.1) as -softmax(x). These are not the same. The fix is trivial because the bug is due to operator precedence.
This is a major regression that broke my training. I'm not sure how a unit test did not catch this.
```
x = torch.tensor([1, 2, 3.5, 4])
print(F.softmin(x, dim=0)) # this has the wrong output in 0.4.1 but correct in 0.4.0
print(F.softmax(-x, dim=0)) # this is what softmax should be
print(F.softmax(x, dim=0))
print(-F.softmax(x, dim=0)) # this is how softmax is implemented incorrectly
```
In 0.4.1 this produces
tensor([-0.0278, -0.0755, -0.3385, -0.5581])
tensor([0.6668, 0.2453, 0.0547, 0.0332])
tensor([0.0278, 0.0755, 0.3385, 0.5581])
tensor([-0.0278, -0.0755, -0.3385, -0.5581])
In 0.4.0 this produces the correct values
tensor([ 0.6668, 0.2453, 0.0547, 0.0332])
tensor([ 0.6668, 0.2453, 0.0547, 0.0332])
tensor([ 0.0278, 0.0755, 0.3385, 0.5581])
tensor([-0.0278, -0.0755, -0.3385, -0.5581])
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10066
Differential Revision: D9106995
Pulled By: soumith
fbshipit-source-id: 7332503c6077e8461ad6cd72422c749cf6ca595b
Summary:
_pointwise loss has some python special casing, we converted reduction to aten enums too early.
fixes#10009
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10018
Differential Revision: D9075489
Pulled By: li-roy
fbshipit-source-id: 4bf2f5e2911e757602c699ee1ec58223c61d0162
Summary:
The CPU and CUDA variants are a direct transposition of Graves et al.'s description of the algorithm with the
modification that is is in log space.
The there also is a binding for the (much faster) CuDNN implementation.
This could eventually fix#3420
I still need to add tests (TestNN seems much more elaborate than the other testing) and fix the bugs than invariably turn up during the testing. Also, I want to add some more code comments.
I could use feedback on all sorts of things, including:
- Type handling (cuda vs. cpu for the int tensors, dtype for the int tensors)
- Input convention. I use log probs because that is what the gradients are for.
- Launch parameters for the kernels
- Errors and obmissions and anything else I'm not even aware of.
Thank you for looking!
In terms of performance it looks like it is superficially comparable to WarpCTC (and thus, but I have not systematically investigated this).
I have read CuDNN is much faster than implementations because it does *not* use log-space, but also the gathering step is much much faster (but I avoided trying tricky things, it seems to contribute to warpctc's fragility). I might think some more which existing torch function (scatter or index..) I could learn from for that step.
Average timings for the kernels from nvprof for some size:
```
CuDNN:
60.464us compute_alphas_and_betas
16.755us compute_grads_deterministic
Cuda:
121.06us ctc_loss_backward_collect_gpu_kernel (= grads)
109.88us ctc_loss_gpu_kernel (= alphas)
98.517us ctc_loss_backward_betas_gpu_kernel (= betas)
WarpCTC:
299.74us compute_betas_and_grad_kernel
66.977us compute_alpha_kernel
```
Of course, I still have the (silly) outer blocks loop rather than computing consecutive `s` in each thread which I might change, and there are a few other things where one could look for better implementations.
Finally, it might not be unreasonable to start with these implementations, as the performance of the loss has to be seen in the context of the entire training computation, so this would likely dilute the relative speedup considerably.
My performance measuring testing script:
```
import timeit
import sys
import torch
num_labels = 10
target_length = 30
input_length = 50
eps = 1e-5
BLANK = 0#num_labels
batch_size = 16
torch.manual_seed(5)
activations = torch.randn(input_length, batch_size, num_labels + 1)
log_probs = torch.log_softmax(activations, 2)
probs = torch.exp(log_probs)
targets = torch.randint(1, num_labels+1, (batch_size * target_length,), dtype=torch.long)
targets_2d = targets.view(batch_size, target_length)
target_lengths = torch.tensor(batch_size*[target_length])
input_lengths = torch.tensor(batch_size*[input_length])
activations = log_probs.detach()
def time_cuda_ctc_loss(grout, *args):
torch.cuda.synchronize()
culo, culog_alpha = torch._ctc_loss(*args)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
def time_cudnn_ctc_loss(groupt, *args):
torch.cuda.synchronize()
culo, cugra= torch._cudnn_ctc_loss(*args)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
def time_warp_ctc_loss(grout, *args):
torch.cuda.synchronize()
culo = warpctc.ctc_loss(*args, blank_label=BLANK, size_average=False, length_average=False, reduce=False)
g, = torch.autograd.grad(culo, args[0], grout)
torch.cuda.synchronize()
if sys.argv[1] == 'cuda':
lpcu = log_probs.float().cuda().detach().requires_grad_()
args = [lpcu, targets_2d.cuda(), input_lengths.cuda(), target_lengths.cuda(), BLANK]
grout = lpcu.new_ones((batch_size,))
torch.cuda.synchronize()
print(timeit.repeat("time_cuda_ctc_loss(grout, *args)", number=1000, globals=globals()))
elif sys.argv[1] == 'cudnn':
lpcu = log_probs.float().cuda().detach().requires_grad_()
args = [lpcu, targets.int(), input_lengths.int(), target_lengths.int(), BLANK, True]
grout = lpcu.new_ones((batch_size,))
torch.cuda.synchronize()
print(timeit.repeat("time_cudnn_ctc_loss(grout, *args)", number=1000, globals=globals()))
elif sys.argv[1] == 'warpctc':
import warpctc
activations = activations.cuda().detach().requires_grad_()
args = [activations, input_lengths.int(), targets.int(), target_lengths.int()]
grout = activations.new_ones((batch_size,), device='cpu')
torch.cuda.synchronize()
print(timeit.repeat("time_warp_ctc_loss(grout, *args)", number=1000, globals=globals()))
```
I'll also link to a notebook that I used for writing up the algorithm in simple form and then test the against implementations against it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9628
Differential Revision: D8952453
Pulled By: ezyang
fbshipit-source-id: 18e073f40c2d01a7c96c1cdd41f6c70a06e35860
Summary:
As in the title. Lets us simplify a lot of code.
Depends on #9363, so please review only the last commit.
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9414
Reviewed By: zdevito
Differential Revision: D8836496
Pulled By: apaszke
fbshipit-source-id: 9b3c3d1f001a9dc522f8478abc005b6b86cfa3e3
Summary:
It implements per-channel alpha_dropout. It also creates corresponding function classes and unifies the process of dropout and alpha_dropout.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9073
Differential Revision: D8727008
Pulled By: ezyang
fbshipit-source-id: 9d509f9c5db4e98f7b698cdfc4443505a4d2b331
Summary:
Commits:
1. In extension doc, get rid of all references of `Variable` s (Closes#6947 )
+ also add minor improvements
+ also added a section with links to cpp extension :) goldsborough
+ removed mentions of `autograd.Function.requires_grad` as it's not used anywhere and hardcoded to `return_Py_True`.
2. Fix several sphinx warnings
3. Change `*` in equations in `module/conv.py` to `\times`
4. Fix docs for `Fold` and `Unfold`.
+ Added better shape check for `Fold` (it previously may give bogus result when there are not enough blocks). Added test for the checks.
5. Fix doc saying `trtrs` not available for CUDA (#9247 )
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9239
Reviewed By: soumith
Differential Revision: D8762492
Pulled By: SsnL
fbshipit-source-id: 13cd91128981a94493d5efdf250c40465f84346a
Summary:
This PR addresses #5823.
* fix docstring: upsample doesn't support LongTensor
* Enable float scale up & down sampling for linear/bilinear/trilinear modes. (following SsnL 's commit)
* Enable float scale up & down sampling for nearest mode. Note that our implementation is slightly different from TF that there's actually no "align_corners" concept in this mode.
* Add a new interpolate function API to replace upsample. Add deprecate warning for upsample.
* Add an area mode which is essentially Adaptive_average_pooling into resize_image.
* Add test cases for interpolate in test_nn.py
* Add a few comments to help understand *linear interpolation code.
* There is only "*cubic" mode missing in resize_images API which is pretty useful in practice. And it's labeled as hackamonth here #1552. I discussed with SsnL that we probably want to implement all new ops in ATen instead of THNN/THCUNN. Depending on the priority, I could either put it in my queue or leave it for a HAMer.
* After the change, the files named as *Upsampling*.c works for both up/down sampling. I could rename the files if needed.
Differential Revision: D8729635
Pulled By: ailzhang
fbshipit-source-id: a98dc5e1f587fce17606b5764db695366a6bb56b
Summary:
1. Let `ModuleTest` raise when they fail on non-contiguous inputs. Fix legacy modules.
2. Fix BN (both THNN and cuDNN) not working on non-contiguous inputs.
3. Fix CUDA EmbeddingBag not working on non-contiguous inputs. To prevent calling `.contiguous()` on in both `forward` and `backward`,
a. prefix all current `embedding_bag*` functions with `_`, indicating that they require input to be contiguous (there is a check in each function).
b. create `embedding_bag`, which makes input arguments `.contiguous()`, and calls `_embedding_bag`
3. Make many ATen `embedding*` functions to work on non-contiguous inputs so we don't need to call `input = input.contiguous()` in Python `nn.functional.embedding`.
4. Fix dense-sparse addition when the sparse input is not coalesced and indices or values tensor is not contiguous. This came up in the test cases of Embedding modules with `sparse=True`. Added tests.
5. Update `TensorUtils.cpp` to use `AT_*` macros.
Request:
review from cpuhrsch on the `Embedding*` changes.
review from ezyang on ATen sparse & BN changes.
Closes https://github.com/pytorch/pytorch/pull/9114
Differential Revision: D8717299
Pulled By: SsnL
fbshipit-source-id: 0acc6f1c9522b5b605361e75112c16bbe1e98527
Summary:
The tests were using the old args, which caused them to emit a lot of deprecation warnings.
closes#9103.
Reviewed By: ezyang
Differential Revision: D8720581
Pulled By: li-roy
fbshipit-source-id: 3b79527f6fe862fb48b99a6394e8d7b89fc7a8c8
* Add pos_weight argument to nn.BCEWithLogitsLoss and F.binary_cross_entropy_with_logits (#5660)
- Add an option to control precision/recall in imbalanced datasets
- Add tests (but new_criterion_tests)
* Move pos_weight to the end of args list in the documentation.
`pos_weight` was moved to the end because it is the last argument in both
`nn.BCEWithLogitsLoss` and `binary_cross_entropy_with_logits`
* 1. added hardshrink() to ATen (CPU + GPU); 2. removed nn.Hardshrink(); 3. reusing previous tests for nn.Hardshrink() and included CUDA tests at test_nn; 4. default parameter lambda=0.5 is not working yet
* optimized memory read/write
* 1. pass in lambd as scalar for CPU/CUDA_apply*; 2. removed tests for hardshrink at test_legacy_nn
* fixes test_utils
* 1. replace zeros_like with empty_like; 2. use scalar_cast in cuda
* 1. printing lambd value; 2. default lambd=0.5 is still failing
* getting around Scalar bug buy removing default value of lambd from native_functions.yaml, and declare it at nn/functional.py
* cleaned up debug printf