Summary:
Timings are the same as for `std` .
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15892
Differential Revision: D13651173
Pulled By: umanwizard
fbshipit-source-id: a26bf1021dd972aa9e3e60fb901cd4983bfa190f
Summary:
Turns out this has basically been implemented already in Resize.h / Resize.cuh.
Also added some testing, basically just to check that empty_strided behaves equivalently to as_strided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15948
Differential Revision: D13631098
Pulled By: gchanan
fbshipit-source-id: eb0e04eead45e4cff393ebde340f9d265779e185
Summary:
This was causing a problem in #15735 but appears to have been fixed.
Adding this test to prevent regressions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15835
Differential Revision: D13600282
Pulled By: zou3519
fbshipit-source-id: d9939e74d372be71c50122a5f6a615fbd7fa4df6
Summary:
soumith zou3519
I was browsing the code, and think `vec256_int.h` might need a minor revision, but not 100% sure.
1. It currently invert the result by `XOR` with 0. Should it `XOR` with 1 instead?
~2. AVX2 logical operations would set all bits in a byte/word/... to `1` if the condition holds. So functions, such as `_mm256_cmpeq_epi64 ` would return `0/-1` instead of `0/1`. Should it be masked with `1` to make sure it returns 0/1?~
~Would I be correct if I assume that the code revised below is not yet activated, but will be after we port legacy code to ATen?~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15659
Differential Revision: D13565929
Pulled By: mrshenli
fbshipit-source-id: 8ae3daf256c3d915dd855a2215c95275e899ea8c
Summary:
Changelog:
- Optimize btriunpack by using `torch.where` instead of indexing, inplace operations instead of out place operations and avoiding costly permutations by computing the final permutation over a list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15286
Differential Revision: D13562038
Pulled By: soumith
fbshipit-source-id: e2c94cfab5322bf1d24bf56d7b056619f553acc6
Summary:
This PR removes the TH/THC binding for gesv.
Changelog:
- Remove TH/THC binding
- Port single matrix case to ATen
- Enable test_gesv for CUDA as well
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15510
Differential Revision: D13559990
Pulled By: soumith
fbshipit-source-id: 9da2825e94d3103627e719709e6b1f8b521a07fb
Summary:
Changes originally in this PR:
1. Move Variable::Impl data members into TensorImpl as `AutogradMeta` struct
2. Change Variable::Impl functions to use data members in `AutogradMeta` struct
3. Add `shallow_copy_and_detach()` function to each subclass of TensorImpl
4. Do shallow copy when the user calls `make_variable(tensor)` / `make_variable_view(tensor)` / `variable.set_data(tensor)` / `variable.detach()`
Changes moved from https://github.com/pytorch/pytorch/pull/13645:
1. Add a flag to Variable to disallow size/stride/storage_ptr changes from in-place operations such as `resize_` / `resize_as_` / `set_` / `transpose_`, and set this flag to true when people call `tensor.data` in Python.
2. Write text in the docs to actively discourage changing the shape or storage of `tensor_detached` and expecting `tensor` to also be updated.
This is the 1st+2nd PR mentioned in https://github.com/pytorch/pytorch/issues/13638.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13827
Differential Revision: D13507173
Pulled By: yf225
fbshipit-source-id: b177b08438d534a8197e34e1ad4a837e2db0ed6a
Summary:
Currently torch.isinf on integral tensor will raise RuntimeError: value cannot be converted to type int16_t without overflow: inf.
This pr will suppress the error and return false(0) for all integral tensors. The behavior will also be consistent with np.isinf
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15489
Reviewed By: zou3519
Differential Revision: D13540786
Pulled By: flashhack
fbshipit-source-id: e730dea849da6a59f3752d347bcfbadfd12c6483
Summary:
Followup PR of #14904, and the stretch goal of #12653.
Directly calculate coordinates in the original tensor using column index in the result tensor. Every GPU thread takes care of a column (two numbers) in the output tensor.
The implementation detects and handles precision loss during calculating the square root of a `int64_t` variable, and supports tensors with up to `row * column = 2 ^ 59` numbers.
Algorithm details are describe in [comments of TensorFactories.cu](23ddb6f58a/aten/src/ATen/native/cuda/TensorFactories.cu (L109-L255)).
zou3519
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15203
Reviewed By: zou3519
Differential Revision: D13517695
Pulled By: mrshenli
fbshipit-source-id: 86b305d22cac08c8962a3b0cf8e9e620b7ec33ea
Summary:
This updates pdist to work for batched inputs, and updates the
documentation to reflect issues raised.
closes#9406
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12302
Reviewed By: ezyang
Differential Revision: D13528485
Pulled By: erikbrinkman
fbshipit-source-id: 63d93a6e1cc95b483fb58e9ff021758b341cd4de
Summary:
This is the CUDA version of #14535 .
It refactors Reduce.cuh to allow more general classes of reductions to be performed -- we no longer assume that the temporary data returned during reduction is just one scalar, and instead allow an arbitrary accumulate type.
We also allow 64-bit indexing when necessary, since in general we will no longer be able to accumulate directly in the output. (In the cases when we can, we continue to split the tensors until they can be addressed with 32-bits, as before).
As an initial use-case, we implement `std` in multiple dimensions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14990
Differential Revision: D13405097
Pulled By: umanwizard
fbshipit-source-id: a56c24dc2fd5326d417632089bd3f5c4f9f0d2cb
Summary:
Changelog:
- Renames `potrs` to `cholesky_solve` to remain consistent with Tensorflow and Scipy (not really, they call their function chol_solve)
- Default argument for upper in cholesky_solve is False. This will allow a seamless interface between `cholesky` and `cholesky_solve`, since the `upper` argument in both function are the same.
- Rename all tests
- Create a tentative alias for `cholesky_solve` under the name `potrs`, and add deprecated warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15334
Differential Revision: D13507724
Pulled By: soumith
fbshipit-source-id: b826996541e49d2e2bcd061b72a38c39450c76d0
Summary:
Certain tensor shapes failed when being resized. This pull request addresses the bug found in #13404.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14874
Differential Revision: D13429788
Pulled By: soumith
fbshipit-source-id: 8aa6451dbadce46d6d1c47a01cb26e6559bcfc8c
Summary:
This is an optimized implementation that does the following:
1. created an empty Tensor of correct size.
2. fill the Tensor with correct values.
The following three designs to fill in the Tensor result in roughly the same performance. Hence, the 2nd option is taken for simpler code, and to return contiguous tensors.
1. Sequential: fill row coordinates first, then columns. This results in two for-loop and more arithmetic operations.
2. Interleaved: fill in index coordinates one by one, which jumps between the two output Tensor rows in every iteration.
3. Transpose: create a n X 2 Tensor, fill the Tensor sequentially, and then transpose it.
<img width="352" alt="screen shot 2018-12-10 at 3 54 39 pm" src="https://user-images.githubusercontent.com/16999635/49769172-07bd3580-fc94-11e8-8164-41839185e9f9.png">
NOTE:
This implementation returns a 2D tensor, instead of a tuple of two tensors. It means that users will not be able to do the following:
```python
x = torch.ones(3, 3)
i = torch.tril_indices(3, 3)
x[i] # need to first convert the 2D tensor into a tuple of two 1D tensors.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14904
Reviewed By: zou3519
Differential Revision: D13433027
Pulled By: mrshenli
fbshipit-source-id: 41c876aafcf584832d7069f7c5929ffb59e0ae6a
Summary:
While moving these scenarios into `_test_dim_ops` I accidentally left an empty loop in the actual tests, causing them to do nothing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15077
Differential Revision: D13428759
Pulled By: umanwizard
fbshipit-source-id: 08f53068981d9192c1408878b168e9053f4dc92e
Summary:
When rewriting `default_collate`, I noticed that `from_numpy` and `as_tensor` and `tensor` all do not work on `np.int8` arrays.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14700
Reviewed By: weiyangfb
Differential Revision: D13305297
Pulled By: soumith
fbshipit-source-id: 2937110f65ed714ee830d50098db292238e9b2a9
Summary:
The other direction of #14700
cc soumith
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14710
Reviewed By: weiyangfb
Differential Revision: D13306052
Pulled By: soumith
fbshipit-source-id: 202d038f139cf05e01069ff8d05268c66354c983
Summary:
Tested on a tensor with 1 billion elements and 3 dimensions on a powerful, highly
multi-core Linux machine.
parallelized: All operations (e.g., `t.std(1)`) that could be done in the old code are now several times faster. All
new operations (e.g., `t.std((0,2))` are significantly faster than the NumPy equivalents.
`t.std((0, 1, 2))`, a new operation, is logically equivalent to the
old `t.std()`, but faster.
serial: The above comment about old operationos now being faster still
holds, but `t.std((t1, ..., tn))` is now a few
times slower than `t.std()`. If this turns out to be important, we can
special-case that to use the old algorithm.
The approach is to create a new method, `TensorIterator::foreach_reduced_elt`,
valid for `TensorIterator`s that represent a dimension reduction. This
method calls a supplied function for each element in the output,
supplying it with the input elements that correspond to that output.
Given that primitive, we can implement reductions like the following pseudocode:
If there is more than one output element:
```
PARALLEL FOR EACH element IN output:
accumulator = identity
SERIAL FOR EACH data_point IN element.corresponding_input:
accumulator.update(data_point)
element = accumulator.to_output()
```
If there is only one output element, we still want to parallelize, so we
do so along the *input* instead:
```
accumulators[n_threads]
PARALLEL FOR EACH input_chunk IN input.chunks():
accumulators[thread_num()] = identity
SERIAL FOR EACH data_point IN input_chunk:
accumulators[thread_num()].update_with_data(data_point)
accumulator = identity
SERIAL FOR EACH acc in accumulators:
accumulator.update_with_other_accumulator(acc)
output_element = accumulator.to_output()
```
Note that accumulators and data points do not have to be the same type
in general, since it might be necessary to track arbitrary amounts of
data at intermediate stages.
For example, for `std`, we use a parallel version of Welford's
algorithm, which requies us to track the mean, second moment, and number
of elements, so the accumulator type for `std` contains three pieces of
data.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14535
Differential Revision: D13283887
Pulled By: umanwizard
fbshipit-source-id: 8586b7bf00bf9f663c55d6f8323301e257f5ec3f
Summary:
* Enable unit tests known to work on ROCm.
* Disable a few that are known to be flaky for the time being.
* Use std::abs for Half
* No more special casing for ROCm in TensorMathReduce
* Document an important detail for a hardcoded block size w.r.t. ROCm in TensorMathReduce
ezyang bddppq for awareness
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14011
Differential Revision: D13387679
Pulled By: bddppq
fbshipit-source-id: 4177f2a57b09d866ccbb82a24318f273e3292f71
Summary:
`torch.linspace(0, 1, 1)` fails with `RuntimeError: invalid argument 3: invalid number of points at ../aten/src/TH/generic/THTensorMoreMath.cpp:2119`, while `np.linspace(0, 1, 1)` works fine.
Looking at the code, there is even a comment by gchanan asking: "NumPy allows you to pass different points even if n <= 1 -- should we?"
I would say "yes". Currently, I would need to handle the case of `steps == 1` or `steps == 0` separately, making sure to change the `end` when calling `torch.linspace`. This is impractical. If we support `start != end`, there are two possibilities for the result: Either we ensure the first value in the resulting sequence always equals `start`, or we ensure the last value in the resulting sequence always equals `end`. Numpy chose the former, which also allows it to support a boolean `endpoint` flag. I'd say we should follow numpy.
This PR adapts `linspace` and `logspace` to mimic the behavior of numpy, adapts the tests accordingly, and extends the docstrings to make clear what happens when passing `steps=1`.
If you decide against this PR, the error message should become explicit about what I did wrong, and the documentation should be extended to mention this restriction.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14748
Differential Revision: D13356136
Pulled By: ezyang
fbshipit-source-id: db85b8f0a98a5e24b3acd766132ab71c91794a82
Summary:
Before this PR, tensor.clamp() would return an empty tensor if min and
max were not specified. This is a regression from 0.4.1, which would
throw an error. This PR restores that error message.
Fixes#14470
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14716
Differential Revision: D13311031
Pulled By: zou3519
fbshipit-source-id: 87894db582d5749eaccfc22ba06aac4e10983880
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13603
P
Moved vectorized CPU copy to aten. Notable changes mainly in _copy_same_type_.
Reviewed By: ezyang
Differential Revision: D12936031
fbshipit-source-id: 00d28813e3160595e73d104f76685e13154971c1
Summary:
Multi-dimensional `sum` is already implemented, and it's trivial to implement `mean` in terms of `sum`, so just do it.
Bonus: Fix incomplete language in the `torch.sum` documentation which doesn't take into account multiple dimensions when describing `unsqueeze` (at the same time as introducing similar language in `torch.mean`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14252
Differential Revision: D13161157
Pulled By: umanwizard
fbshipit-source-id: c45da692ba83c0ec80815200c5543302128da75c
Summary:
Fixes https://github.com/pytorch/pytorch/issues/14344 and https://github.com/pytorch/pytorch/issues/6863
The slowdown was due to the fact that we were only summarizing the tensor (for computing the number of digits to print) if its first dimension was larger than the threshold. It now goes over all the dimensions.
Some quick runtime analysis:
Before this PR:
```python
In [1]: import torch; a = torch.rand(1, 1700, 34, 50)
In [2]: %timeit str(a)
13.6 s ± 84.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```
After this PR
```python
In [1]: import torch; a = torch.rand(1, 1700, 34, 50)
In [2]: %timeit str(a)
2.08 ms ± 395 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [3]: b = a.cuda()
In [4]: %timeit str(b)
8.39 ms ± 45.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14418
Reviewed By: weiyangfb
Differential Revision: D13226950
Pulled By: soumith
fbshipit-source-id: 19eb4b855db4c8f891d0925a9c56ae8a2824bb23
Summary:
They didn't turn up in my tests because I use pytest which doesn't
print debug statements if the tests pass
Differential Revision: D13115227
Pulled By: soumith
fbshipit-source-id: 46a7d47da7412d6b071158a23ab21e7fb0c6e11b
Summary:
Implements batching for the Cholesky decomposition.
Performance could be improved with a dedicated batched `tril` and `triu` op, which is also impeding autograd operations.
Changes made:
- batching code
- tests in `test_torch.py`, `test_cuda.py` and `test_autograd.py`.
- doc string modification
- autograd modification
- removal of `_batch_potrf` in `MultivariateNormal`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14017
Differential Revision: D13087945
Pulled By: ezyang
fbshipit-source-id: 2386db887140295475ffc247742d5e9562a42f6e
Summary:
This enables the distributions and utils test sets for ROCm.
Individual tests are enabled that now pass due to fixes in HIP/HCC/libraries versions in white rabbit.
For attention: bddppq ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13166
Differential Revision: D12814759
Pulled By: bddppq
fbshipit-source-id: ea70e775c707d7a8d2776fede6154a755adef43e
Summary:
- This is a straightforward PR, building up on the batch inverse PR, except for one change:
- The GENERATE_LINALG_HELPER_n_ARGS macro has been removed, since it is not very general and the resulting code is actually not very copy-pasty.
Billing of changes:
- Add batching for `potrs`
- Add relevant tests
- Modify doc string
Minor changes:
- Remove `_gesv_single`, `_getri_single` from `aten_interned_strings.h`.
- Add test for CUDA `potrs` (2D Tensor op)
- Move the batched shape checking to `LinearAlgebraUtils.h`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13453
Reviewed By: soumith
Differential Revision: D12942039
Pulled By: zou3519
fbshipit-source-id: 1b8007f00218e61593fc415865b51c1dac0b6a35
Summary:
update roll to behave as in numpy.roll when dimension to roll not specified.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13588
Differential Revision: D12964295
Pulled By: nairbv
fbshipit-source-id: de9cdea1a937773033f081f8c1505a40e4e08bc1
Summary:
- a walk around for #13292, a complete fix requires investigation on the root cause when using advanced indexing
- this PR brings in `filp()` CUDA implementation for CPU kernel
- with this change:
```
>>> t = torch.randn(1, 3, 4, 5)
>> t.flip(1, 3).shape
torch.Size([1, 3, 4, 5])
```
- performance:
```
====== with this PR ======
>>> a = torch.randn(1000, 1000)
>>> %timeit -r 100 a.flip(0, 1)
1.98 ms ± 579 µs per loop (mean ± std. dev. of 100 runs, 1000 loops each)
====== Perf at previous PR #7873 ======
100 loops, best of 3: 11 ms per loop
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13344
Differential Revision: D12968003
Pulled By: weiyangfb
fbshipit-source-id: 66f434049d143a0575a35b5c983b3e0577a1a28d