`valueToTensor` is invoked in many python apis such as `x[0] = 0.5`, which lifts the 0.5 to a tensor. the problem is described similarly in https://github.com/pytorch/pytorch/pull/81609 (/s/scalar_to_tensor/valueToTensor)
> scalar_to_tensor is not dispatched and thus there is no interposition point for modes to ensure that the resulting tensor is appropriately wrapped. lift_fresh introduces this interposition point. This prevents FakeTensorMode from erroring
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81927
Approved by: https://github.com/ezyang
This PR implements `torch.select` for CSR tensors. Currently, it's not possible to select rows or columns for batched CSR. The non-batched case works fine by converting to COO and calling select. Initially, I implemented raw manipulations of indices but converting to COO is only slightly slower and more readable.
This PR also enables indexing into batched CSR tensor with `[x, y, z]`. Assigning is disabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76228
Approved by: https://github.com/cpuhrsch
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71728
Fixes gh-68739
For simple indexing this adds a `gil_scoped_release` before calling
`set_item`. For tuple indexing, the slicing operation is done with the
GIL because otherwise it would have to re-aquire the GIL for each
element in the tuple. However, the GIL is released for the final
`copy_to` operation which is where the actual kernels are called.
Test Plan: Imported from OSS
Reviewed By: anjali411
Differential Revision: D33770047
Pulled By: albanD
fbshipit-source-id: 67304a65e2cbf3b3ba9843687d9c63926d29298f
(cherry picked from commit d0a85046b7)
Summary:
This renames `WindowsTorchApiMacro.h` to `Export.h` to mirror the c10 header `c10/macros/Export.h` and also updates it to use `C10_EXPORT`/`C10_IMPORT`. This also removes the `THP_API` macro from `THP_export.h` which appears to serve the same purpose.
cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68095
Reviewed By: jbschlosser
Differential Revision: D32810881
Pulled By: albanD
fbshipit-source-id: d6949ccd0d80d6c3e5ec1264207611fcfe2503e3
Summary:
Fixes https://github.com/pytorch/pytorch/issues/67027
`torch.Tensor` is considered a Mapping, but not a Sequence in Python
because it uses `tp_as_mapping` instead of defining `__getitem__` in
Python. However, If you try to overwrite `__getitem__` from Python
it is considered a `Sequence` and so the tensor is treated like a
tuple for indexing purposes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67202
Reviewed By: VitalyFedyunin
Differential Revision: D31908515
Pulled By: albanD
fbshipit-source-id: 0ca55a36be3421f96428a8eacf5d195646252b38
Summary:
https://github.com/pytorch/pytorch/issues/57515
Based on ngimel 's branch, with a few tweaks to determine when to copy value tensors to device memory/additional tests.
bc-breaking note: Previously, if in `x[index]=value` `value` was a 0-d tensor with device different from `x`'s device, it resulted in a RuntimeError. Now this case is handled by copying `value` to the correct device.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61612
Reviewed By: mrshenli
Differential Revision: D29753491
Pulled By: ngimel
fbshipit-source-id: 3fba14f4c2b9b136b50af020f9c1eda88f7373b0
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55799
I'm going to change the implementation of cdata soon so I need to
abstract over cdata access with a function. Additionally, many
users are casting manually casting to THPVariable to access
the member so I can remove these unsafe casts in the client code
(the implementation, of course, is still doing an unsafe cast.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D27712130
Pulled By: ezyang
fbshipit-source-id: 95fcc013bf3913d67f2c634068eb5b3aab144cb3
Summary:
Converts loops of the form:
```
for(int64_t VAR=0;VAR<LIMIT;VAR++)
```
to the form
```
for(const auto VAR : c10::irange(LIMIT))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55148
Test Plan: Sandcastle
Reviewed By: ngimel
Differential Revision: D27447811
fbshipit-source-id: 6311a094ec4a81a0b57383aaee0ba1b1dc2445c4
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54034Fixes#53544
I had to touch a bunch of lines but the refactoring was fairly
mechanical. Here's how it works.
The basic concept behind this PR is that tensor_new.cpp was previously
abusing DispatchKey when it actually meant TensorOptions. The provided
DispatchKey argument to most of the constructor functions typically
comes from torch::tensors::get_default_dispatch_key(); it doesn't
really make sense for people to set the default dispatch key, but
this got grandfathered in due to the old API set_default_tensor_type
(where the "Type" concept got refactored into "DispatchKey" concept
over time). See also #53124. But the upshot is that, semantically,
what we refer to as the default dispatch key really is more like
torch.set_default_tensor_type(torch.Tensor) versus
torch.set_default_tensor_type(torch.cuda.Tensor): clearly the user
wants to do something about *construction* of the tensor, and
TensorOptions captures that exactly.
So, how exactly to translate from one to the other?
- Sources (things that used to PRODUCE DispatchKey)
- Most top level functions take a DispatchKey as their argument. I
use the new function dispatchKeyToTensorOptions to convert it into
a TensorOptions
- typeIdWithDefault now produces a TensorOptions (probably could do
with a rename, though I didn't)
- Sinks (things that used to CONSUME DispatchKey)
- Previously, the function options() was typically used to convert the
DispatchKey into a TensorOptions. Now its replacement build_options
just takes a TensorOptions and sets some extra fields on it.
Irritatingly, I can't just replace
`build_options(options, scalar_type, device)` with
`options.dtype(scalar_type).device(device)` because the semantics
are slightly different: if device is nullopt, we should preserve
the usage of the device specified in options (what options.device()
does is overwrite the device unconditionally; e.g., if device is
nullopt, unset device from options)
- The other major sink for DispatchKey was `internal_new_from_data`,
but it turns out it only really extracts the device type from
the dispatch key. Now it just pulls out the device from
TensorOptions.
- To actually do the translation of DispatchKey to TensorOptions, I
introduce new functions dispatchKeyToLayout (replicating
layout_from_backend--there are still a few uses of this function
so I couldn't delete it) and dispatchKeyToDeviceType (replacing
computeDeviceType)
- In all internal functions, whenever DispatchKey is taken as an argument,
I instead take TensorOptions as an argument, and pass it along.
- Anywhere `legacyExtractDispatchKey(other.key_set())` equality was
previously used, I now do `other.options().type_equal()`, which
is the intended BC for doing "backend to backend" comparisons
- There are a few places in the sparse constructors where we allocated
a tensor for values, and then read out the dispatch key from the
result to allocate the keys. As best as I can tell, this is totally
equivalent to just passing in the options to both values and indices
(the only difference is dtype, which is captured via a separate
argument)
This refactor doesn't really go far enough: for example, there are now
functions that take both TensorOptions and ScalarType, when really
the TensorOptions can capture this all. I kept it solely just
s/DispatchKey/TensorOptions/ to reduce the number of possible bugs;
also, a lot of this will be mooted by a proper fix to #53124.
Even with this limited refactor, the payoff is sweet. I can delete:
- backendToCPU
- backendToXPU
- backendToCUDA
- backendToHIP
- backendToBackendOfDeviceType
The reason I can do this is because I can simply overwrite layout in TensorOptions
to do the conversion, rather than having to type out each backend case
explicitly.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bhosmer
Differential Revision: D27109509
Pulled By: ezyang
fbshipit-source-id: 91d16cfbc390127770362ac04fb43f7e070077e9
Summary:
According to pytorch/rfcs#3
From the goals in the RFC:
1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
(so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)
This PR makes the following changes:
1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.
TODO:
- [x] Sequence Methods
- [x] Docs
- [x] Tests
Closes https://github.com/pytorch/pytorch/issues/28361
Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091
Reviewed By: ngimel
Differential Revision: D22765678
Pulled By: ezyang
fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
Summary:
The init-list form of `at::indexing::Slice` (i.e. `tensor.index({{1, None, 2}, ...})` instead of `tensor.index({Slice(1, None, 2), ...})`) in C++ API can be easily confused with the list-form indexing in Python API (e.g. `tensor[[1, 3, 2], ...]`), which is not good from readability perspective. This PR removes the init-list form of `at::indexing::Slice` to make the API less confusing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34255
Test Plan: Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D20290166
Pulled By: yf225
fbshipit-source-id: abbcbeca0b179219e5e1f196a33ef8aec87ebb76
Summary:
This PR adds the following items:
- **1st item**: `ArrayRef<TensorIndex>` and `std::initializer_list<TensorIndex>` overloads for `Tensor::index` and `Tensor::index_put_`, to be used specifically for multi-dim indexing purpose.
Design rationale:
* C++ `Tensor::index` and `Tensor::index_put_` are both existing tensor APIs, and they currently (before this PR) only accept a list of tensors (i.e. `ArrayRef<Tensor>`) as indices. If we change their signatures to also accept non-tensors as indices (i.e. `ArrayRef<TensorIndex>`, and `TensorIndex` is convertible from `Tensor` / `Slice` / `None` / `Ellipsis`), it would slow down the original code path (since now it has to go through more steps), which is undesirable.
To get around this problem, the proposed solution is to keep the original `ArrayRef<Tensor>` overload, and add `ArrayRef<TensorIndex>` and `std::initializer_list<TensorIndex>` overloads to `Tensor::index` and `Tensor::index_put_`. This way, the original code path won’t be affected, and the tensor multi-dim indexing API is only used when the user explicitly pass an `ArrayRef<TensorIndex>` or a braced-init-list of `TensorIndex`-convertible types to `Tensor::index` and `Tensor::index_put_` .
Note that the above proposed solution would still affect perf for the user’s original `Tensor::index` or `Tensor::index_put_` call sites that use a braced-init-list of tensors as input, e.g. `tensor.index({...})` or `tensor.index_put_({...}, value)`, since now such function calls would take the multi-dim indexing path instead of the original advanced indexing path. However, there are only two instances of this in our codebase (one in ATen cpp test, one in a C++ API nn init function), and they can be easily changed to explicitly use `ArrayRef<Tensor>` as input (I changed them in this PR). For external user’s code, since this is part of the C++ frontend which is still considered experimental, we will only talk about this change in the release note, and ask users to switch to using `ArrayRef<Tensor>` explicitly if they want to keep using the original advanced indexing code path.
- **2nd item**: Mechanisms for parsing `ArrayRef<TensorIndex>` indices and performing indexing operations (mirroring the functions in `torch/csrc/autograd/python_variable_indexing.cpp`).
- **3rd item**: Simple tests to demonstrate that the `Tensor::index()` and `Tensor::index_put_()` APIs work. I will add more tests after the first few PRs are reviewed.
- **4th item**: Merge Python/C++ indexing code paths, for code simplicity. I tested locally and found that there is no perf regression resulting from the merge. I will get more concrete numbers for common use cases when we settle on the overall design.
This PR supersedes https://github.com/pytorch/pytorch/pull/30425.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32841
Differential Revision: D19919692
Pulled By: yf225
fbshipit-source-id: 7467e64f97fc0e407624809dd183c95ea16b1482
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.
I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281
Differential Revision: D18830818
Pulled By: ezyang
fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.
Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095
Differential Revision: D18301806
Pulled By: ezyang
fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29203
There is no more Variable/Tensor distinction, so fix the misleading name.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353505
Pulled By: ezyang
fbshipit-source-id: dadc394d533ab7746f70bc186c6645441a784518
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28620
All Tensors are Variables now, they just happen to have requires_grad=False. Tensors ALWAYS have `VariableTensorId` in their type set.
When constructing this patch, I had to make decisions about what I would fix in this patch, and what I would leave for follow up PRs. Here is the cleanup that happens in this patch:
- The `is_variable` property is removed from TensorOptions. I removed this immediately because unlike Tensor::is_variable, TensorOptions::is_variable doesn't respect our VariableTensorId thread-local state. This means that there were a bunch of places where TensorOptions::is_variable was false, which is obviously bogus in the world when tensor and variable are merged. Instead of keeping the method as a function that always returns true, I just opted to remove it entirely (it's not public API.) All places we set `is_variable` are deleted.
- Knock on effect: there is no longer a separate DeprecatedTypeProperties for the variable and non-variable versions of type.
- Knock on effect: instead of asserting on TensorOptions::is_variable, instead we just test `at::impl::variable_is_excluded()`
- There is now only one copy of the cuDNN RNN dropout cache, not two (I'm not sure why we had two to begin with)
Some cleanup that doesn't happen in this patch:
- Eliminating unnecessary uses of `make_variable`
- Eliminating `Tensor::is_variable`
The most subtle part of this patch is retaining tracing behavior: the fact that everything is a Variable means that more code gets routed to VariableType than before; this can change traces. I identified two places where we didn't appropriately turn off VariableType, mostly factory functions:
- `torch.tensor` must turn off VariableType before invoking `at::empty` to construct the tensor, as it subsequently does direct data access
- `tensor_slow` (invoked when you pass a Python scalar to a tensor argument) must turn off VariableType before calling `scalar_to_tensor` so the scalar gets traced as constant, rather than as a call to `scalar_to_tensor`.
Honestly, these are all giant hacks, and should be replaced with a more specialized guard that just toggles tracing.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: dreiss
Differential Revision: D18171156
Pulled By: ezyang
fbshipit-source-id: 5b6a045beba37492647e350190f495114e86504d
Summary:
Fix Slice/Select trace arguments. This PR stashes arguments to functions in order to avoid tracing them as constants.
This PR depends on a fix for select op in PR:
https://github.com/pytorch/pytorch/pull/25273
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26549
Reviewed By: hl475
Differential Revision: D17623851
Pulled By: houseroad
fbshipit-source-id: ae314004266688d2c25c5bada2dcedbfc4f39c5b