Fixes#149450
This PR adds fallback support on StaticCudaLauncher for any number of kernel arguments. Above MAX_ARGS, we can do a heap allocation/malloc instead.
For 0 arguments, triton technically does some undefined behavior by allocating a 0 byte array and passing it to cuLaunchKernel. In reality, cuLaunchKernel never accesses the pointer if the singature of the cubin has no parameters, so we can just pass nullptr directly.
We could technically use `alloca` to stack allocate instead of heap allocate, though in my tests it didn't seem to affect runtime performance on benchmarks particularly impressively, and alloca has portability issues, so I'd rather just stick with something simpler for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149442
Approved by: https://github.com/jansel
This PR threads through the correct boxed_forward_device_index from graph_kwargs to CompiledFXGraph.post_compile. This allows us to correctly update BoxedDeviceIndex from cache hits.
We don't actually need to save `boxed_forward_device_index` in CompiledFXGraph because its value is in the cache key, so it always matches to the ambient one anyway. On forward with cudagraphs enabled, derive `boxed_forward_device_index`'s value from `device_idxs`.
Testing:
```
python benchmarks/dynamo/cachebench.py --mode training --benchmark torchbench --model BERT_pytorch --device cuda --repeat 1 --dynamic --output="dynamic.json"
```
Now cache hits properly on FXGraphCache. AOTAutogradCache has a guard failure. Will look into that as a followup.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148130
Approved by: https://github.com/eellison
In the kernelBot leaderboard we support people competing with custom cuda extensions via `load_inline()`, however even on toy kernels this can result in cold starts of up to 90s - this feature is primarily responsible for us having to double our timeout values
I performed an investigation here https://github.com/msaroufim/load_inline_slow and the primary cause was that torch/extension.h and torch/types.h add in about 5,000 header files https://github.com/msaroufim/load_inline_slow/blob/main/header-analysis
So we introduce a mode `no_implicit_headers` which forces users to be explicit about exactly what they want to add. There's a proper test meant to be used in a CLI and a pytest test that's not terribly helpful
Then there's still an open question around what's the most minimal example implementation we can provide. For the baseline kernel we're showing here, it takes about 1 min to compile
1. There's using TensorBase.h (finicky to get right but can get compilation times down to 7s)
2. Just using Tensor.h (down to 15s)
3. Using Shim.h (did not try yet since the syntax is verbose relative to cuda)
This is my take so far https://gist.github.com/msaroufim/079a8d08ffebd0f91a1c2247eb0ce9e0 for a minimal implementation at 15s but @malfet has a simpler one at only 5s
There's more things I'd like to try moving forward like nvrtc and fancier compilation flags. Typical advice around using precompiled headers does not apply to us because we are mostly interested in cold starts where we tear down the machine after running a kernel
Also in a future PR I'd like to fix issue I've noticed with load_inline
1. It needs a force recompilation mode, I was using this quite a bit myself
2. The cache does not take into account changes in environment so the best way to force a recompilation is to change some string in the file
3. Instead of relying on pybind, can we use TORCH_LIBRARY instead
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149480
Approved by: https://github.com/malfet
The main purpose of this PR is to fix offline tuning for ScaledGEMM. The previous UT passed because it was not strict enough. Additionally:
- All the offline tuning tests now do a comparison with the online results to ensure that ParamSignature match.
- We raise an error if submatrices are encountered as this is only supported in online tuning mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149677
Approved by: https://github.com/jeffdaily
Summary:
`use_triton_lce_replace_simple_LCE` and `use_triton_lce_replace_normal_LCE`
code is mostly the same, some minor changes to support aten IR
Test Plan:
```
scripts/aetk/aetk -L
%run ~/fbsource/fbcode/caffe2/test/inductor/fb/test_customized_triton_kernel_passes.py
```
will verify the qps after everything done in the stack
Reviewed By: frank-wei
Differential Revision: D68909857
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149702
Approved by: https://github.com/frank-wei
Today, if you run DTensor (or any tensor subclass) under __torch_dispatch__, you will start seeing `CompositeImplicitAutograd` ops show up in the torch_dispatch.
"handling" these ops is trivial: you can just tell them to decompose into their constituent ops. Normally this decomposing happens in autograd, above DTensor, but inference_mode turns autograd off, forcing the subclass to handle the op directly.
It looks like previously we manually added a few CompositeImplicitAutograd entries to DTensor (e.g. linear), but this PR tries to support these ops a bit more generically.
The main difference is that DTensor now needs to check if a given op is `CompositeImplicitAutograd` before attempting to run sharding prop. I ran a quick microbenchmark for the below code with `timeit`, which gave me overhead on the order of ~1us, which is hopefully not too bad for eager mode:
```
def fast_function():
return torch._C._dispatch_has_kernel_for_dispatch_key(op_call.name(), torch._C.DispatchKey.CompositeImplicitAutograd)
import timeit
time_taken = timeit.timeit(fast_function, number=1000)
# printed 0.12..., aka 1.2us
print(f'func={str(op_call)}, time={str(time_taken)}')
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149514
Approved by: https://github.com/kwen2501, https://github.com/albanD, https://github.com/wanchaol
Cudagraphs is careful to not allow any memory recorded to escape globally without having a reference to the tensor. This is because we may later reclaim that memory for a cudagraph recording and we need to mark the tensor as erroring on access. Very occasionally, a stray tensor will have been allocated locally but not yet cleaned up. In this case, we enter the slow path and try to gc.collect() to deallocate it. From a hard to repro internal use case, this was fixed by an additional `cuda.synchronize()`.
i also snuck in an outdated comment and a duplicate line removal.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149741
Approved by: https://github.com/BoyuanFeng, https://github.com/Skylion007
Summary: When we call torch.inference_mode, we seem to skip Autograd key causing the custom op export uses to be not decomposed properly before subclass dispatching starts. We fix this by force desugaring this op at Python key
Test Plan: test
Differential Revision: D71599541
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149698
Approved by: https://github.com/bdhirsh
This is an attempt to fix#119698
I was unable to reproduce the original described problem on the latest trunk but the proposed fix makes sense. Instead of adding locks like the original (unlanded) fix I changed a few of the cache writes to be atomic file swaps (write to temp file, rename file) which should have the same effect without blocking reads.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149654
Approved by: https://github.com/eellison
Summary:
We need to properly fakify torchbind objects, including the ones in graph module attributes, so the resgitered fake implementation works properly.
- _fakify_script_objects in `compile_fx`
- Allow fake torchbind objects in `torchbind_constants`
Remove `node.meta["unbacked_bindings"]` for `aot_compile` in `compile_fx`. Otherwise `ShapeProp` will fail when trying to resolve the `unbacked_bindings` of `with_effect` tokens.
Update `sigrid_transforms_test` to use the latest `torch._inductor.aot_compile` API.
Add a test for `Fakify torchbind objects in compile_fx and add tests for SigridTransformsInstanceTorchBind` in `e2e_test`.
Test Plan:
```
buck run //caffe2/torch/fb/sparsenn:sigrid_test -- -r test_transform_torch_bind
buck run //sigmoid/inference/test:e2e_test_cpu -- -r SigridTransforms
buck2 run mode/dev-nosan sigmoid/inference/ts_migration:pt2i_readiness_main -- --model_id 545017754 --test_suite ads_all --mode test_preproc
```
Differential Revision: D70013257
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149529
Approved by: https://github.com/angelayi
Summary:
1\ The current write item structure does not contain the amount of data that needs to be written.
2\ the planner.item already has a size primitive 'tensor_storage_size'. https://fburl.com/code/7a0gsmw7 But only for tensors.
3\ Right now, the only way the writer layer get hold of this property (fro non tensor data)
first do a lookup in to the actual tensor/bytes
then calculate the nbytes.
This change introduce a way to capture non-tensor data size within a write-plan item.
Test Plan: Existing UT.
Differential Revision: D71599725
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149699
Approved by: https://github.com/MeetVadakkanchery
Create draft_export strategy.
The strategy is added before jit and after strict=True, as the third fallback. Since it is specializing tensors it should not be less robust than the jit trace strategy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147529
Approved by: https://github.com/titaiwangms
Redundant exception types in `except (PermissionError, OSError):`. Write `except OSError:`, which catches exactly the same exceptions.
https://github.com/pytorch/pytorch/actions/runs/13935844871/job/39141062991
When hipify files, or writing cprofile files, PermissionError is not enough when the file is located in a place that is not writable at all, or other OS errors happened when writing files.
This fix makes the code more robust.
Example error log:
```log
File "deepspeed/ops/adam/fused_adam.py", line 94, in __init__
fused_adam_cuda = FusedAdamBuilder().load()
^^^^^^^^^^^^^^^^^^^^^^^^^
File "deepspeed/ops/op_builder/builder.py", line 540, in load
return self.jit_load(verbose)
^^^^^^^^^^^^^^^^^^^^^^
File "deepspeed/ops/op_builder/builder.py", line 587, in jit_load
op_module = load(name=self.name,
^^^^^^^^^^^^^^^^^^^^
File "torch/utils/cpp_extension.py", line 1597, in load
return _jit_compile(
^^^^^^^^^^^^^
File "torch/utils/cpp_extension.py", line 2031, in _jit_compile
hipify_result = hipify_python.hipify(
^^^^^^^^^^^^^^^^^^^^^
File "torch/utils/hipify/hipify_python.py", line 1167, in hipify
preprocess_file_and_save_result(output_directory, filepath, all_files, header_include_dirs,
File "torch/utils/hipify/hipify_python.py", line 213, in preprocess_file_and_save_result
result = preprocessor(output_directory, filepath, all_files, header_include_dirs, stats,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "torch/utils/hipify/hipify_python.py", line 940, in preprocessor
output_source = RE_QUOTE_HEADER.sub(mk_repl('#include "{0}"', True), output_source)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "torch/utils/hipify/hipify_python.py", line 919, in repl
preprocess_file_and_save_result(output_directory,
File "torch/utils/hipify/hipify_python.py", line 213, in preprocess_file_and_save_result
result = preprocessor(output_directory, filepath, all_files, header_include_dirs, stats,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "torch/utils/hipify/hipify_python.py", line 986, in preprocessor
with clean_ctx.open(fout_path, 'w', encoding='utf-8') as fout:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "torch/utils/hipify/hipify_python.py", line 123, in open
return open(fn, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^
OSError: [Errno 30] Read-only file system: 'deepspeed/ops/csrc/adam/multi_tensor_apply_hip.cuh'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149464
Approved by: https://github.com/janeyx99
Summary: This diff ports some technique from torch.fx symbolic trace to trace through Python asserts when we run into data dependent symbolic shape assertions, so that we can achieve the same effect as torch dynamo to automatically turn assert into torch.check()s.
Test Plan: buck test mode/opt caffe2/test:test_export -- -r test_python_asserts_with_sym_int
Differential Revision: D71425360
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149444
Approved by: https://github.com/tugsbayasgalan
This hooks up the previous PR to torch.compile. Will add a config flag to hide this behind in a bit, but for now it's useful for testing purposes to have it on by default.
Inductor will automatically choose to use StaticCudaLauncher to launch triton kernels if:
- The kernel is a cuda kernel and inductor can find a cubin file associated with it
- The kernel takes less than 50 arguments
- The kernel doesn't use any special features (launch hooks, large amounts of shared memory)
- The kernel is not user defined (to be supported in a later PR)
We split CompileResult into TritonCompileResult and StaticTritonCompileResult, but have them share implementations of how they exec a python launcher. StaticTritonCompileResult's python launcher has the benefit of a simpler def_args/call_args setup, since it always filters out all constexprs before running, no matter the triton version.
Some key features of StaticTritonCompileResult:
- It is fully serializable
- It stores the minimum amount of stuff, so that later it can be cached easily
- It does not depend on any triton specific types (though it does have various triton metadata).
For now, both TritonCompileResult and StaticTritonCompileResult still `exec` custom python launchers, and use GridExpr. We can change that in the future to simplify if we'd like. For now though, this custom python codegen is good for flexibility when it comes to supporting removal of constexprs, so using it for static launching is nice to not have to pay the cost of removing constexprs at kernel runtime.
Hooking everything up to torch.compile lets me run every unit test with StaticCudaLauncher to make sure that we still pass (even if we bypass StaticCudaLauncher itself). It also lets me check for compilation/runtime performance with these changes.
Fixes#149448
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148890
Approved by: https://github.com/jansel
AOTDispatch doing AOT backward graph preparation does not know real tangents that user will specify when runs backward.
AOTD guesses the tangents. Before - we guessed that memory format of tangents will be as memory format of corresponding outputs. And if specified tangents at runtime are not the same memory format as we guessed during compilation, AOTD does coercion (copy) to guessed memory_format
But as Horace found, there are popular use cases, where the outputs of compiled region will be in specific memory_format. E.g. in 4D tensor transposing dims 1 and 2.
https://github.com/karpathy/nanoGPT/blob/master/model.py#L57
This PR changes the logic, that AOTD expects the same "strideness" of tangents as outputs. As a result it will avoid coercion for the case of transposed dims.
Limitations:
We keep guessing memory_format for:
1/ Dynamic shapes (needs more changes)
2/ Tensor subclasses (needs more changes)
Other changes:
test_torchinductor was always creating contiguous tangents via `torch.randn()`, changing them to be `torch.randn_like()` to compare computation with the same strideness.
(E.g. for cuda float16 strideness affects numerics for fft ops).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144579
Approved by: https://github.com/bdhirsh
# Feature
Fixes https://github.com/pytorch/pytorch/issues/148718 by reordering the tensor dims to `(z, y, x)`.
As a bonus refactor, block pointers no longer needed the `reorder=True` argument to `self.active_range_trees()`. Since this argument is no longer used anywhere, this PR simply deletes it as opposed to updating the logic for the new iteration order.
# Perf impact
It looks like there's a decent perf bump on A100, with cudagraphs enabled. Granted, perf runs seem to have some noise between commits. ([Workflow run](https://github.com/pytorch/pytorch/actions/runs/13914815576).)
Training (all neutral or positive):

Inference (one positive, one very small negative):

As reported in https://github.com/pytorch/pytorch/issues/148718, this PR makes consecutive threads access consecutive memory addresses. This should theoretically give the GPU more opportunities to coalesce loads and stores. From Nvidia's [kernel profiling guide](https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html):
> Local memory is private storage for an executing thread and is not visible outside of that thread. It is intended for thread-local data like thread stacks and register spills. Local memory addresses are translated to global virtual addresses by the AGU unit. Local memory has the same latency as global memory. One difference between global and local memory is that local memory is arranged such that consecutive 32-bit words are accessed by consecutive thread IDs. Accesses are therefore fully coalesced as long as all threads in a warp access the same relative address (e.g., same index in an array variable, same member in a structure variable, etc.).
I couldn't find any information on how coalescing works for other kinds of memory, but the guide mentions it is also supported for accesses to the L2 cache.
> The L2 Request Coalescer (LRC) processes incoming requests for L2 and tries to coalesce read requests before forwarding them to the L2 cache. It also serves programmatic multicast requests from the SM and supports compression for writes.
The [answer to this Stack Overflow post](https://stackoverflow.com/a/5044424) also explains coalescing in a straightforward way. Inductor's current iteration order corresponds to the first (uncoalesced) example in that answer, while the order after this PR corresponds to the second (coalesced) example.
Besides GPUs, this order of accessing data is highly advantageous for systems relying on DMAs, as those are designed to access contiguous spans of memory. This change improves the performance of an elementwise add kernel on an internal model, using internal hardware, by 1.76x. I will share the details with reviewers who are Meta employees via a private channel.
# Test plan
- Updated expected code on CI tests.
- Added a new test checking the {x,y,z}indices and block pointers on a 3D pointwise kernel.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149339
Approved by: https://github.com/jansel
Summary:
Fix logging error like:
```
in combinable_nodes
log.debug(
Message: 'ComboKernels: %d template nodes are filtered'
Arguments: (OrderedSet([8]),)
--- Logging error ---
Traceback (most recent call last):
File "/usr/local/fbcode/platform010/lib/python3.10/logging/__init__.py", line 1100, in emit
msg = self.format(record)
File "/usr/local/fbcode/platform010/lib/python3.10/logging/__init__.py", line 943, in format
return fmt.format(record)
File "/data/users/guorachel/fbsource/buck-out/v2/gen/fbcode/854b9ed00d28c5c5/caffe2/torch/fb/model_transform/experimental/benchmark/__mts_gpu_benchmark__/mts_gpu_benchmark#link-tree/torch/_logging/_internal.py", line 818, in format
record.message = record.getMessage()
File "/usr/local/fbcode/platform010/lib/python3.10/logging/__init__.py", line 368, in getMessage
msg = msg % self.args
TypeError: %d format: a real number is required, not OrderedSet
```
encountered in running a prod model + enable combo kernel feature
Test Plan: CI
Differential Revision: D71512220
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149575
Approved by: https://github.com/ColinPeppler
python benchmarks/transformer/score_mod.py --dynamic --max-autotune
previously would crash with
```
"/home/bobren/local/a/pytorch/torch/_inductor/select_algorithm.py", line 2306, in key_of
node.get_device().type,
```
but with this change no longer does
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148991
Approved by: https://github.com/drisspg
WHen we create constraints, we look at the ordering of kwargs according to model signature. But when we trace, we use the ordering that is created based on how user passes in their kwargs. As a result, constraints and dynamic shapes end up having a different order causing issues when they have different dynamic tensor specs.
Differential Revision: [D71478578](https://our.internmc.facebook.com/intern/diff/D71478578)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149528
Approved by: https://github.com/ydwu4
Summary: This adds a version field like the following: `3.10.9+fb (3.10:1dd9be6, May 4 2022, 01:23:45) [Clang 15.0.7 (mononoke://mononoke.internal.tfbnw.net/fbsource 5d1601b0eed7426ac`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149419
Approved by: https://github.com/c00w
Summary:
1\ The current write item structure does not contain the amount of data that needs to be written.
2\ the planner.item already has a size primitive 'tensor_storage_size'. https://fburl.com/code/7a0gsmw7 But only for tensors.
3\ Right now, the only way the writer layer get hold of this property (fro non tensor data)
- first do a lookup in to the actual tensor/bytes
- then calculate the nbytes.
This change introduce a way to capture non-tensor data size within a write-plan item.
Reviewed By: daulet-askarov
Differential Revision: D70497442
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149434
Approved by: https://github.com/MeetVadakkanchery
Summary:
Oftentimes, users complain that a bunch of extra events are prepended to their desired GPU snapshot. This is because they usually attach an OOM logger without knowing and when they go to collect the actual snapshot, it adds all the OOM logger contents. Since OOM and regular snapshot use the same backend, we currently don't have the infra in place to split these snapshots.
As a solution we add a flag to the snapshot frontend to clear out the history when starting the auto-trace record memory history.
A more thorough solution would be to have a user pass in a handle and to have snapshots per handle to seperate the events. However, this would likely be complicated and more work than it is worth as we would have to change the callbacks in the caching allocator and pass these objects between python and cpp.
Test Plan:
See diff below
Differential Revision: D71159720
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149352
Approved by: https://github.com/eqy, https://github.com/aaronenyeshi
Summary: Remove torch.export.export_for_inference, it is redundant and can always be replaced with torch.export.export_for_training() + run_decompositions()
Test Plan: unit tests
Differential Revision: D71069057
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149078
Approved by: https://github.com/tugsbayasgalan
Summary: - For `torch.ops.higher_order.with_effects`'s lowering, we should not extract the items out of an list (i.e. `*result` vs `result`). The `get_attr` nodes consider the result to be in the list format.
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r test_torchbind_aot_compile
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r list_return
buck run //caffe2/torch/fb/sparsenn:sigrid_test -- -r test_transform_torch_bind # tested together with D70013257
buck run fbcode//mode/dev-nosan //caffe2/test:test_export -- -r test_custom_obj
```
Reviewed By: angelayi
Differential Revision: D71346024
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149510
Approved by: https://github.com/zou3519
Differential Revision: D70022208
- When resolving unbacked symints in ExternKernel for with_effect, we need to ignore the first item in the binding path, because the `example_output` doesn't contain the effect token, but the binding paths do.
- Similarly, `node.meta["val"]` contains the effect token, so when we compute_unbacked_bindings, we need to remove that effect token
- For `torch.ops.higher_order.with_effects`'s lowering, we should not extract the items out of an list (i.e. `*result` vs `result`). The `get_attr` nodes consider the result to be in the list format.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147656
Approved by: https://github.com/angelayi, https://github.com/zou3519
Summary:
We add the aten pattern to optimize big cat node with arbitrary order of inputs to support APS jobs
context: https://docs.google.com/document/d/1G2qFcQu1K7VXbz2uPe0CS2aBirnwtwI_B8lxmlBlAPQ/edit?tab=t.0
Test Plan:
### how to enable
Add the following patterns to the post grad
```
post_grad_fusion_options={
"normalization_aten_pass": {},
"split_cat_aten_pass": {"threshold_to_cat": 10},
},
```
You can tune threshold_to_cat to achieve best performance. If nothing gives, the default value 10 will be used
### unit test
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:split_cat_fx_aten_passes -- test_split_cat_post_grad
```
Buck UI: https://www.internalfb.com/buck2/9e52168d-c107-4be8-a46b-b9d239f5c50d
Test UI: https://www.internalfb.com/intern/testinfra/testrun/17732923605061752
Network: Up: 112KiB Down: 132KiB (reSessionID-915796e0-4a8f-486a-9f63-afb1e191d24a)
Executing actions. Remaining 0/3 1.0s exec time total
Command: test. Finished 2 local
Time elapsed: 4:57.9s
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0
### E2E
baseline
f691990503
proposal
Differential Revision: D71017436
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149027
Approved by: https://github.com/Yuzhen11
Summary: The FlexAttention path generates code that uses this function. Although streams are not used yet in Triton-MTIA, adding this now allows us to not branch out just for MTIA and generate different code.
Test Plan: CI
Reviewed By: chaos5958
Differential Revision: D70072057
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149436
Approved by: https://github.com/chaos5958
Summary:
Recall that we use "ivals" to track intermediate values of mutations during unflattening. Previously, for each such intermediate value, we would create a hidden shared attribute that would be updated / read by respective submodules.
Unfortunately this scheme doesn't work when some but not all of those submodules are swapped out. This is because the swapped in submodules have no knowledge of these hidden attributes. Thus the submodules that are not swapped out end up reading / updating dangling state.
This PR does away with these hidden attributes. Instead, we directly read the underlying buffer or placeholder that was updated, and update those underlying buffers and placeholders in place. This makes the graphs look much closer to their eager origins.
Test Plan: added some tests, ensured existing tests pass
Differential Revision: D71203469
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149206
Approved by: https://github.com/tugsbayasgalan
PR does following
* Turns `inference_mode` to False and `no_grad` for `convert_frame`, if the inference_mode is on globally.
* Turns off inference_mode for fake tensor prop. This ensures that converting from real inference tensor to a fake tensor removes the inference-ness.
* Graph breaks on is_inference and is_inference_mode_enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149321
Approved by: https://github.com/jansel, https://github.com/zou3519
Summary:
`-Wunused-exception-parameter` has identified an unused exception parameter. This diff removes it.
This:
```
try {
...
} catch (exception& e) {
// no use of e
}
```
should instead be written as
```
} catch (exception&) {
```
If the code compiles, this is safe to land.
Test Plan: Sandcastle
Reviewed By: dtolnay
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149328
Approved by: https://github.com/Skylion007, https://github.com/eqy
This PR includes additional enhancements to TF32 support in TunableOp.
- OpSignature now differentiates between float32 and tf32 data types.
- Offline tuning now supports TF32.
- Unit tests for online and offline tuning of TF32.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149088
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
- Updated HIP flags for Windows (removed non Windows flags on Windows case, added runtime library)
- Set hipcc call for Windows case
- Removed CUDA flags (not used in ROCm) on Windows
- Updated Windows compiler (added case when using ROCm on Windows)
- Fixed path issue in hipify_python
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147382
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Summary: Right now we get Overload names and forward them to the Event List frontend for profiler but we do not forward anything to kineto. This diff checks if there is an overload name for each cpu op and appends it to the name if necessary
Test Plan: Added test in CI
Differential Revision: D71326670
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149333
Approved by: https://github.com/aaronenyeshi
Minor refactor to trace.py
* Removed `_strict_export_lower_to_aten_ir` in favor of just `_strict_export` and `_non_strict_export`
* Matched the APIs of `_strict_export` and `_non_strict_export`
* Instead of a `lower_to_aten_callback` which is a callable, or `dispatch_tracing_mode`, both functions take in a `_to_aten_func` which can be either `_export_to_aten_ir_make_fx` or `_export_to_aten_ir`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149240
Approved by: https://github.com/pianpwk
In the old exporter we allow users to define a symbolic() method to bypass JIT tracing for a block of logic. We can allow users to do similar things by creating symbolic ops at export.
This PR implements `torch.onnx.ops.symbolic` and `torch.onnx.ops.symbolic_multi_out` to allow users to create onnx nodes symbolically with pt2 & fx. The custom pytorch ops were designed such that the attributes are encoded to be part of a valid fx op. Users provide shape and dtype for the meta function to produce the currect fake tensor during export.
An example is

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148905
Approved by: https://github.com/titaiwangms
Fixes https://github.com/ROCm/hip/issues/3764.
Fixes and improvements to CUDA->HIP flag conversion for CPP extensions
- Log flag conversion for debugging purposes.
- Fix cases where it should not touch the -I flags or cases where CUDA appears more than once by replacing only the first instance.
- Fix case where nvcc key may not exist
- Fix case where hipify should ignore flag values and only touch the flag itself
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149245
Approved by: https://github.com/jeffdaily
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>
Fix for https://github.com/pytorch/pytorch/issues/144431.
Improves perf from 0.29963893827160504 -> 0.0396331632970453.
In split reductions, we view an input tensor as a single dimension, then reduce over it. When we are reducing over a tensor which has a dimension other than the last dimension as the dense dimension, we should iterate over the dense dimension first in our re-indexing.
This pr also gives evidence for general need of reduction tiling, e.g. for cooperative reduction handling of this..
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147229
Approved by: https://github.com/jansel
Summary:
Avoid in-place update and deepcopy during dudpe. Deepcopy becomes prohibitively expensive with models having a huge number of FQNs. This was manifestd in the Ads 2K experiment as well. Here are the results from the TextRay model in Mitra:
#### Control job with deepcopy regression:
First save ~24.8s
Global step latency is ~7-8s
Test job with the new fix to avoid deepcopy:
First save is ~21s
global step latency ~2s
Test Plan:
```
buck test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/distributed/checkpoint:test_planner
```
https://www.internalfb.com/intern/testinfra/testrun/3940649945104822
Differential Revision: D71245218
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149320
Approved by: https://github.com/MeetVadakkanchery
Summary: The FlexAttention path uses `_maybe_exchange_device`, so it will be needed eventually for MTIA as well.
Test Plan: `buck2 test fbcode//mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api -- test_maybe_exchange_device`
Reviewed By: chaos5958
Differential Revision: D70072063
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149340
Approved by: https://github.com/chaos5958
This is a trivial rule that for most cases isn't needed, but if we want to consider that the input data is actually `Shard(0)` (instead of `Replicated()` as it is currently assumed), then we need this rule.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149253
Approved by: https://github.com/XilunWu
This change does 2 important things:
(a) Instead of relying on IValue type as source of truth, we use the schema as the source of truth, which is important as IValue types are overloaded and can ambiguously convert incorrectly. For example, a MemoryFormat will look like an int + get converted to an int64_t vs a MemoryFormat!
(b) This PR expands support for many more types to encompass way more schemas, e.g., Optional, Device, dtype, etc. The main win from this PR is the ability for aoti_torch_call_dispatcher to call TensorFactory ops like ones_like/empty_like!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149052
Approved by: https://github.com/albanD
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
found an issue while running `python torchgen/fuse/gen_patterns.py`
exact error:
```shell
Traceback (most recent call last):
File "/Users/mayankmishra/Desktop/non-IBM/pytorch/torchgen/fuse/gen_patterns.py", line 19, in <module>
joint_graph.lazy_init()
File "/Users/mayankmishra/miniconda3/envs/ai/lib/python3.10/site-packages/torch/_inductor/pattern_matcher.py", line 2096, in lazy_init
result = fn()
File "/Users/mayankmishra/miniconda3/envs/ai/lib/python3.10/site-packages/torch/_inductor/fx_passes/joint_graph.py", line 53, in lazy_init
_pad_mm_init()
File "/Users/mayankmishra/miniconda3/envs/ai/lib/python3.10/site-packages/torch/_inductor/fx_passes/pad_mm.py", line 905, in _pad_mm_init
gen_register_replacement(
File "/Users/mayankmishra/miniconda3/envs/ai/lib/python3.10/site-packages/torch/_inductor/pattern_matcher.py", line 1584, in gen_register_replacement
pat = _serialize_pattern(
File "/Users/mayankmishra/miniconda3/envs/ai/lib/python3.10/site-packages/torch/_inductor/pattern_matcher.py", line 1539, in _serialize_pattern
file_template = get_file_template()
File "/Users/mayankmishra/miniconda3/envs/ai/lib/python3.10/site-packages/torch/_inductor/pattern_matcher.py", line 1513, in get_file_template
if isinstance(attr, type) and issubclass(attr, (PatternExpr, _TargetExpr)):
File "/Users/mayankmishra/miniconda3/envs/ai/lib/python3.10/abc.py", line 123, in __subclasscheck__
return _abc_subclasscheck(cls, subclass)
TypeError: issubclass() arg 1 must be a class
```
This PR fixes this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147723
Approved by: https://github.com/aorenste
Co-authored-by: Aaron Orenstein <aorenste@meta.com>
Summary: The FlexAttention path uses `_exchange_device`, so it will be needed eventually for MTIA as well.
Test Plan: `buck2 test fbcode//mtia/host_runtime/torch_mtia/tests:test_torch_mtia_api -- test_exchange_device`
Reviewed By: chaos5958
Differential Revision: D70072059
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149322
Approved by: https://github.com/chaos5958
Summary:
Optimize the decomposition of aten.native_group_norm. Reduce unnecessary repeated operations by changing the order of operations for `mean`, `rstd`, `weight`, `bias `and `input`, which can improve performance when `flattened_inner_size `is large.
The original decomposition:
1. compute `mean `and `rstd`,
2. out = (x - mean) * rstd, compute in the range [N, C, *],
3. out = out * weight + bias, compute in the range [N, C, *],
The new decomposition:
1. compute `mean `and `rstd`,
2. new_weight = rstd * weight, new_bias = - mean * rstd * weight + bias, compute in the range [N, C],
3. out = out * new_weight + new_bias, compute in the range [N, C, *],
I tested the Inductor performance benchmark with this PR on both CPU and A100. On CPU, two torchbench models(functorch_dp_cifar10 and opacus_cifar10) have about 25% performance improvement, and two diffusion models(Stable Diffusion and Latent Consistency Model(LCM)) have about 2% performance improvement. On A100, no performance gains or regressions were seen.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144733
Approved by: https://github.com/leslie-fang-intel, https://github.com/jansel
Doing this removes the need of collecting `id` and therefore facilitates serialization. It also improves readability with recompilations. Earlier, recompile message will just show the `id`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149228
Approved by: https://github.com/jansel
Summary: The future holds a reference to the callback, and the callback captures the outer future. Seems to create a cycle that the garbage collector doesn't clean up. Verified by compiling 15k synthetic Triton kernels and observing that subprocess memory overhead improves.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149259
Approved by: https://github.com/Skylion007
This is a new version of https://github.com/pytorch/pytorch/pull/148561 fixing the ROCM test failure
Putting this up for a first pass review, though I will likely make a bunch of changes before landing to add more features, etc.
This diff implements a first version of a static CUDA kernel launcher in `torch._C`. The goal here is to take a cubin file and some metadata from a CompiledKernel from `triton`, and launch the cubin file directly.
Background doc: https://docs.google.com/document/d/1rjRcHl6MfauHG30nCoQX-9UKvKyIs4WWMy_GsGyqb9g/edit?tab=t.0#heading=h.ut5lf39lzq66
Normally, using triton's CompiledKernel.make_launcher(), we would pay the cost of codegenning C++ and running it at compile time. With this new approach, we can use one statically compiled library to launch the kernel.
The tradeoff here is that this new kernel launcher will not be able to use codegen to deal with different lengths/types of arguments. So we use templating to handle up to 10 arguments for now. We also allocate 8 bytes on the stack per argument no matter the argument type, which can take more memory than codegenning. On the other hand, we improve compile time on cold and warm start by not having to call the C++ compiler at all.
This diff does not add the launcher to torch, but introduces a basic test suite.
A list of TODOs that are not yet complete:
- Handle `nvTmaDesc` and `cuTensorMap`, which triton handles
- Embed the grid logic instead of passing in gridX,Y,Z
- Handle launch_enter and exit hooks? (Not sure if inductor has these)
- Benchmarking to see if there's runtime performance loss
- Probably lots of features of the triton C++ generated code that I haven't handled yet.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149238
Approved by: https://github.com/oulgen
Summary: The parallel compile workers are holding on to more memory than they need to because they're loading the compiled modules into memory. Update the post-fork initializer to record when in a subprocess and skip some of the unnecessary overhead.
Test Plan: Ran a test script to compile 15k Triton kernels and used tracemalloc in the subprocs to investigate the overhead. On my devgpu:
* After importing torch in a subproc: 371M
* Without this PR, after compiling 15k kernels: 825M
* With this PR, after compiling 15k kernels: 531M
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149168
Approved by: https://github.com/jansel
Summary: as title.
See internal Diff summary for more context.
Test Plan: buck run @fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r config_not_generated
Differential Revision: D71241676
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149246
Approved by: https://github.com/houseroad
Co-authored-by: Huamin Li <huaminli@meta.com>
We found that in compiled_autograd, when defining custom op, the custom op will be dce in the backward graph. We added a side effect condition in the dce function to prevent eliminating custom op with side effect in CA graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149181
Approved by: https://github.com/xmfan
we use dummy tensors in our initial trace, so we should never inline. the subclass dispatch might not support the dummy tensor, e.g. DTensor accumulate grad will check that both param and grad are DTensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149014
Approved by: https://github.com/jansel
ghstack dependencies: #149064
Fixes #ISSUE_NUMBER
When attempting to reconfigure the environment without properly handling the PyTorch-related settings, you may encounter the following message.
```
│ /root/.cache/pypoetry/virtualenvs/app-rag-sample-9TtSrW0h-py3.10/lib/python3.10/site-packages/torch/distributed/distribut │
│ ed_c10d.py:1215 in get_backend │
│ │
│ 1212 │ if _rank_not_in_group(pg): │
│ 1213 │ │ raise ValueError("Invalid process group specified") │
│ 1214 │ pg_store = _world.pg_map[pg] if pg in _world.pg_map else None │
│ ❱ 1215 │ return Backend(not_none(pg_store)[0]) │
│ 1216 │
│ 1217 │
│ 1218 def _get_process_group_uid(pg: ProcessGroup) -> int: │
│ │
│ /root/.cache/pypoetry/virtualenvs/app-rag-sample-9TtSrW0h-py3.10/lib/python3.10/site-packages/torch/utils/_typing_utils.p │
│ y:13 in not_none │
│ │
│ 10 │
│ 11 def not_none(obj: Optional[T]) -> T: │
│ 12 │ if obj is None: │
│ ❱ 13 │ │ raise TypeError("Invariant encountered: value was None when it should not be") │
│ 14 │ return obj │
│ 15 │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
TypeError: Invariant encountered: value was None when it should not be
Exception ignored in: <function Vllm.__del__ at 0x7f35f96b6dd0>
```
Since this message can cause confusion for multiple developers, the purpose of this PR is to suggest additional details to help clarify the situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141796
Approved by: https://github.com/kwen2501
Fixes#103425
## Changes
- Add doc description size value `must be > 0`
- Add validation for `in1_features` param
Currently, only `in1_features` will cause runtime error, if add checks for `in2_features` and `out_features` as well, might be kind of BC breaking.
```python
import torch
from torch import nn
class lenet(nn.Module):
def __init__(self):
super(lenet, self).__init__()
self.conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5, stride=1)
# Error, `in1_features=1, in2_features=0, out_features=0` no error
self.linear = nn.Bilinear(in1_features=0, in2_features=0, out_features=0)
def forward(self, x):
# 1st block
x = self.conv(x)
x = self.linear(x)
return x
if __name__ == '__main__':
net = lenet()
```
## Test Result
```bash
pytest test/test_nn.py -k test_bilinear -vv
```


Pull Request resolved: https://github.com/pytorch/pytorch/pull/149018
Approved by: https://github.com/mikaylagawarecki
Putting this up for a first pass review, though I will likely make a bunch of changes before landing to add more features, etc.
This diff implements a first version of a static CUDA kernel launcher in `torch._C`. The goal here is to take a cubin file and some metadata from a CompiledKernel from `triton`, and launch the cubin file directly.
Background doc: https://docs.google.com/document/d/1rjRcHl6MfauHG30nCoQX-9UKvKyIs4WWMy_GsGyqb9g/edit?tab=t.0#heading=h.ut5lf39lzq66
Normally, using triton's CompiledKernel.make_launcher(), we would pay the cost of codegenning C++ and running it at compile time. With this new approach, we can use one statically compiled library to launch the kernel.
The tradeoff here is that this new kernel launcher will not be able to use codegen to deal with different lengths/types of arguments. So we use templating to handle up to 10 arguments for now. We also allocate 8 bytes on the stack per argument no matter the argument type, which can take more memory than codegenning. On the other hand, we improve compile time on cold and warm start by not having to call the C++ compiler at all.
This diff does not add the launcher to torch, but introduces a basic test suite.
A list of TODOs that are not yet complete, will do in separate diff:
- Handle `nvTmaDesc` and `cuTensorMap`, which triton handles
- Embed the grid logic instead of passing in gridX,Y,Z. With https://github.com/pytorch/pytorch/pull/147583, we should be able to handle all of the grid logic directly in _StaticCudaLauncher.launch_kernel, and get rid of the python evaluation.
- Handle launch_enter and exit hooks? (Not sure if inductor has these)
- Benchmarking to see if there's runtime performance loss
- Hooking it up with a config to inductor
- Testing harness to test against torch generated triton kernels
Differential Revision: [D69926783](https://our.internmc.facebook.com/intern/diff/D69926783/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148561
Approved by: https://github.com/aorenste, https://github.com/syed-ahmed
Changes in this PR:
1. Add `is_structseq` and `is_structseq_class` functions to determine a object or a class is PyStructSequence.
2. Add a generic class `structseq` which can be used as the registration key for PyStructSequence types like `namedtuple` for Named Tuple types.
3. Change `is_namedtuple` to accept subclasses of namedtuple to be namedtuple. Before this PR, only namedtuple class directly created by `collections.namedtuple` or `typing.NamedTuple` were namedtuple classes while their subclasses were not. This PR makes `is_namedtuple` return true for subclasses of namedtuple class.
Resolves#75982. New tests are included in this PR.
- #75982
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113257
Approved by: https://github.com/zou3519
Summary: This DIFF https://www.internalfb.com/diff/D70471332 removed input "grid" when calling triton kernel. PyTorch execution trace need to make the appropriate change. It includes capturing ET and replay ET.
Test Plan:
buck2 run mode/opt caffe2/test:test_profiler_cuda -- profiler.test_execution_trace.TestExecutionTraceCUDA.test_execution_trace_with_pt2_cuda
buck2 run mode/opt param_bench/fb/integration_tests:test_et_replay
Differential Revision: D71152464
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149159
Approved by: https://github.com/sraikund16, https://github.com/jansel
Summary: no-except builds are terminating when this exception is thrown. We should proactively check if a backend is available before calling has_hooks, instead of trying and failing.
Test Plan: CI
Differential Revision: D71144456
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149152
Approved by: https://github.com/kwen2501
Summary: In TS converter, tensor constants are traced as BUFFER and later we will convert them back to CONSTANT_TENSOR. So we need to prevent naming conflicts during lift constant pass.
Test Plan: CI
Differential Revision: D70826426
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148803
Approved by: https://github.com/angelayi
Summary:
Pytorch unitest hangs when jitting the Tensor kernel. The problem exists for LLVM version >= 18 due to this upstream change: 45bb45f2ae
`IRBuilderBase::CreateCall` will insert the instruction into the BasicBlock by default. And we don't need to explicitly insert the instruction when compiling the tensor kernel.
Test Plan:
## Test with the release toolchain
```
buck test 'mode/dev' //caffe2/test:jit -- --exact 'caffe2/test:jit - test_concat_invariant (test_jit_fuser_te.TestTEFuserDynamic)'
```
## Test with the Buckified toolchain
Apply this D71046097 to select the LLVM libraries.
```
# Build tests
buck build 'mode/dev-asan' //caffe2/test:jit --show-output
```
```
# Run test (Change HASH and paths accordingly)
HASH="b755f1c435832a1e"
ENABLE_FLATBUFFER=0 FB_OVERRIDE_PYBIND11_GIL_INCREF_DECREF_CHECK=1 MKL_NUM_THREADS=1 NO_MULTIPROCESSING_SPAWN=0 OMP_NUM_THREADS=1 PYTORCH_TEST=1 PYTORCH_TEST_FBCODE=1 PYTORCH_TEST_WITH_ASAN=1 PYTORCH_TEST_WITH_DEV_DBG_ASAN=1 PYTORCH_TEST_WITH_TSAN=0 PYTORCH_TEST_WITH_UBSAN=1 SKIP_TEST_BOTTLENECK=1 TENSORPIPE_TLS_DATACENTER=test_dc TEST_PILOT=True TPX_IS_TEST_EXECUTION=true TPX_TIMEOUT_SEC=6000 \
buck-out/v2/gen/$HASH/caffe2/test/__jit__/jit.par --test-filter test_jit_fuser_te.TestTEFuserDynamic.test_concat_invariant
```
Differential Revision: D71046799
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149058
Approved by: https://github.com/dcci, https://github.com/Skylion007
The default value for `run_single_threaded` was wrongly specified in the .cpp file instead of the header, breaking C++-side instantiation of `AOTIModelPackageLoader` with no arguments. This PR fixes this and adds a test for the use case of running with `AOTIModelPackageLoader` instead of `AOTIModelContainerRunner` on the C++ side.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149082
Approved by: https://github.com/desertfire
FIXES https://github.com/pytorch/pytorch/issues/137372
sometimes, the aot bwd is lowered lazily. so the bw_module we saved in CompiledFunction._lazy_backward_info hasn't gone through post grad passes, specifically the view_to_reshape pass. Running that directly will then sometimes error, because the AOT forward has already changed its views to reshapes, and it is reflected in the gradients we see in CA.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149030
Approved by: https://github.com/bdhirsh
ghstack dependencies: #148799
i'm changing CA initial trace to always trace as dynamic, fixes these errors:
```python
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.2139s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_autograd_python_custom_function_inplace - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
python test/test_autograd.py TestAutogradWithCompiledAutograd.test_autograd_python_custom_function_inplace
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.0057s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_copy_slices_graph_task_updates - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
python test/test_autograd.py TestAutogradWithCompiledAutograd.test_copy_slices_graph_task_updates
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.9662s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_inplace_on_view_weak_grad_fn - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
python test/test_autograd.py TestAutogradWithCompiledAutograd.test_inplace_on_view_weak_grad_fn
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.0077s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_leaf_assignment - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
python test/test_autograd.py TestAutogradWithCompiledAutograd.test_leaf_assignment
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [5.0485s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_setitem_mask - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
python test/test_autograd.py TestAutogradWithCompiledAutograd.test_setitem_mask
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
FAILED [0.0102s] test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_tensor_hooks_inplace_over_view - RuntimeError: !has_symbolic_sizes_strides_ INTERNAL ASSERT FAILED at "/home/xmfan/core/a/pytorch/aten/src/ATen/TensorGeometry.h":63, please report a bug to PyTorch.
To execute this test, run the following from the base repo dir:
python test/test_autograd.py TestAutogradWithCompiledAutograd.test_tensor_hooks_inplace_over_view
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148799
Approved by: https://github.com/jansel, https://github.com/zou3519
This PR implements cudagraph partition, following previous PR on inductor graph partition (#147038). Since there are many ops that cudagraph cannot support, this PR focuses on `cpu ops` and will add more partition rules in the next PR.
## Example
```python
import torch
torch._inductor.config.graph_partition = True
def f(x, y):
x1 = x + 1
y1 = y + 1
y_cpu = y1.cpu() + 1
z = x @ y
return x1 + y1 + z + y_cpu.cuda()
x, y = [torch.ones(2, 2, device="cuda") for _ in range(2)]
x_cloned, y_cloned = [tmp.clone() for tmp in [x,y]]
eager_out = f(x, y)
f_compiled = torch.compile(f, mode="reduce-overhead")
for _ in range(5):
compiled_out = f_compiled(x_cloned, y_cloned)
assert torch.allclose(eager_out, compiled_out)
```
w/o graph partition, we will skip cudagraph:
```
skipping cudagraphs due to skipping cudagraphs due to cpu device (device_put). Found from :
File "/home/boyuan/playground/cudagraph/graph_partition/graph_partition.py", line 9, in f
y_cpu = y1.cpu() + 1 # 3
```
w/ graph partition, we can see two cudagraphify under the same torch-compiled region:

## Design
PR #147038 splits `def call(args)` function into multiple `def partition_id(args)`. In this PR, we use `recursively_apply_fns()` to wrap each `partition_id()` function with `cudagraphify`. One major design point is, `cudagraphify` takes metadata such as static_input_idxs and we need to provide such metadata for each graph partition. However, we previously only have such metadata for the original graph instead of graph partitions.
The [idea](https://github.com/pytorch/pytorch/pull/147038#discussion_r1964124800) is:
- compute a mapping from the partition metadata (e.g., input/output idx) to the graph metadata, stored in `GraphPartitionMap`.
- during post_compile, get the `CudagraphMetadata` for each partition based on the graph-level metadata and `GraphPartitionMap`, via `get_partition_cudagraph_metadata()`.
- finally, in `cudagraph_partition_pos_compile`, we compute the `CudagraphMetadata` and apply cudagraphify for each graph via `recursively_apply_fns`.
#### Q: How does it work with codecache?
While we have multiple graph partitions, we still have 1 file and 1 `call` function for 1 dynamo graph. The major difference is we need to additionally load a `recursively_apply_fns()` for graph partition. We also add `partition_maps: Optional[list[GraphPartitionMap]]` to `CompiledFxGraph` so it will be serialized and could be deserialized later.
## Edge Case 1
PyTorch has an assumption on input/output orders. For example, backward inputs take saved tensors first and then tangents. In graph partition, we respect such orders via `graph_partition_signature_reorder`.
## Edge Case 2
Cudagraphifying `call` function gives 2 cudagraph managed tensors `buf0` and `primals_1`. However, cudagraphifying `partition_0` gives only 1 cudagraph managed tensor `buf0`. This leads to a semantic difference between cudagraph w/ and w/o graph partition. [full code comparison](https://www.internalfb.com/intern/diffing/?paste_number=1747654420)

To achieve the same semantic, we returns an input tensor as output if it is not freed in a graph partition. This allows more cudagraph managed tensors and is important for handling saved tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147648
Approved by: https://github.com/eellison
Looks like after https://github.com/pytorch/pytorch/pull/148924
We are seeing this error in nightly test:
https://github.com/pytorch/pytorch/actions/runs/13806023728/job/38616861623
```
File "/Users/runner/work/_temp/anaconda/envs/test_conda_env/lib/python3.13/site-packages/torch/_inductor/pattern_matcher.py", line 79, in <module>
from .lowering import fallback_node_due_to_unsupported_type
File "/Users/runner/work/_temp/anaconda/envs/test_conda_env/lib/python3.13/site-packages/torch/_inductor/lowering.py", line 7024, in <module>
from . import kernel
File "/Users/runner/work/_temp/anaconda/envs/test_conda_env/lib/python3.13/site-packages/torch/_inductor/kernel/__init__.py", line 1, in <module>
from . import mm, mm_common, mm_plus_mm
File "/Users/runner/work/_temp/anaconda/envs/test_conda_env/lib/python3.13/site-packages/torch/_inductor/kernel/mm.py", line 6, in <module>
from packaging.version import Version
ModuleNotFoundError: No module named 'packaging'
```
Hence removing runtime dependency on packaging since it may not be installed by default
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149092
Approved by: https://github.com/drisspg, https://github.com/davidberard98
Summary:
1. Check against the "0" char instead
2. We got the following error when using anything other than O0 flag: `error: Function ZN5torch12aot_inductorL22__check_inputs_outputsEPP16AtenTensorOpaqueS3 is too big to optimize [-Werror,-Wignored-optimization-argument]` So we use O0 flag in wrapper code when `aot_inductor.compile_wrapper_opt_level` is set to `O0`.
Test Plan:
```
buck run 'fbcode//mode/opt' fbcode//deeplearning/aot_inductor/cpu/test:ads_second_stage_dsnn_models_aoti_lowering_test -- -r AdsSecondStageDSNNModelsAOTILoweringTest
```
Differential Revision: D70670957
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148714
Approved by: https://github.com/desertfire
The environ var PYTORCH_TESTING_DEVICE_ONLY_FOR controls the devices
in get_desired_device_type_test_bases, so we add RUN_CPU and RUN_GPU to
make sure cases are only enabled for devices specified for PYTORCH_TESTING_DEVICE_ONLY_FOR.
eg. Only enable GPU cases, not CPU cases even HAS_CPU.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149023
Approved by: https://github.com/jansel, https://github.com/cyyever
This should fix the hang in https://fb.workplace.com/groups/1075192433118967/permalink/1603268720311333/
The argument here is that:
(1) in general, it is not safe for the partitioner to sometimes choose to recompute collectives in the backward. Why? If we are running a distributed job, where many ranks are compiling at the same time, we need every rank to make a consistent decision about which collectives are recomputed for backward. If we let each compiler instance make its own choice without any cross-rank communication, they can make different choices and cause NCCL hangs (see the link above)
(2) later on, we'll want an `spmd_mode` flag that causes the compiler to issue collectives and communicate info across ranks. Once we have such a config, then turning it on should make it safe for the partitioner to potentially choose to recompute collectives (and agree on the binary "recompute-or-save" choice across all ranks)
(3) even without an `spmd_mode`, users can override this choice by using `torch.utils.checkpoint()` in their user code. User checkpointing generally always overrides the partitioner, and this should be safe because we expect the user to apply checkpointing consistently across ranks
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147561
Approved by: https://github.com/zou3519
Summary:
- Flip the default value of strict argument in torch.export.export from True to False
- Update test infra to cope with the change, some of them made the assumption of strict mode as default
- Disabled some tests that fail in non-strict mode
Test Plan: Sandcastle
Differential Revision: D70228628
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148790
Approved by: https://github.com/angelayi
Fixes#138842
`device` is always the device of the `local_state_dict`, which may or may not be CPU, which is not supported by NCCL backend.
Instead, create broadcasted tensors on one of `pg._device_types` and then move the tensors back if `local_state_dict`'s `device` was not supported by the `ProcessGroup`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148865
Approved by: https://github.com/mori360
Summary:
Do not fold torchbind objects in constant folding
Any operation on these torchbind objects can have arbitrary side effects, so we can't effectively constant fold anything torchbind-obj-related anyway.
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r aot_compile_constant_folding
```
Reviewed By: angelayi
Differential Revision: D69946541
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148993
Approved by: https://github.com/angelayi
Summary:
Relands D69965761 / https://github.com/pytorch/pytorch/pull/147583
Before this PR, calling a triton kernel would look like:
```py
kernel.run(a, b, xnumel, grid=grid(xnumel), stream=stream0)
```
where the `grid=` was passed as a callable (function closure) arg. This PR removes the grid arg:
```py
kernel.run(a, b, xnumel, stream=stream0)
```
instead now the grid computation is included in the kernel launcher, with something like:
```py
def launcher(in_ptr0, out_ptr0, xnumel, stream):
grid_0 = ((xnumel + 1023) >> 10)
grid_1 = 1
grid_2 = 1
runner(grid_0, grid_1, grid_2, stream, function, metadata, None, launch_enter_hook, launch_exit_hook, in_ptr0, out_ptr0, xnumel)
```
This should be faster, since we remove multiple function/dict calls and are able to specialize the grid computation for each `triton.Config`.
It also allows us to unify the handling of grids between the Python and C++ wrapper code. Before this, C++ wrapper code didn't actually support dynamic grid sizes and instead burned in a static grid.
This unification allows this PR to be a net deletion of code.
Differential [disconnected] Revision: D70471332
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148305
Approved by: https://github.com/shunting314, https://github.com/eellison
Enables clang-tidy rule [`misc-use-internal-linkage`](https://clang.llvm.org/extra/clang-tidy/checks/misc/use-internal-linkage.html). This new check was introduced in Clang-Tidy 18 and is available due to recent update of Clang-Tidy 19.
The check marks functions and variables used only in the translation unit as static. Therefore undesired symbols are not leaked into other units, more link time optimisations are possible and the resulting binaries may be smaller.
The detected violations were mostly fixed by using static. In other cases, the symbols were indeed consumed by others files, then their declaring headers were included. Still some declarations were wrong and have been fixed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148948
Approved by: https://github.com/Skylion007
Right now we are susceptive to a race condition where if the torch.compiler.config is not implicitly import via dynamo/builder.py, we will throw an error when trying to set compiler configs. This fixes it by including config in `__all__`.
Previous
```
>>> import torch
>>> torch.compiler.config.dynamic_sources = "L['kwargs']['float_features']"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'torch.compiler' has no attribute 'config'
>>> torch.compiler.config.dynamic_sources =
"L['kwargs']['float_features']"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'torch.compiler' has no attribute 'config'
```
Now
```
>>> import torch
>>> torch.compiler.config.dynamic_sources = "L['kwargs']['float_features']"
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148978
Approved by: https://github.com/bdhirsh, https://github.com/laithsakka
Adds option `torch.fx.experimental._config.backed_size_oblivious = True` to allocate `[0, inf]` instead of `[2, inf]` ranges for size backed symbols, and opting into size-oblivious semantics for them.
Helps in a number of cases like
- Keeps `[0, inf]` bounds for unbacked symbols, when we make a unbacked -> backed replacement
- More sound handling for 0/1 inputs at runtime when we lower from export
- Avoids ends-of-bounds, sys.maxsize constraint violations for exporting with named Dims (https://github.com/pytorch/pytorch/issues/146315, https://github.com/pytorch/pytorch/issues/146046)
May look towards turning this on globally for export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148696
Approved by: https://github.com/bobrenjc93
Summary:
**Codegen**
- Skip some codegen parts for torchbind (such as arg decleration) because they are loaded in proxy executor, so we do not need to declare torchbind args in cpp code
- Added a helper method to get the schema of CallTorchBind HOP. The returned schema is only the schema of `obj.method()`.
**Serialization**
Add support for torchbind object in serialization
- For CallTorchBind HOP, we need to handle it specially because of it's schema. The output serialized args is in the format of `(obj, method, *args, **kwargs)`.
- it.TorchBindObject inputs are serialized to `as_custom_obj` Argument.
**Packaging**
Add torchbind objects file and `custom_objs_config.json` file to generated files output of `aot_compile`.
The json file is stored in the `data/aotinductor/<model_name>` folder in pt2 archive.
The torchbind objects are stored in data/constants/ folder in pt2 archive.
The format of torchbind objects are `f"{CUSTOM_OBJ_FILENAME_PREFIX}{custom_obj_idx}"`. e.g. `custom_obj_0`.
CustomClassHolder objects implement their own pickle methods.
Note that this `custom_objs_config.json` file is different from the `model_constants_config.json` file produced in package_sigmoid(). The keys in `custom_objs_config` directly correspond to the arg name in extern nodes json.
The key in `model_constants_config.json` produced by `package_sigmoid` is the attribute name in the user mode code.
This is required for both internal and OSS torchbind support.
For OSS torchbind support, we also need to package torchbind_constants into the .pt2 output.
**Work Left**
We still need to add torchbind support in ProxyExecutor for inductor.aoti_load_package to work. See other diffs in the stack.
Test Plan:
```
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r schema
buck run fbcode//mode/dev-nosan //caffe2/test/inductor:torchbind -- -r aot_compile
```
Differential Revision: D69490718
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148506
Approved by: https://github.com/angelayi
This change allows defining python functions in non-python source and having them be able to compiled by torch.compile. The existing implementation already returns None for the case where the file couldn't be read, so returning None (by making an empty funcname cache) makes sense for the case of non-python source code too.
Example [basilisp](https://github.com/basilisp-lang/basilisp):
```clojure
(import torch)
(import [torch.nn.functional :as F])
(torch/rand 10)
(defn f {:decorators [torch/compile]} [x]
(* (F/relu x) x))
(f (-> (torch/randn 100)
(.cuda)))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148737
Approved by: https://github.com/williamwen42
This PR adds two main parts:
- shim.h stable C APIs into torch::Library APIs
- a higher level API in torch/csrc/stable/library.h that calls into this shim.h + otherwise is self contained
Goal: custom kernel writers should be able to call the apis in the directories above in order to register their library in a way that allows their custom extension to run with a different libtorch version than it was built with.
Subplots resolved:
- Do we want a whole separate StableLibrary or do we want to freeze torch::Library and add `m.stable_impl(cstring, void (*fn)(void **, int64_t, int64_t)` into it
- Yes, we want a separate StableLibrary. We cannot freeze Library and it is NOT header only.
- Should I use unint64_t as the common denominator instead of void* to support 32bit architectures better?
- Yes, and done
- Should I add a stable `def` and `fragment` when those can be done in python?
- I think we do want these --- and now they're done
- Where should library_stable_impl.cpp live? -- no longer relevant
- I need some solid test cases to make sure everything's going ok. I've intentionally thrown in a bunch of random dtypes into the signature, but I still haven't tested returning multiple things, returning nothing, complex dtypes, etc.
- Have since tested all the torch library endpoints. the others can be tested in a followup to separate components that need to be in shim.h vs can be added later
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148124
Approved by: https://github.com/albanD, https://github.com/zou3519, https://github.com/atalman