Fixes#126268
I've basically followed @ezyang suggestion (I think) to use `func.decompose(...)`. Since `__torch_dispatch__` won't be called a second time for the same op, I've added a second `TorchDispatchMode` (`_DecomposedCounterMode`) that simpy dispatches to the parent flop counter. Using `self` as the inner context manager is not possible, since the second call to `__enter__` would re-initialize the counter's tracking state.
Let me know if there's something wrong with this implementation, since I'm quite unsure how the decomposition thing actually works :D
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138508
Approved by: https://github.com/ezyang
This allows Configs to handle setting their defaults (or overriding
themselves) via environment variables.
The environment variables are resolved at install time (which is usually
import time). This is done 1) to avoid any race conditions between
threads etc..., but 2) to help encourage people to just go modify the
configs directly, vs overriding environment variables to change
pytorch behaviour.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138956
Approved by: https://github.com/ezyang
ghstack dependencies: #138766
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
This teaches install_config_module (and the underlying code) to
understands Config objects. Additionally we've added a JK option to this
which resolves the JK.
This config gets stored within the _ConfigEntry class and is evaluated
when __getattr__ is called. If justknobs is set, it'll call
justknobs_check to see the result.
Due to preceeding work, basically everything works correctly here and we
had to update a couple of tests, and modify the getattr behaviour.
Note that we are updating the justknob_check function to support a
default option, to make default work.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138766
Approved by: https://github.com/ezyang
This modifies the config system, to use a single mapping of config ->
ConfigEntry and to store the default and user values within them.
We could have used multiple dicts (i.e. user_override and default), but
as we add more fields (justknobs in this PR, perhaps testing and env
variables later), it quickly becomes painful.
There are a couple design decisions we could change.
1) All configs we save store the resolved value - not the default and
user override seperately
2) All configs we load, apply the resolved value as a user override.
This means that certain complexities of default behvaiour and deletion
(as well as JK), will change if you save + load a config.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138758
Approved by: https://github.com/ezyang
I've found that when using `torch.utils.cpp_extension.load` on my Windows system, decoding errors occur when my .cpp/.cu files contain certain non-English characters.
`test.py`:
```py
from torch.utils.cpp_extension import load
my_lib = load(name='my_cuda_kernel', sources=['my_cuda_kernel.cu'], extra_cuda_cflags=['-O2', '-std=c++17'])
# ......
```
`my_cuda_kernel.cu`:
```cpp
#include <torch/types.h>
#include <torch/extension.h>
// 向量化 <------ some chinese characters
// ......
```
Errors will be reported as:
```
Traceback (most recent call last):
File "E:\test\test.py", line 8, in <module>
my_lib = load(
^^^^^
File "C:\Users\XXX\AppData\Roaming\Python\Python311\site-packages\torch\utils\cpp_extension.py", line 1314, in load
return _jit_compile(
^^^^^^^^^^^^^
File "C:\Users\XXX\AppData\Roaming\Python\Python311\site-packages\torch\utils\cpp_extension.py", line 1680, in _jit_compile
version = JIT_EXTENSION_VERSIONER.bump_version_if_changed(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\XXX\AppData\Roaming\Python\Python311\site-packages\torch\utils\_cpp_extension_versioner.py", line 46, in bump_version_if_changed
hash_value = hash_source_files(hash_value, source_files)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\XXX\AppData\Roaming\Python\Python311\site-packages\torch\utils\_cpp_extension_versioner.py", line 17, in hash_source_files
hash_value = update_hash(hash_value, file.read())
^^^^^^^^^^^
UnicodeDecodeError: 'gbk' codec can't decode byte 0x96 in position 141: illegal multibyte sequence
```
The issue lies in the fact that the `open()` function in Python is platform-dependent, which can cause decoding errors when a file contains characters that are not supported by the default encoding. Pytorch uses file contents to generate hash string:
60c1433041/torch/utils/_cpp_extension_versioner.py (L16-L17)
In my windows the default encoding is `gbk` but all of my cpp files are in `utf-8`.
There is a simple solution to this problem I think: just change the file reading mode to binary mode, which can avoid issues related to file encoding. It works perfectly on my computer.
```diff
- with open(filename) as file:
+ with open(filename, 'rb') as file:
hash_value = update_hash(hash_value, file.read())
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138565
Approved by: https://github.com/malfet, https://github.com/janeyx99
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
This PR enables Pytorch for Windows on Arm64 - CPU only.
Currently, there aren't any checks in place to build and test for Windows on Arm64, but we're working to implement those as soon as possible.
We recommend using [Arm Performance Libraries (APL)](https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Libraries) as a BLAS option, which is introduced in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133088
Approved by: https://github.com/malfet
Co-authored-by: cristian panaite <panaite.cristian2000@gmail.com>
Co-authored-by: Stefan-Alin Pahontu <56953855+alinpahontu2912@users.noreply.github.com>
Co-authored-by: Ozan Aydin <148207261+ozanMSFT@users.noreply.github.com>
Tested internally here: https://www.internalfb.com/diff/D64057744
This is a reland after previous internal failures.
main change is
```
if min is None and max is None:
torch._check_is_size(size)
return
```
Partially addresses https://github.com/pytorch/pytorch/issues/128150
When you have big sums of values, we end up computing long chains of
binary addition in our FX graph representation. Not only is this ugly,
it also is quadratic, as the sympy.Add constructor is O(N) in number
of arguments. Instead, ensure that we maintain the summation as a
single FX node so we can do the entire addition all in one go.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138660
Approved by: https://github.com/ezyang, https://github.com/bobrenjc93
This PR combines a number of cleanups in one PR. If any of the specific cleanups don't seem to make sense, let me know and I can remove them.
Cleanups
- This PR adds a set of test suites for the config module code, which handles basically all the APIs and ways it is used. Please let me know if you see anything critical that is not tested that I missed. This test suite is primarily used as the regression test suite for later changes in this diff. Note that there is some dynamo specific testing of the config module, but it isn't as verbose.
- I removed all internal usage of shallow_copy_dict. Those usages could all use the deep copy, and did not depend on the reference behavior of certain config values that shallow_copy_dict allows.
- I removed shallow copy semantics for configuration with a deprecation warning. I think this requires a release note, so hopefully I did that correctly. Let me know if we want to continue to expose shallow copy value semantics, but I just can't find a case where I expect anyone would want it. It also complicated later internal changes to the API (i.e. breaking apart various layers of the config changes).
- I fixed what I believe is a bug in how hashes are calculated on configs. In particular, if you got the hash, then made a config change, and then got the hash again, it would not update the hash. @oulgen, please let me know if I'm misunderstanding this behavior and it is desired.
- I switched our multiple implementations of iterating through the dictionary to a single one. This is primarily to make later changes easier, but it also makes it clear how inconsistent our various config ignoring options are. Let me know if people would be interested in me unifying the various options for ignoring config values.
- I updated the test patcher (not the performance critical one, just the normal one), to use __setattr__ and __getattr__ to remove direct API access to the underlying config fetcher.
For release notes, Not sure exactly how to communicate this, but something like
"ConfigModule.to_dict, and ConfigModule.shallow_copy_dict no longer retain their shallow copy semantics, which allowed reference values objects to be modified. If you wish to modify the config object, call load_config explicitly".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138377
Approved by: https://github.com/ezyang, https://github.com/jansel, https://github.com/jovianjaison
Fixes: https://github.com/pytorch/pytorch/issues/138069
I tested this by running `python test/inductor/test_torchinductor_dynamic_shapes.py DynamicShapesCpuTests.test_builtins_round_float_ndigits_pos_dynamic_shapes_cpu` before and after the change and verifying no more log spew.
I'm uncertain on if it makes sense to add a test for this PR. Question for reviewers: is there a standard paradigm for testing these log spew based fixed? Happy to add a test if someone can point me towards the right direction.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138356
Approved by: https://github.com/ezyang
This adds Dynamo tracing support for the host-side Triton TMA API (see `create_2d_tma_descriptor` calls on the host in the [Triton tutorial](https://triton-lang.org/main/getting-started/tutorials/09-persistent-matmul.html#sphx-glr-getting-started-tutorials-09-persistent-matmul-py)). A few notes:
- Here we assume the availability of the host-side TMA API added to upstream Triton in https://github.com/triton-lang/triton/pull/4498. As of time of writing, this is not a part of the PT2 OSS Triton pin (although back-ported internally). OSS Triton pin update should be done in December 2024.
- To capture the chain of calls `t.data_ptr() --> create_{1d,2d}_tma_descriptor(ptr, ...) --> kernel[grid](tma_desc, ...)`, we add three new variable trackers: `DataPtrVariable`, `CreateTMADescriptorVariable` (for the function), `TMADescriptorVariable` (for TMA descriptor object). This is to maintain the path back from the Triton kernel to the Tensor from which the TMA descriptor has been created.
- The newly introduced variables have `reconstruct` methods used in case of graph breaks.
- The `tma_descriptor_metadata` extracted from the captured `create_{1d,2d}_tma_descriptor` calls is propagated through the HOPs in Dynamo and AOTAutograd to be used by the downstream compiler (e.g., Inductor). See the unit tests for how the captured HOP arguments look like.
- In the Dynamo-captured fx graph, we replace the TMA descriptor arguments of the Triton kernel by the underlying Tensors, to be able to track the input/output relationships in terms of Tensors.
- In the Triton kernel mutation analysis pass (in AOTAutograd), we use the `tt.experimental_descriptor_store` TTIR op to detect mutations of the underlying tensors via TMA descriptors. So that downstream AOTAutograd can perform functionalizations as required.
- JIT Inductor and AOT Inductor support will be implemented in follow-up PRs.
Differential Revision: [D64404928](https://our.internmc.facebook.com/intern/diff/D64404928)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137677
Approved by: https://github.com/zou3519
Builds upon #76951.
Benchmarking code is the same as in #76950.
AMD Ryzen Threadripper PRO 3995WX:
```
batch_size drop_last origin new speedup
------------ ----------- -------- ------ ---------
4 True 0.94 0.5706 64.74%
4 False 0.9745 0.9468 2.93%
8 True 0.7423 0.3715 99.82%
8 False 0.7974 0.5666 40.73%
64 True 0.5394 0.2085 158.76%
64 False 0.6083 0.2697 125.51%
640 True 0.5448 0.1985 174.41%
640 False 0.7085 0.2308 206.91%
6400 True 0.5554 0.2028 173.88%
6400 False 0.7711 0.2109 265.60%
64000 True 0.556 0.2091 165.82%
64000 False 0.7803 0.2078 275.58%
```
When `drop_last == True`, it uses `zip` to speed things up.
When `drop_last == False`, it uses `itertools` to speed things up.
`itertools` was the fastest way I could find that deals with the last batch if it is smaller than `batch_size`. I have a pure python method too, but it is slower when `batch_size` is 4 or 8, so I have committed the `itertools` version for now.
Happy to chat further about this change :-) I understand you may not want to introduce the `itertools` package into [sampler.py](https://github.com/pytorch/pytorch/blob/main/torch/utils/data/sampler.py).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137423
Approved by: https://github.com/Skylion007
Summary: We hipify NCCLUtils.h from nccl.h to rccl/rccl.h. This follows the format of the rocm rpm suite (the header is in include/rccl/rccl.h), however the source code is just src/rccl.h. Using the rccl/rccl.h will make us find the rpm's header but not the src code's header.
Test Plan:
buck run mode/opt-amd-gpu -c hpc_comms.use_rccl=develop -c fbcode.split-dwarf=True --config rccl.build_rdma_core=true --config rccl.adhoc_brcm=true //aps_models/ads/icvr:icvr_launcher -- mode=local_ctr_cvr_cmf_rep_1000x_v1_no_atom data_loader.dataset.table_ds=[2024-09-04] data_loader.dataset.batch_size=512 max_ind_range=10
w/o this diff, it'll show 2.18 nccl version
Differential Revision: D62371434
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135472
Approved by: https://github.com/jeffdaily, https://github.com/cenzhaometa
Instead, callback to a missing handler when needed. This greatly speeds things up with the value ranges dict is large. The missing handler is needed because nested ints don't have VRs, but symbolic sizes involving them occasionally show up in compute.
```
TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="s11" TORCH_LOGS=dynamic PYTORCH_TEST_WITH_DYNAMO=1 python test/test_nestedtensor.py TestNestedTensorAutogradCPU.test_dropout_backward_jagged_cpu
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136667
Approved by: https://github.com/isuruf
ghstack dependencies: #136429
Partially addresses https://github.com/pytorch/pytorch/issues/128150
When you have big sums of values, we end up computing long chains of
binary addition in our FX graph representation. Not only is this ugly,
it also is quadratic, as the sympy.Add constructor is O(N) in number
of arguments. Instead, ensure that we maintain the summation as a
single FX node so we can do the entire addition all in one go.
update_hint_regression benchmark, before and after:
```
update_hint_regression,compile_time_instruction_count,2648328980
update_hint_regression,compile_time_instruction_count,2563748678
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136429
Approved by: https://github.com/isuruf
This change modifies the `hipify_python.py` script to properly detect all directories, `include` and `ignore` paths during hipification process on Windows, by changing the path syntax convention to a UNIX-like one.
Since in many places the script assumes a UNIX-like convention by using paths with forward slashes `/`, I decided to accommodate for it by converting Windows paths to UNIX-like ones. By doing it so, the number of changes to the file is limited. Moreover this early-on unification allows for the rest of the code to have a battle-tested linux-like behaviour.
Another option would be to use `Path` object from `pathlib` to represent all paths in the script, however, it would impact a broader share of a code and would hence require a more meticulous evaluation in terms of non-altered logic and edge cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135360
Approved by: https://github.com/jeffdaily, https://github.com/jithunnair-amd
This is to avoid cache confusion between normal vs pydebug vs nogil builds in cpp extensions which can lead to catastrophic ABI issues.
This is rare today for people to run both normal and pydebug on the same machine, but we expect quite a few people will run normal and nogil on the same machine going forward.
This is tested locally by running each version alternatively.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136890
Approved by: https://github.com/colesbury
Summary:
To facilitate PSS-2 upgrade, this uses `ndt.NDArray` instead of `nd.ndarray` in type annotations. In Numpy-1.19 (PSS-1) it's an alias to `nd.ndarray` -- a noop.
In Numpy-1.24, `ndt.NDArray` a proper generic type, and without this change uses of `nd.ndarray` generate this Pyre type error:
```counterexample
Invalid type parameters [24]: Generic type `np.ndarray` expects 2 type parameters.
```
Test Plan: Sandcastle plus visual inspection
Differential Revision: D62977370
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136288
Approved by: https://github.com/kit1980
Split out and modified from https://github.com/pytorch/pytorch/pull/130228. There were a bunch of subtle bugs eg. sometimes we need to use torch.ops.aten.{operator}.Tensor vs other times using torch.ops.aten.{operator}.default. Or in the case of pow we need to use Tensor_Tensor. I figured it'd be easier to split out adding TensorReferenceAnalysis and add some tests and do the actual integration in a separate diff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135886
Approved by: https://github.com/ezyang
Fixes https://github.com/pytorch/pytorch/issues/114389
Previously, dynamo would attempt to trace through the `__init__` of traceable tensor subclasses, since their constructors are AOT dispatcher traceable by definition, dynamo should automatically put these in the graph like we do for any other tensors. Not doing this is difficult because dynamo would need to apply mutations post tensor subclass creation in the graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135151
Approved by: https://github.com/bdhirsh
Summary:
There's 2 concepts of unsupported sympy.Functions in symbolic_shapes:
1) unsupported by the export solver, meaning the solver doesn't know how to provide useful fixes for those functions
2) unsupported by the sympy interpreter - meaning we can't reify them into FX nodes because the functions aren't present in PythonReferenceAnalysis
This splits the current call into a call for each version, with the Export solver the only user of 1). For 1), we enumerate the functions in _sympy/functions.py, and subtract the functions we know we can support. For 2) there's only 3 functions we've seen pop up in test cases.
cc jgong5 mingfeima XiaobingSuper sanchitintel ashokei jingxu10
Differential Revision: D61863394
Pulled By: pianpwk
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134598
Approved by: https://github.com/angelayi
There's 2 concepts of unsupported sympy.Functions in symbolic_shapes:
1) unsupported by the export solver, meaning the solver doesn't know how to provide useful fixes for those functions
2) unsupported by the sympy interpreter - meaning we can't reify them into FX nodes because the functions aren't present in PythonReferenceAnalysis
This splits the current call into a call for each version, with the Export solver the only user of 1). For 1), we enumerate the functions in _sympy/functions.py, and subtract the functions we know we can support. For 2) there's only 3 functions we've seen pop up in test cases.
Differential Revision: D61677956
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134271
Approved by: https://github.com/avikchaudhuri
Summary: Fixes https://github.com/pytorch/pytorch/issues/134133
Test Plan:
Tested on the small repro in the linked issue with different lengths N (replacing 100), recording N vs. time taken in nanoseconds:
10 127268319
20 220839662
30 325463125
40 429259441
50 553136055
60 670799769
70 999170514
80 899014103
90 997168902
100 1168202035
110 1388556619
120 1457488235
130 1609816470
140 2177889877
150 1917560313
160 2121096113
170 2428502334
180 4117450755
190 4003068224
So N ~ 200 takes ~5s. Previously even smaller N would go for >1 min.
Didn't add a perf test because ezyang is planning to build a benchmark.
Also tested on https://www.internalfb.com/diff/D61560171, which now gets past the stuck point.
Differential Revision: D61619660
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134150
Approved by: https://github.com/ezyang
Sympy's implementation of Min/Max displays asymptotically bad behavior on `TORCH_COMPILE_CPROFILE=1 python torchrec/distributed/tests/test_pt2_multiprocess.py TestPt2Train.test_compile_multiprocess`. Evidence profile:

On this test case, we spend 42% of all time compiling the network on ShapeEnv.replace, which in turn spends all of its time in xreplace.
The problem appears to be find_localzeros call. By vendoring the implementations of Min/Max, we can potentially reduce the cost of this operation.
The implementation is copy-pasted sympy/functions/elementary/miscellaneous.py but with some adjustments:
* I deleted logic related to differentatiation, evalf and heaviside, as it's not relevant to PyTorch reasoning
* There's some massaging to appease PyTorch's linters, including a lot of noqa and type: ignore (which I could potentially refactor away with substantive changes, but that's better as its own change)
* I deleted the second loop iteration for is_connected, as an attempt at initial optimization (this also simplifies the port, since I can omit some code). I'll comment at that point what the exact difference is.
Before this change, the test in question takes 100s with 40 features; post this change, afterwards, it takes only 69s.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133319
Approved by: https://github.com/Skylion007
Part of #134054.
This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
Another attempt to update NVTX to NVTX3. We now avoid changing NVTX header inclusion of existing code. The advantage of NVTX3 over NVTX is that it is a header-only library so that linking with NVTX3 can greatly simplify our CMake and other building scripts for finding libraries in user environments. In addition, NVTX are indeed still present in the latest CUDA versions, but they're no longer a compiled library: It's now a header-only library. That's why there isn't a .lib file anymore.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109843
Approved by: https://github.com/peterbell10, https://github.com/eqy
Co-authored-by: Ivan Zaitsev <108101595+izaitsevfb@users.noreply.github.com>
The regex in the script is too restrictive, as it excludes examples with parentheses in args, like the following:
```
triton_poi_fused_add_0.run(arg0_1.item(), arg1_1.item(), buf0, 1, grid=grid(1), stream=streamNone)
^
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130837
Approved by: https://github.com/Chillee
Before, having arbitrary depth nested configs like
```
class Foo:
foo: List[int] = [1, 2, 3]
class Bar:
bar: str = "1"
class Baz:
baz: int = 1
```
would cause problems beyond the first layer. For example, if we tried
```
from torch._inductor import config as inductor_config
print(inductor_config.Foo)
print(repr(inductor_config.Foo.foo))
print(inductor_config.Foo.Bar)
print(repr(inductor_config.Foo.Bar.bar))
print(inductor_config.Foo.Bar.Baz)
print(repr(inductor_config.Foo.Bar.Baz.baz))
```
we would get some output like
```
<torch.utils._config_module.SubConfigProxy object at 0x7fac65de00a0>
[1, 2, 3]
...
AttributeError: torch._inductor.config.Foo.Bar does not exist
```
Obviously, this is not what we want. With these changes, we get the right values
```
<torch.utils._config_module.SubConfigProxy object at 0x7f840d05bf40>
[1, 2, 3]
<torch.utils._config_module.SubConfigProxy object at 0x7f840cedc940>
'1'
<torch.utils._config_module.SubConfigProxy object at 0x7f840cedc100>
1
```
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133418
Approved by: https://github.com/oulgen
Summary:
## Why
utils.checkpoint doesn't support meta device:
```
File "/Users/lyu1/torchdev/lib/python3.9/site-packages/torch/utils/checkpoint.py", line 490, in checkpoint
next(gen)
File "/Users/lyu1/torchdev/lib/python3.9/site-packages/torch/utils/checkpoint.py", line 1359, in _checkpoint_without_reentrant_generator
device_module = _get_device_module(device)
File "/Users/lyu1/torchdev/lib/python3.9/site-packages/torch/utils/checkpoint.py", line 98, in _get_device_module
device_module = getattr(torch, device)
File "/Users/lyu1/torchdev/lib/python3.9/site-packages/torch/__init__.py", line 1938, in __getattr__
raise AttributeError(f"module '{__name__}' has no attribute '{name}'")
AttributeError: module 'torch' has no attribute 'meta'
```
This blocks us from running model with checkpoint enabled in meta mode.
## What
This diff handles the case of meta device in checkpoint.py.
(in checkpoint.py, device module is manily used when preserve_rng_state=true, which doesn't apply to meta case. So a more elgant fix might be set preserve_rng_state=false when detecting args are on meta device. But I didn't find where to do this check in the minimum way. Let me know if you have ideas.)
Test Plan: Tested with toy model which has checkpoint on its module: P1513716944
Differential Revision: D60749427
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132684
Approved by: https://github.com/kit1980
This is superior to lru_cache because (1) it's more explicit and (2) it
doesn't leak the original function after it's been forced.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132407
Approved by: https://github.com/albanD
`return_and_correct_aliasing` is used by FunctionalTensor today to ensure that when we call view/inplace ops, the input and output `FunctionalTensors` share the same storage.
This was previously done with a dispatcher call to `aten.set_`. In this PR I swap it out with a util that just manually does the storage swap. Benefits:
(1) we know this is safe in the specific way it is used by FunctionalTensor: avoiding the extra assertions in `aten.set_` is necessary to avoid some unbacked symint errors
(2) this should improve compile times a bit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132524
Approved by: https://github.com/ezyang
ghstack dependencies: #132243, #132337, #132322
On Windows, _triton.py creates a confusing error ("RuntimeError: Should never be _installed")_ as triton is not supported in Windows. This is not caught in the current Pytorch exception handling. This pull request adds a new exception handling for the runtime error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132006
Approved by: https://github.com/oulgen
Previously, FlopCounterMode would ignore any custom ops registered
through `register_flop_formula`. The problem was:
- register_flop_formula(target) requires target to be an OpOverloadPacket.
- register_flop_formula used register_decomposition to populate its registry
- register_decomposition decomposes the OpOverloadPacket into OpOverload before
putting it into the registry
- FlopCounterMode ignores OpOverloads in its registry (it assumes the
registry is a dictionary mapping OpOverloadPacket to flop formula).
register_decomposition is too heavy of a hammer, plus this isn't a
decomposition, so I changed the registration mechanism.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131777
Approved by: https://github.com/Chillee
Implemented by extending `collections.abc.MutableSet` and backing it with a dictionary, which is ordered. From collections.abc.MutableSet:
```
A mutable set is a finite, iterable container.
This class provides concrete generic implementations of all
methods except for __contains__, __iter__, __len__,
add(), and discard().
```
In addition to implementing those methods I also had to define some methods of python's set which were not implemented in MutableSet.
I reused the test from my python's lib. There were a few instances of tests that didnt pass because edge case behavior that is not necessary to reimplement
- support self-referencing repr
- erroring when an member's `__eq__` function would modify the set itself
- MutableSet supports Iterables as inputs, but not sequences (pretty rare..)
- Some specifics of exact equivalent type errors being thrown
- [The protocol for automatic conversion to immutable](https://docs.python.org/2/library/sets.html#protocol-for-automatic-conversion-to-immutable)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130003
Approved by: https://github.com/aorenste
Python 3.10 adds `@dataclass(slots=True)` to auto-build the `__slots__` for a dataclass. This is really useful but we can't use it until 3.10 becomes our minimum version.
Copied the code for that functionality from python into a new decorator and ported it to use 3.8 syntax (removed use of `match`).
Usage:
```
@dataclass_slots
@dataclass
class X:
pass
```
is the same as (in py3.10):
```
@dataclass(slots=True)
class X:
pass
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131014
Approved by: https://github.com/oulgen, https://github.com/eellison
0.12.0 Major Updates:
- Add context manager to temporarily set the dictionary sorting mode
- Add accessor APIs
- Use `stable` tag for `pybind11` for Python 3.13 support
- Fix potential segmentation fault for pickling support
0.12.1 Updates:
- Fix warning regression during import when launch with strict warning filters
Closes#130155
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130139
Approved by: https://github.com/zou3519
ghstack dependencies: #130895
------
The opposite of #130836. Pin `sympy >= 1.13.0` for Python >= 3.9 and `sympy == 1.12.1` for Python 3.8.
- #130836
See the PR description of #130836 for more details.
`sympy` 1.13.0 introduces some breaking changes which break our tests. More specifically:
- Ref [Backwards compatibility breaks and deprecations](https://github.com/sympy/sympy/wiki/release-notes-for-1.13.0#backwards-compatibility-breaks-and-deprecations)
> BREAKING CHANGE: Float and Integer/Rational no longer compare equal with a == b. From now on Float(2.0) != Integer(2). Previously expressions involving Float would compare unequal e.g. x*2.0 != x*2 but an individual Float would compare equal to an Integer. In SymPy 1.7 a Float will always compare unequal to an Integer even if they have the same "value". Use sympy.numbers.int_valued(number) to test if a number is a concrete number with no decimal part. ([#25614](https://github.com/sympy/sympy/pull/25614) by [@smichr](https://github.com/smichr))
`sympy >= 1.13.0` is required to enable Python 3.13 support. This should be part of #130689.
- #130689
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130895
Approved by: https://github.com/ezyang
- More conservative estimation of plannable inputs
- Consider constant_pad_nd as pointwise node in concat lowering
- Use aten.cat instead of constant pad ndwhen padding just a single dimension because it can be memory-planned away
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128909
Approved by: https://github.com/Chillee
# Motivation
I found a difference between sympy 1.12 and 1.13.
```python
# for 1.12
>>> import sympy
>>> a = sympy.Number(0.0)
>>> a == 0
True
```
```python
# for 1.13
>>> import sympy
>>> a = sympy.Number(0.0)
>>> a == 0
False
```
The different behavior will impact the result of [safe_mul](6beec34b1c/torch/utils/_sympy/value_ranges.py (L521-L528)), resulting in an incorrect results when `a = sympy.Number(0.0)`, `b = inf` and the result is `nan` if sympy version is 1.13. (the expected result is **0**)
```python
def safe_mul(a, b):
# Make unknown() * wrap(0.0) == wrap(0.0)
if a == 0.0:
return a
elif b == 0.0:
return b
else:
return a * b
```
In different sympy versions, `sympy.Number(0)` always has the same behavior that equals to 0.0.
```python
>>> import sympy
>>> a = sympy.Number(0)
>>> a == 0.0
True # for different sympy versions
```
So, use 0.0 when checking zero in safe_mul to keep compatible with different sympy versions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130729
Approved by: https://github.com/lezcano, https://github.com/EikanWang
0.12.0 Major Updates:
- Add context manager to temporarily set the dictionary sorting mode
- Add accessor APIs
- Use `stable` tag for `pybind11` for Python 3.13 support
- Fix potential segmentation fault for pickling support
0.12.1 Updates:
- Fix warning regression during import when launch with strict warning filters
Closes#130155
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130139
Approved by: https://github.com/zou3519
Summary:
If triton is available, but we can't import triton.compiler.compiler.triton_key, then we see some annoying behavior:
1) If we don't actually need to compile triton, the subprocess pool will still spew error messages about the import failure; it's unclear to users if this is an actual problem.
2) If we do need to compile triton, we a) see the error messages from above and b) get a vanilla import exception without the helpful "RuntimeError: Cannot find a working triton installation ..."
Test Plan: Ran with and without torch.compile for a) recent version of triton, b) triton 2.2, and c) no triton. In all cases, verified expected output (success or meaningful error message)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130403
Approved by: https://github.com/eellison
original PR: https://github.com/pytorch/pytorch/pull/128599 (re-created after revert + poisoned diff train)
Summary:
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0) # 2*s0
w = z.repeat(y.shape[0]) # 2*s0*s1
_w = w.shape[0]
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```
Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```
Test Plan:
contbuild & OSS CI, see 940e4477ab
Original Phabricator Test Plan:
Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D59543603
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130380
Approved by: https://github.com/izaitsevfb
- Add AMD support for int4 kernel
- Only supports CDNA2 and CDNA3 gpus for now
- Uses `mfma_f32_16x16x16bf16` instruction for matrix multiply
- Uses `v_and_or_b32` instruction and `__hfma2` instrinsic for unpacking bf16 values
- Enable hipify for `__nv_bfloat16` and `__nv_bfloat162` data types
- Enable int4 unit tests for CDNA2 and CDNA3 AMD gpus
- Fix torchscript issues due to hipify for `__nv_bfloat16` type
- TorchScript has its own implementation for bfloat16 type
- Implemented in `__nv_bloat16` structure at [resource_strings.h](https://github.com/pytorch/pytorch/blob/main/torch/csrc/jit/codegen/fuser/cuda/resource_strings.h)
- So, we shouldn't hipify any reference of `__nv_bfloat16` in the torchscript implementation
- Hence moved the `__nv_bfloat16` direct references in `codegen.cpp` and `cuda_codegen.cpp` to `resource_strings.h` which is already exempted from hipify
Fixes#124699
Fixes pytorch-labs/gpt-fast/issues/154
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129710
Approved by: https://github.com/malfet
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0) # 2*s0
w = z.repeat(y.shape[0]) # 2*s0*s1
_w = w.shape[0]
# something with _w ...
# turns into ->
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```
Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)
# turns into
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128599
Approved by: https://github.com/ezyang
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0) # 2*s0
w = z.repeat(y.shape[0]) # 2*s0*s1
_w = w.shape[0]
# something with _w ...
# turns into ->
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```
Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)
# turns into
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128599
Approved by: https://github.com/ezyang
Zero is an integer, so if you say is_integer = False, you are also
saying the result cannot be zero, which is undesirable.
This is exercised by next PR in the stack.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129890
Approved by: https://github.com/lezcano
In this PR:
- Ensure that if a tensor not requiring grad is saved for backward unpacking does not trigger a detach (unless the user installs a saved tensor pack hook that returns a tensor requiring grad).
- Update non-reentrant checkpoint to also no longer detach for this case.
Alternatives:
- For custom autograd Function, you could directly save on ctx to work around this, but that would not work for when we switch to using custom ops.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127959
Approved by: https://github.com/YuqingJ
ghstack dependencies: #125795, #128545, #129262
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
Fixes: #128478
In backward() implementation checkpointing code was quering device type from the rng_state tensors saved on forward(). These tensors are CPU only tensors and don't carry device information with them. As a result CUDA device was assumed as a default. Which is not correct if user runs on some other device. For example, on XPU.
This patch saves full device information on forward() and uses it on backward() to get device type. Previously forward save only device index.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128671
Approved by: https://github.com/guangyey, https://github.com/soulitzer
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
### bc-breaking for existing users of the private API:
- Existing policy functions must now change their return value to be [CheckpointPolicy](c0b40ab42e/torch/utils/checkpoint.py (L1204-L1230)) Enum instead of bool.
- To restore previous behavior, return `PREFER_RECOMPUTE` instead of `False` and `{PREFER,MUST}_SAVE` instead of `True` depending whether you prefer the compiler to override your policy.
- Policy function now accepts a `ctx` object instead of `mode` for its first argument.
- To restore previous behavior, `mode = "recompute" if ctx.is_recompute else "forward"`.
- Existing calls to `_pt2_selective_checkpoint_context_fn_gen` must be renamed to `create_selective_checkpoint_contexts `. The way you use the API remains the same. It would've been nice to do something different (not make the user have to use functools.partial?), but this was the easiest to compile (idk if this should actually be a constraint).
Related doc: https://docs.google.com/document/d/1BKyizkZPdri9mHqdDOLAUpkI7SbbKfLHRFVVpK9ZWqo/edit
Memory considerations:
- As with the existing SAC, cached values are cleared upon first use.
- We error if the user wishes to backward a second time on a region forwarded with SAC enabled.
In-place:
- We use version counting to enforce that if any cached tensor has been mutated. In-place operations not mutating cached tensors are allowed.
- `allow_cache_entry_mutation=True` can be passed to disable this check (useful in the case of auto AC where the user is cleverly also saves the output of the in-place)
Randomness, views
- Currently in this PR, we don't do anything special for randomness or views, the author of the policy function is expected to handle them properly. (Would it would be beneficial to error? - we either want to save all or recompute all random tensors)
Tensor object preservation
- ~We guarantee that if a tensor does not requires grad, and it is saved, then what you get out is the same tensor object.~ UPDATE: We guarantee that if a tensor is of non-differentiable dtype AND it is not a view, and it is saved, then what you get out is the same tensor object. This is a nice guarantee for nested tensors which care about the object identity of of the offsets tensor.
Policy function
- Enum values are `{MUST,PREFER}_{SAVE,RECOMPUTE}` (bikeshed welcome). Alternatively there was `{SAVE,RECOMPUTE}_{NON_,}OVERRIDABLE`. The former was preferred bc it seemed clearer that two `MUST` clashing should error, versus it is ambiguous whether two `NON_OVERRIDABLE` being stacked should silently ignore or error.
- The usage of Enum today. There actually is NO API to stack SAC policies today. The only thing the Enum should matter for in the near term is the compiler. The stacking SAC policy would be useful if someone wants to implement something like simple FSDP, but it is not perfect because with a policy of `PREFER_SAVE` you are actually saving more than autograd would save normally (would be fixed with AC v3).
- The number of times we call the policy_fn is something that should be documented as part of public API. We call the policy function for all ops except ~~detach~~ UPDATE : metadata ops listed in `torch.utils.checkpoint.SAC_IGNORED_OPS`) because these ops may be called a different number of times by AC itself between forward and recompute.
- The policy function can be a stateful object (we do NOT make separate copies of this object for forward/recompute, the user is expected to handle that via is_recompute see below).
Tensors guaranteed to be the same tensor as-is
- Policy function signature takes ctx object as its first argument. The ctx function is an object encapsulating info that may be useful to the user, it currently only holds "is_recompute". Adding this indirection gives us flexibility to add more attrs later if necessary.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125795
Approved by: https://github.com/Chillee, https://github.com/fmassa
Test CI
This fixes issues like this where I don't even intend to use the fuzzer. this way if someone is calling functions from the fuzzer numpy will be imported otherwise the import should not happen at the top of the file
```
>>> import torchao
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/marksaroufim/anaconda3/envs/fresh/lib/python3.10/site-packages/torchao/__init__.py", line 26, in <module>
from torchao.quantization import (
File "/home/marksaroufim/anaconda3/envs/fresh/lib/python3.10/site-packages/torchao/quantization/__init__.py", line 7, in <module>
from .smoothquant import * # noqa: F403
File "/home/marksaroufim/anaconda3/envs/fresh/lib/python3.10/site-packages/torchao/quantization/smoothquant.py", line 18, in <module>
import torchao.quantization.quant_api as quant_api
File "/home/marksaroufim/anaconda3/envs/fresh/lib/python3.10/site-packages/torchao/quantization/quant_api.py", line 23, in <module>
from torchao.utils import (
File "/home/marksaroufim/anaconda3/envs/fresh/lib/python3.10/site-packages/torchao/utils.py", line 2, in <module>
import torch.utils.benchmark as benchmark
File "/home/marksaroufim/anaconda3/envs/fresh/lib/python3.10/site-packages/torch/utils/benchmark/__init__.py", line 4, in <module>
from torch.utils.benchmark.utils.fuzzer import * # noqa: F403
File "/home/marksaroufim/anaconda3/envs/fresh/lib/python3.10/site-packages/torch/utils/benchmark/utils/fuzzer.py", line 5, in <module>
import numpy as np
ModuleNotFoundError: No module named 'numpy'
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128759
Approved by: https://github.com/Skylion007
**Summary**
Inductor currently uses modulo and division to compute indices into certain multi-dimensional tensors, such as those arising from row padding. This PR matches on that indexing pattern, replacing it with an N-D block pointer. This should be more efficient than computing indices with division and modulo, and it can easily map to DMAs on non-GPU hardware targets.
Because the 1D block size needs to map to an integer block shape in ND, we need to know that the ND block size evenly divides the size of the iteration range. This PR only generates ND block pointers when it can guarantee that the iteration order and number of elements loaded are unchanged. This means that the number of elements in a slice of the iteration range must either be:
- Powers of 2. Since Triton block sizes are powers of 2, any integer power of 2 either divides the block size, or is greater than the block size. In the latter case, `CielDiv(x, y)` rounds up to 1.
- Multiples of the maximum block size. Since block sizes are powers of 2, the maximum block size is a multiple of every possible block size.
Note that a *slice* of the iteration range does not include the leading dimension. Thus we can support arbitrary leading dimensions like `(5,8)`.
Feature proposal and discussion: https://github.com/pytorch/pytorch/issues/125077
Example kernel:
```
triton.jit
def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
tmp0 = tl.reshape(tl.load(tl.make_block_ptr(in_ptr0, shape=[32, 16, 8], strides=[1024, 32, 1], block_shape=[32 * (32 <= ((127 + XBLOCK) // 128)) + ((127 + XBLOCK) // 128) * (((127 + XBLOCK) // 128) < 32), 16 * (16 <= ((7 + XBLOCK) // 8)) + ((7 + XBLOCK) // 8) * (((7 + XBLOCK) // 8) < 16), 8 * (8 <= XBLOCK) + XBLOCK * (XBLOCK < 8)], order=[0, 1, 2], offsets=[(xoffset // 128), (xoffset // 8) % 16, xoffset % 8]), boundary_check=[0, 1, 2]), [XBLOCK])
tmp1 = tmp0 + tmp0
tl.store(tl.make_block_ptr(out_ptr0, shape=[4096], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), tl.broadcast_to(tmp1, [XBLOCK]).to(tl.float32))
''', device_str='cuda')
```
**Test Plan**
This PR adds a new CI test script to cover this feature. The tests can be grouped into a few main categories:
- Can we generate strided block pointers for the appropriate shapes?
- Powers of 2
- Non-power of 2, but multiple of the maximum block size
- Arbitrary leading dimensions, with power of 2 inner dimensions
- Weird strides and offsets
- Reductions
- Symbolic shapes that are multiples of the maximum block size (wasn't able to trace this through dynamo)
- Broadcasts (some variables are missing from the indexing expression)
- Do we still compile other cases correctly, even if we don't expect to be able to generate block pointers?
- Unsupported static shapes
- Unsupported symbolic shapes
- Mixing and matching these cases:
- Pointwise and reduction in the same kernel
- Sanity check the test harness
- Do we raise an exception if the expected number of block pointers and the actual number are different?
**Follow-ups**
There are a few important cases which this PR can't handle. I'm hoping these can be deferred to follow-up PRs:
- Handle non-divisible shapes
- Change the tiling algorithm to generate a 2D (X,Y) blocking, if doing so enables block pointers to be emitted.
- Pad unsupported loads up to the nearest divisible size, then mask/slice out the extra elements? This is probably the best solution, but I'm not yet sure how to go about it in triton.
- Take advantage of this analysis when `triton.use_block_ptr=False`. I'm guessing we can still avoid `%` and `/` without requiring block pointers. Maybe we could compute block indices with arange and broadcast instead?
Differential Revision: D56739375
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127342
Approved by: https://github.com/jansel, https://github.com/shunting314
In a previous life, we used sympy.oo to represent the lower/upper bounds of integer ranges. Later, we changed this to be sys.maxsize - 1 for a few reasons: (1) sometimes we do tests on a value being exactly sys.maxsize, and we wanted to avoid a data dependent guard in this case, (2) sympy.oo corresponds to floating point infinity, so you get incorrect types for value ranges with oo, and (3) you can do slightly better reasoning if you assume that input sizes fall within representable 64-bit integer range.
After working in the sys.maxsize regime for a bit, I've concluded that this was actually a bad idea. Specifically, the problem is that you end up with sys.maxsize in your upper bound, and then whenever you do any sort of size-increasing computation like size * 2, you end up with 2 * sys.maxsize, and you end up doing a ton of arbitrary precision int computation that is totally unnecessary. A symbolic bound is better.
But especially after #126905, we can't go back to using sympy.oo, because that advertises that it's not an integer, and now your ValueRanges is typed incorrectly. So what do we do? We define a new numeric constant `int_oo`, which is like `sympy.oo` but it advertises `is_integer`. **test/test_sympy_utils.py** describes some basic properties of the number, and **torch/utils/_sympy/numbers.py** has the actual implementation.
The rest of the changes of the PR are working out the implications of this change. I'll give more commentary as inline comments.
Fixes https://github.com/pytorch/pytorch/issues/127396
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127693
Approved by: https://github.com/lezcano
ghstack dependencies: #126905
Related doc: https://docs.google.com/document/d/1BKyizkZPdri9mHqdDOLAUpkI7SbbKfLHRFVVpK9ZWqo/edit
Memory considerations:
- As with the existing SAC, cached values are cleared upon first use.
- We error if the user wishes to backward a second time on a region forwarded with SAC enabled.
In-place:
- We use version counting to enforce that if any cached tensor has been mutated. In-place operations not mutating cached tensors are allowed.
- `allow_cache_entry_mutation=True` can be passed to disable this check (useful in the case of auto AC where the user is cleverly also saves the output of the in-place)
Randomness, views
- Currently in this PR, we don't do anything special for randomness or views, the author of the policy function is expected to handle them properly. (Would it would be beneficial to error? - we either want to save all or recompute all random tensors)
Tensor object preservation
- We guarantee that if a tensor does not requires grad, and it is saved, then what you get out is the same tensor object. If the tensor does require grad, we must detach to avoid creating a reference cycle. This is a nice guarantee for nested tensors which care about the object identity of of the offsets tensor.
Policy function
- Enum values are `{MUST,PREFER}_{SAVE,RECOMPUTE}` (bikeshed welcome). Alternatively there was `{SAVE,RECOMPUTE}_{NON_,}OVERRIDABLE`. The former was preferred bc it seemed clearer that two `MUST` clashing should error, versus it is ambiguous whether two `NON_OVERRIDABLE` being stacked should silently ignore or error.
- The usage of Enum today. There actually is NO API to stack SAC policies today. The only thing the Enum should matter for in the near term is the compiler. The stacking SAC policy would be useful if someone wants to implement something like simple FSDP, but it is not perfect because with a policy of `PREFER_SAVE` you are actually saving more than autograd would save normally (would be fixed with AC v3).
- The number of times we call the policy_fn is something documented part of public API. We call the policy function for all ops except detach because detach is itself called a different number of times by AC between forward and recompute.
- The policy function can be a stateful object (we do NOT make separate copies of this object for forward/recompute, the user is expected to handle that via is_recompute see below).
Tensors guaranteed to be the same tensor as-is
- Policy function signature takes ctx object as its first argument. The ctx function is an object encapsulating info that may be useful to the user, it currently only holds "is_recompute". Adding this indirection gives us flexibility to add more attrs later if necessary.
"bc-breaking" for existing users of the private API:
- Existing policy functions must now change their return value to use the Enum.
- Existing calls to `_pt2_selective_checkpoint_context_fn_gen` must be renamed to `gen_selective_checkpoint_context_fn`. The way you use the API remains the same. It would've been nice to do something different (not make the user have to use functools.partial?), but this was the easiest to compile (idk if this should actually be a constraint).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125795
Approved by: https://github.com/Chillee, https://github.com/fmassa
Not requiring all functions to have types allows a lot of 'Any' types to slip in - which poison types and make mypy unable to properly typecheck the code. I want to flip the default so that new files are required to have fully typed defs and we can have a burndown list of files that fail to require full types.
The preceding stack of PRs (cut up simply to limit the number of file changes per PR "reasonable") adds `# mypy: allow-untyped-defs` to any file which didn't immediately pass mypy with the flag flipped. Due to changing files and merge conflicts it will probably be necessary to have several passes through before landing this final PR which turns the option on.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127836
Approved by: https://github.com/oulgen, https://github.com/Skylion007
In a previous life, we used sympy.oo to represent the lower/upper bounds of integer ranges. Later, we changed this to be sys.maxsize - 1 for a few reasons: (1) sometimes we do tests on a value being exactly sys.maxsize, and we wanted to avoid a data dependent guard in this case, (2) sympy.oo corresponds to floating point infinity, so you get incorrect types for value ranges with oo, and (3) you can do slightly better reasoning if you assume that input sizes fall within representable 64-bit integer range.
After working in the sys.maxsize regime for a bit, I've concluded that this was actually a bad idea. Specifically, the problem is that you end up with sys.maxsize in your upper bound, and then whenever you do any sort of size-increasing computation like size * 2, you end up with 2 * sys.maxsize, and you end up doing a ton of arbitrary precision int computation that is totally unnecessary. A symbolic bound is better.
But especially after #126905, we can't go back to using sympy.oo, because that advertises that it's not an integer, and now your ValueRanges is typed incorrectly. So what do we do? We define a new numeric constant `int_oo`, which is like `sympy.oo` but it advertises `is_integer`. **test/test_sympy_utils.py** describes some basic properties of the number, and **torch/utils/_sympy/numbers.py** has the actual implementation.
The rest of the changes of the PR are working out the implications of this change. I'll give more commentary as inline comments.
Fixes https://github.com/pytorch/pytorch/issues/127396
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127693
Approved by: https://github.com/lezcano
ghstack dependencies: #126905
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
**Reland notes.** This requires this internal fbcode diff https://www.internalfb.com/phabricator/paste/view/P1403322587 but I cannot prepare the diff codev due to https://fb.workplace.com/groups/osssupport/posts/26343544518600814/
It also requires this Executorch PR https://github.com/pytorch/executorch/pull/3911 but the ET PR can be landed prior to this landing.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
Now torch.dtype can pass through pybind11, so modify function _group_tensors_by_device_and_dtype to using scalar type. And without convert torch.dtype and string in python and c++ side.
@ezyang @bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127869
Approved by: https://github.com/ezyang
At a high level, the idea behind this PR is:
* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.
The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:
* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)
In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.
We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:
* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`
These changes have consequences. First, we need to make some administrative changes:
* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
* In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
* TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.
In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:
* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type
The new asserts uncovered necessary bug fixes:
* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1
Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.
Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.
Resolves#126888
- #126888
This PR is split from PR #126898.
- #126898
------
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127689
Approved by: https://github.com/Skylion007
### Before this PR:
`torch.utils.swap_tensors(a, b)` required the `use_count` of `a` and `b` to be 1
```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here would fail due to the reference held by AccumulateGrad node, which is not cleaned up after backward
# torch.utils.swap_tensors(a, b)
del out
# Calling swap_tensors here would pass
torch.utils.swap_tensors(a, b)
```
### After this PR:
`torch.utils.swap_tensors(a, b)` requires the `use_count` of `a` and `b` to be 1 or 2 IF the second reference is held by `AccumulateGrad`
A pre-hook will be registered on the `AccumulateGrad` node so that it will fail if it is called (i.e. if user attempts to backward through the graph).
```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here is ok
torch.utils.swap_tensors(a, b)
# If we ever backward to the AccumulateGrad node it will error that it was poisoned by swap_tensors
```
### Application to `nn.Module`
This issue is especially pertinent in context of `nn.Module` where parameters will have `AccumulateGrad` nodes initialized after forward. Specifically, this is intended to address https://github.com/pytorch/pytorch/pull/126814#issuecomment-2127777866. Previously, this would fail at the `m.cpu()` but we want users to be able to do something like the following, and instead raise an error if the user ever attempts to backward through the poisoned `AccumulateGrad` node
```python
import torch
import torch.nn as nn
m = nn.Linear(3, 5)
inp = torch.randn(2, 3)
out = m(inp)
out.sum().backward()
m.cpu()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127313
Approved by: https://github.com/soulitzer
With the current state of export's dynamic shapes, we struggle with guards and constraints that are beyond the current dynamic shapes language, expressed with dims and derived dims. While we can compile and guarantee correctness for guards within the current language (e.g. min/max ranges, linear relationships, integer divisibility) we struggle to dynamically compile guards which extend beyond that.
For these "complex" guards, we typically do either of the following: 1) raise a constraint violation error, along the lines of "not all values of <symbol> in the specified range satisfy <guard>", with or without suggested fixes, 2) specialize to the provided static values and suggest removing dynamism, or 3) fail compilation due to some arbitrary unsupported case. Previous [work](https://github.com/pytorch/pytorch/pull/124949) went towards resolving this by disabling forced specializations, instead allowing the user to fail at runtime with incorrect inputs.
In this PR, relying on [hybrid backed-unbacked symints](https://github.com/pytorch/pytorch/issues/121749), [deferred runtime asserts](https://github.com/pytorch/pytorch/blob/main/torch/fx/passes/runtime_assert.py), and the function [_is_supported_equivalence()](d7de4c9d80/torch/fx/experimental/symbolic_shapes.py (L1824)), we add a flag `_allow_complex_guards_as_runtime_asserts` which allows the user to compile exported programs containing these guards and maintain dynamism, while adding correctness checks as runtime assertions in the graph.
Hybrid backed-unbacked symints allow us to easily bypass "implicit" guards emitted from computation - guards that we ~expect to be true. Popular examples revolve around reshapes:
```
# reshape
def forward(self, x, y): # x: [s0, s1], y: [s2]
return x.reshape([-1]) + y # guard s0 * s1 = s2
This leads to the following exported program
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[s0, s1]", y: "f32[s2]"):
sym_size_int: "Sym(s2)" = torch.ops.aten.sym_size.int(y, 0)
mul: "Sym(-s2)" = -1 * sym_size_int; sym_size_int = None
sym_size_int_1: "Sym(s0)" = torch.ops.aten.sym_size.int(x, 0)
sym_size_int_2: "Sym(s1)" = torch.ops.aten.sym_size.int(x, 1)
mul_1: "Sym(s0*s1)" = sym_size_int_1 * sym_size_int_2; sym_size_int_1 = sym_size_int_2 = None
add: "Sym(s0*s1 - s2)" = mul + mul_1; mul = mul_1 = None
eq: "Sym(Eq(s0*s1 - s2, 0))" = add == 0; add = None
_assert_scalar = torch.ops.aten._assert_scalar.default(eq, "Runtime assertion failed for expression Eq(s0*s1 - s2, 0) on node 'eq'"); eq = None
view: "f32[s0*s1]" = torch.ops.aten.view.default(x, [-1]); x = None
add_1: "f32[s0*s1]" = torch.ops.aten.add.Tensor(view, y); view = y = None
return (add_1,)
```
Another case is symbol divisibility:
```
def forward(self, x): # x: [s0, s1]
return x.reshape([-1, x.shape[0] - 1]) # Eq(Mod(s0 * s1, s0 - 1), 0)
```
Applying deferred runtime asserts also helps dynamic compilation for "explicit" complex guards that typically cause problems for export. For example we can generate runtime asserts for not-equal guards, and complex conditions like the following:
```
class Foo(torch.nn.Module):
def forward(self, x, y):
# check that negation of first guard also shows up as runtime assertion
if x.shape[0] == y.shape[0]: # False
return x + y
elif x.shape[0] == y.shape[0] ** 3: # False
return x + 2, y + 3
elif x.shape[0] ** 2 == y.shape[0] * 3: # True
return x * 2.0, y * 3.0
```
For the above graph we will generate 3 runtime assertions: the negation of the first 2, and the 3rd condition as a guard.
One additional benefit here over the current state of exported programs is that this adds further correctness guarantees - previously with explicit complex guards, if compilation succeeded, the guards would be ignored at runtime, treated as given.
As shown above, the runtime asserts appear as math ops in the graph, generated by the sympy interpreter, resulting in an _assert_scalar call. There is an option to avoid adding these asserts into the graph, by setting `TORCH_DYNAMO_DO_NOT_EMIT_RUNTIME_ASSERTS=1`. This results in the "original" computation graph, with dynamism, and any incorrect inputs will fail on ops during runtime. Further work could go into prettifying the printer, so the majority of the graph isn't guard-related.
Ideally this PR would subsume and remove the recently added [_disable_forced_specializations](https://github.com/pytorch/pytorch/pull/124949) flag, but that flag still handles one additional case of specialization: single-variable equalities where the symbol is solvable for a concrete value: see this [PR](https://github.com/pytorch/pytorch/pull/126925)
This PR doesn't change any behavior around data-dependent errors/unbacked symints yet, that could be further work.
NOTE: will take naming change suggestions for the flag :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127129
Approved by: https://github.com/avikchaudhuri
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.
Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.
UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.
Resolves#126888
- #126888
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
This pass was broken in a number of ways, as we were not generating
asserts whenever we took it, even though we need to. While doing so,
we found that the analysis we were using for choosing
whether to generate asserts or not for dynamic shapes was completely
broken.
Eliminating indirect indexing in this way allows for a number of optimisations.
In particular, we can now fuse against these kernels (indirect indexing disallows fusions).
The new strategy is as follows:
- We always propagate sympy expressions if we can.
- If an expression was an indirect_indexing, we call `check_bounds`
- We also call `check_bounds` within `CSEProxy.indirect_indexing`
- The checks are issued in the buffer where they would go if the were used in a load
- This makes them always be codegen'd before the load and stores
- In the case of stores, they will be generated potentially much earlier than the stores themselves, which is fine.
We add quite a few asserts to preexisting tests to strengthen them. In particular, we make sure
that issuing an assert plays well with all kinds of C++ vectorisation.
For now, we rely on the logic within `_maybe_evaluate_static` to prove
these bounds. This logic is rather limited though. In the future, we might want
to rely on Z3 here to be able to prove bounds in a more general way.
Supersedes https://github.com/pytorch/pytorch/pull/113068
Fixes https://github.com/pytorch/pytorch/issues/121251
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114471
Approved by: https://github.com/peterbell10
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127122
Approved by: https://github.com/kit1980
This is a meta only tool, this allow users to profile any python function by annotating it with **strobelight** using
the strobelight profiler.
ex
```
def fn(x, y, z):
return x * y + z
# use decorator with default profiler.
@strobelight()
@torch.compile()
def work():
for i in range(100):
for j in range(5):
fn(torch.rand(j, j), torch.rand(j, j), torch.rand(j, j))
work()
```
test
```
python torch/utils/strobelight/examples/cli_function_profiler_example.py
strobelight_cli_function_profiler, line 274, 2024-05-20 11:05:41,513, INFO: strobelight run id is: -6222660165281106
strobelight_cli_function_profiler, line 276, 2024-05-20 11:06:08,318, INFO: strobelight profiling running
strobelight_cli_function_profiler, line 257, 2024-05-20 11:06:11,867, INFO: strobelight profiling stopped
strobelight_cli_function_profiler, line 237, 2024-05-20 11:06:16,164, INFO: Total samples: 2470
strobelight_cli_function_profiler, line 237, 2024-05-20 11:06:16,164, INFO: GraphProfiler (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/oiqmyltg
strobelight_cli_function_profiler, line 237, 2024-05-20 11:06:16,164, INFO: Icicle view (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/b10x92x0
strobelight_cli_function_profiler, line 274, 2024-05-20 11:06:18,476, INFO: strobelight run id is: -4112659701221677
strobelight_cli_function_profiler, line 276, 2024-05-20 11:06:45,096, INFO: strobelight profiling running
strobelight_cli_function_profiler, line 257, 2024-05-20 11:06:52,366, INFO: strobelight profiling stopped
strobelight_cli_function_profiler, line 237, 2024-05-20 11:06:56,222, INFO: Total samples: 1260
strobelight_cli_function_profiler, line 237, 2024-05-20 11:06:56,222, INFO: GraphProfiler (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/0yyx6el5
strobelight_cli_function_profiler, line 237, 2024-05-20 11:06:56,223, INFO: Icicle view (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/8m2by4ea
(base) [lsakka@devvm4561.ash0 /data/users/lsakka/pytorch/pytorch (strobelight2)]$ python torch/profiler/strobelight_cli_function_profiler_example.py
strobelight_cli_function_profiler, line 274, 2024-05-20 11:07:26,701, INFO: strobelight run id is: -2373009368202256
strobelight_cli_function_profiler, line 276, 2024-05-20 11:07:53,477, INFO: strobelight profiling running
strobelight_cli_function_profiler, line 257, 2024-05-20 11:07:56,827, INFO: strobelight profiling stopped
strobelight_cli_function_profiler, line 237, 2024-05-20 11:08:01,138, INFO: Total samples: 2372
strobelight_cli_function_profiler, line 237, 2024-05-20 11:08:01,138, INFO: GraphProfiler (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/dk797xg9
strobelight_cli_function_profiler, line 237, 2024-05-20 11:08:01,138, INFO: Icicle view (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/4w6c8vnm
strobelight_cli_function_profiler, line 274, 2024-05-20 11:08:03,235, INFO: strobelight run id is: -1919086123693716
strobelight_cli_function_profiler, line 276, 2024-05-20 11:08:29,848, INFO: strobelight profiling running
strobelight_cli_function_profiler, line 257, 2024-05-20 11:08:37,233, INFO: strobelight profiling stopped
strobelight_cli_function_profiler, line 237, 2024-05-20 11:08:41,138, INFO: Total samples: 1272
strobelight_cli_function_profiler, line 237, 2024-05-20 11:08:41,138, INFO: GraphProfiler (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/43r58aew
strobelight_cli_function_profiler, line 237, 2024-05-20 11:08:41,138, INFO: Icicle view (python stack): https://fburl.com/scuba/pyperf_experimental/on_demand/9g52onmw
(base) [lsakka@devvm4561.ash0 /data/users/lsakka/pytorch/pytorch (strobelight2)]$
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126693
Approved by: https://github.com/aorenste
as titled. I found that there're some issues in the eager mode SAC where
sometimes we would have recompute pop from storage of ops that are
missing, these ops are detach ops. So this PR refactors the two modes,
so that they would always recompute ignored ops
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126751
Approved by: https://github.com/yf225
The current call passes in `['/actual/path']` to os.walk which is a string pointing to no path and thus silently leads to and empty traversal.
There is an unused function just above that handles that, so I guess this is what was supposed to be called.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126103
Approved by: https://github.com/suo
This adds a new dispatch mode, PreDispatchSchemaCheckMode, built on top of SchemaCheckMode, used for verifying op schemas for functionalization for PreDispatch IR. More specifically, the mode runs in eager mode on concrete inputs, checking if op schemas incorrectly claim to be functional, but are aliasing or mutating. This mode is pushed to the pre-dispatch mode stack, and run before decompositions.
Current testing is hooked up to OpInfo, containing 1103 tests on 600 unique ops. Below is a list of ops that fail testing. One caveat is we only raise errors on ops that claim to be functional - if an op schema admits aliasing or mutating but fails testing for the other, it still may decompose further and become functional.
List of failed ops:
```
aten.atleast_1d.default
aten.atleast_2d.default
aten.atleast_3d.default
aten.cartesian_prod.default
aten.conj_physical.default
aten.alpha_dropout.default
aten.feature_dropout.default
aten.feature_alpha_dropout.default
aten.unsafe_chunk.default
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125481
Approved by: https://github.com/tugsbayasgalan
The big idea is that floats are treated as Tensors on input/output to the FX graph, but on the inside, we immediately call item() on the synthetic Tensor and record regular float operations on it. Canonicalization to Tensor operations will happen in a standalone FX pass. This behavior is controlled by `specialize_float` config variable when set to False.
The generated graph looks like this for the test `test_unspec_float_output`:
```
def forward(self, L_x_: "f32[3]", L_y_: "f32[]"):
l_x_ = L_x_
l_y_ = L_y_
# File: /data/users/ezyang/a/pytorch/test/dynamo/test_unspec.py:511 in f, code: return x + 1, y * 2
add: "f32[3]" = l_x_ + 1; l_x_ = None
item: "Sym(zf0)" = l_y_.item(); l_y_ = None
mul: "Sym(2*zf0)" = item * 2; item = None
scalar_tensor: "f32[]" = torch.scalar_tensor(mul); mul = None
return (add, scalar_tensor)
```
The ingredients:
* **torch/_dynamo/variables/builder.py** When `specialize_float` is False, we wrap float literals with `wrap_symfloat`. This is an unholy mashup of `wrap_symint` and `wrap_unspecialized_primitive`. The overall strategy is that we first generate a tensor argument (because that's what we want to show up into the FX graph), but then immediately call item() on the tensor argument to get a SymNodeVariable, which we will do the rest of the tracing with. Importantly, this SymNodeVariable is backed with the source of the original float: this means we can guard on the resulting value (something we could NOT do with UnspecializedPythonVariable). This has to be done manually, because if you literally call item() on the tensor, you will end up with an unbacked float. There is a bit of copy paste from wrap_symint and wrap_unspecialized_primitive which we can try to factor out, but this really is its own thing and you should review every line of code in the function.
* **torch/fx/experimental/symbolic_shapes.py** We now can generate guards on float inputs, and these guards are handled inside of ShapeEnv. So we need to be able to allocate (backed!) float symbols, and produce guards for them. Fairly straightforward generalization.
* **torch/_dynamo/codegen.py** I also need to maintain the invariant that there are no float outputs to the FX graph. I chose to do this at codegen time. When we detect a SymNodeVariable on the return stack for a float, we on the fly convert it (via `as_tensor`) to a TensorVariable, which is the true output. We then special case the output bytecode to call item() on it again. The tensor conversion is memoized on SymNodeVariable since we typically run the code generation process twice.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125325
Approved by: https://github.com/lezcano, https://github.com/jansel
This adds implementations for:
* _flash_attention_forward
* _efficient_attention_forward
* _flash_attention_backward
* _efficient_attention_backward
These flop counts are implemented as follows:
* Unbind the batch elements
* Calculate flops individually for each element in the batch
* Sum the final result
This means that we are accessing the concrete sequence lengths (which could be slow, and may trigger a GPU/CPU sync); but, the FLOP numbers will vary with the sparsity of the NestedTensor - more accurate than if we just assumed we padded everything.
Differential Revision: [D57120139](https://our.internmc.facebook.com/intern/diff/D57120139)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125776
Approved by: https://github.com/Chillee
This PR switches export IR from aot-dispatch to pre-dispatch IR.
**What is pre-dispatch IR and why should you care?**
Currently the default IR returned by torch.export can contain only functional ATen operators after ALL pytorch dispatcher decompositions (for example, CompositeImplicitAutograd) run.
In contrast, pre-dispatch IR refers to an IR that can contain all functional ATen operators (i.e., not just from the core subset), before any decomposition happens, as well as operators that manipulate autograd state. Pre-dispatch IR closely resembles eager PyTorch computation, but is still functional and serializable by torch.export. As a result:
You can train the pre-dispatch IR in eager mode as the IR contains necessary information for the autograd engine to automatically generate a backward graph.
You can write sound graph transformations more easily as the IR is functional.
Since it is an ATen IR, it is still normalized. For example, torch.add has multiple overloads, but aten.add.Tensor is unique in this IR.
If you want to get the core aten IR out of torch.export, you will need to:
```
ep = torch.export.export(M(), inputs)
ep_for_core_aten = ep.run_decompositions()
```
Differential Revision: [D57172986](https://our.internmc.facebook.com/intern/diff/D57172986)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125860
Approved by: https://github.com/zhxchen17