Summary:
We want to use the Module type as the key for the qconfig_dict for the module replacement during the quantization.
Before this Diff, to dynamic quantize the BERT model, we have to specify each layer:
```
qconfig_dict = {
'encoder.layer.0.attention.self.query': default_qconfig,
'encoder.layer.0.attention.self.key': default_qconfig,
'encoder.layer.0.attention.self.value': default_qconfig,
'encoder.layer.0.attention.output.dense': default_qconfig,
'encoder.layer.0.intermediate.dense': default_qconfig,
'encoder.layer.0.output.dense': default_qconfig,
'encoder.layer.1.attention.self.query': default_qconfig,
'encoder.layer.1.attention.self.key': default_qconfig,
'encoder.layer.1.attention.self.value': default_qconfig,
'encoder.layer.1.attention.output.dense': default_qconfig,
'encoder.layer.1.intermediate.dense': default_qconfig,
'encoder.layer.1.output.dense': default_qconfig,
...
}
```
After this Diff, we only need the following
```
qconfig_dict = {
torch.nn.Linear : default_qconfig
}
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23212
ghstack-source-id: 88287091
Reviewed By: zafartahirov
Differential Revision: D16436542
fbshipit-source-id: 11fbe68ee460560c1a7cdded63581eb7a00e5a89
Summary:
- ~~Add a unit test for the Dynamic Quantized Linear operator (```torch.fbgemm_linear_quantize_weight```, ```torch.fbgemm_pack_quantized_matrix```, and ```torch.fbgemm_linear_int8_weight```) in ```test_quantized.py```.~~ Move this to D16404027 for a separate review.
- Add the Dynamic Quantized Linear module in ```torch/nn/quantized/modules/linear.py```. ~~This is in a rudimentary stage. Will add more functions later~~.
- Add the torch.quantize logic (prepare, eval, convert) for dynamic quantization.
- Add a unit test for the Dynamic Quantized Linear module in ```test_nn_quantized.py```.
- Add a unit test for the Model-level Quantization API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23128
ghstack-source-id: 88257232
Differential Revision: D16258664
fbshipit-source-id: 4be3ac39ee27c088b341c741d3f09f51d5a23ef0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23635
It appears it is the same complexity to add new modules using a base class and using a generation script.
Test Plan: Imported from OSS
Differential Revision: D16593364
Pulled By: zafartahirov
fbshipit-source-id: 852dcf41f3dfa2a89152042b8e61d0b6defa8feb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23465
We decided not to allow user to use qconfig_dict to do quantization
since that API is not robust.
Differential Revision: D16611504
fbshipit-source-id: b0d1d311b32c990a165c480f50e9ce3d68b785b5
Summary:
Add support for quantization aware training in eager mode
Modifications to Post training flow:
## Prepare
* Fusion: e.g. (Conv, Bn) → ConvBn (float)
* Swapping: To insert fake_quant to weight, we need to swap the float modules that has weight with different qat modules, e.g. Conv → torch.nn.qat.Conv , ConvBn → torch.nn._intrinsic.qat.ConvBn
```
* previously we were thinking about modify the weight in forward_pre hook and change it back in forward_hook:
* def forward_pre_hook(self, input):
self.float_weight = self.weight
self.weight = self.fake_quantize(self.float_weight)
def forward_hook(self, input):
self.weight = self.float_weight
```
* Assignments to self.weight are needed because we can’t change forward function and in forward function they are using self.weight.
* But we will need to keep two copies of weight in this case, so it’s probably better to just swap the module
* So we want to just swap Conv to torch.nn.qat.Conv and Linear to torch.nn.qat.Linear
* qat modules will have fake_quant for output and weights inserted in forward function
## Convert
* flow should be identical to ptq, but the swapping dictionary is slightly different since modules are changed in prepare step.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23082
ghstack-source-id: 86824650
Differential Revision: D16379374
fbshipit-source-id: 7d16d1acd87025065a24942ff92abf18e9fc8070
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22732
Add support for quantization aware training in eager mode
Modifications to Post training flow:
## Prepare
* Fusion: e.g. (Conv, Bn) → ConvBn (float)
* Swapping: To insert fake_quant to weight, we need to swap the float modules that has weight with different qat modules, e.g. Conv → torch.nn.qat.Conv , ConvBn → torch.nn._intrinsic.qat.ConvBn
```
* previously we were thinking about modify the weight in forward_pre hook and change it back in forward_hook:
* def forward_pre_hook(self, input):
self.float_weight = self.weight
self.weight = self.fake_quantize(self.float_weight)
def forward_hook(self, input):
self.weight = self.float_weight
```
* Assignments to self.weight are needed because we can’t change forward function and in forward function they are using self.weight.
* But we will need to keep two copies of weight in this case, so it’s probably better to just swap the module
* So we want to just swap Conv to torch.nn.qat.Conv and Linear to torch.nn.qat.Linear
* qat modules will have fake_quant for output and weights inserted in forward function
## Convert
* flow should be identical to ptq, but the swapping dictionary is slightly different since modules are changed in prepare step.
Reviewed By: zafartahirov
Differential Revision: D16199356
fbshipit-source-id: 62aeaf47c12c62a87d9cac208f25f7592e245d6c