Commit Graph

115 Commits

Author SHA1 Message Date
Edward Leardi
733b8c23c4 Fix several quantization documentation typos (#40567)
Summary:
This PR fixes several typos I noticed in the docs here: https://pytorch.org/docs/master/quantization.html. In one case there was a misspelled module [torch.nn.instrinsic.qat](https://pytorch.org/docs/master/quantization.html#torch-nn-instrinsic-qat) which I corrected and am including screenshots of below just in case.

<img width="1094" alt="before" src="https://user-images.githubusercontent.com/54918401/85766765-5cdd6280-b6e5-11ea-93e6-4944cf820b71.png">

<img width="1093" alt="after" src="https://user-images.githubusercontent.com/54918401/85766769-5d75f900-b6e5-11ea-8850-0d1f5ed67b16.png">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40567

Differential Revision: D22311291

Pulled By: ezyang

fbshipit-source-id: 65d1f3dd043357e38a584d9e30f31634a5b0995c
2020-07-07 09:45:23 -07:00
Supriya Rao
c04d39aaf2 [quant][bug] Histogram observer bug fix with min == max (#40310)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40310

Test Plan:
python test/test_quantization.py test_histogram_observer_same_inputs

Imported from OSS

Differential Revision: D22145908

fbshipit-source-id: c1646d9ae6738755981fe3d09c8a8e25fcb994d4
2020-06-22 10:05:10 -07:00
Supriya Rao
9788a74da8 [quant][bug] Fix histogram observer with 0 input (#40191)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40191

When the first couple of inputs passed to histogram observer are all 0's subsequent non-zero inputs cause a div by 0 error

Test Plan:
python test/test_quantization.py TestHistogramObserver.test_histogram_observer_zero_inputs

Imported from OSS

Differential Revision: D22119422

fbshipit-source-id: 8bbbba914ba7f343121830c768ca0444439f8e03
2020-06-18 16:33:50 -07:00
Supriya Rao
67115b226a [quant][graphmode] Dynamic Quant Do not depend on input shapes (#39412)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39412

This PR introduces changes to enable running the weight observer standalone in the graph
It extracts the nodes from the graph that correspond to the observed weight value and adds all the related nodes to a new subgraph
The subgraph is then executed using GraphFunction

Test Plan:
python test/test_quantization.py TestGraphMostPostTrainingStatic
python test/test_quantization.py TestQuantizeDynamicScript

Imported from OSS

Differential Revision: D21872940

fbshipit-source-id: 55f1dcc2caef193531e2b807c8e56288b9794520
2020-06-07 11:09:44 -07:00
Vasiliy Kuznetsov
8d8b586c7a fake_quant: make qparams shape consistent (#38587)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38587

Before this diff, scale+zp were initialized to tensors
with a single dimension and 1 element, and then switched
to scalar tensors after the first forward.

This diff makes the shape stay consistent.  This should fix
an issue reported when saving/loading models, which crashes
on this inconsistent shape.

Test Plan:
```
python test/test_quantization.py TestFakeQuantizePerTensor.test_fake_quant_preserves_qparam_shapes_for_activations
```

Imported from OSS

Differential Revision: D21605532

fbshipit-source-id: e00cd268d6d3ded1006d18d6c6759c911b3a74ea
2020-05-21 19:08:08 -07:00
Jerry Zhang
86397f6b24 [quant] Remove get_qparams in Observers (#38435)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38435

Test Plan: Imported from OSS

Differential Revision: D21597835

Pulled By: jerryzh168

fbshipit-source-id: 88a8dd110db5586509bf98fa6712290f1756c272
2020-05-18 20:49:33 -07:00
Supriya Rao
97abed7cbe [quant] Remove TensorListObserver (#38584)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38584

All observers will support tensor lists in future PR

Test Plan: Imported from OSS

Differential Revision: D21623464

fbshipit-source-id: c5c57ecfe14f7c3aa92b7c99d724e846132ae03b
2020-05-18 15:49:34 -07:00
Vasiliy Kuznetsov
b57c8b720e [wip] Make quantization modules work with DataParallel (#37032)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37032

DataParallel requires all params and buffers of child modules to be updated
in place because of how it implements model replication during the
forward pass (see https://github.com/pytorch/pytorch/pull/12671 for
context). Any params or buffers not updated in place are lost and not
propagated back to the master.

This diff updates (some quantized modules) (TBD: all quantized modules? determine a good cut
point) to do their parameter update in-place. This will enable static
quant and QAT to work correctly with DataParallel.

TODO: https://github.com/pytorch/pytorch/pull/32684 needs to land before we can fix the graph mode test failures on this PR.

Test Plan:
script failed before and passes after the diff:
https://gist.github.com/vkuzo/78b06c01f23f98ee2aaaeb37e55f8d40

TODO before land: add integration testing

Imported from OSS

Differential Revision: D21206454

fbshipit-source-id: df6b4b04d0ae0f7ef582c82d81418163019e96f7
2020-05-05 13:06:43 -07:00
Edward Yang
4fef3763dd Revert "Revert D21337640: [pytorch][PR] Split up documentation into subpages and clean up some warnings" (#37778)
Summary:
Original PR: https://github.com/pytorch/pytorch/pull/37419

cc mattip suo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37778

Differential Revision: D21385774

Pulled By: ezyang

fbshipit-source-id: 5de532faab8bae132736b6b5189e0ee2ac9935be
2020-05-04 14:32:35 -07:00
Michael Suo
20f7e62b1d Revert D21337640: [pytorch][PR] Split up documentation into subpages and clean up some warnings
Test Plan: revert-hammer

Differential Revision:
D21337640

Original commit changeset: d4ad198780c3

fbshipit-source-id: fa9ba6ac542173a50bdb45bfa12f3fec0ed704fb
2020-05-04 10:57:55 -07:00
mattip
f10fbcc820 Split up documentation into subpages and clean up some warnings (#37419)
Summary:
xref gh-32838, gh-34032

This is a major refactor of parts of the documentation to split it up using sphinx's `autosummary` feature which will build out `autofuction` and `autoclass` stub files and link to them. The end result is that the top module pages like torch.nn.rst and torch.rst are now more like table-of-contents to the actual single-class or single-function documentations pages.

Along the way, I modified many of the docstrings to eliminate sphinx warnings when building. I think the only thing I changed from a non-documentation perspective is to add names to `__all__` when adding them to `globals()` in `torch.__init__.py`

I do not know the CI system: are the documentation build artifacts available after the build, so reviewers can preview before merging?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37419

Differential Revision: D21337640

Pulled By: ezyang

fbshipit-source-id: d4ad198780c3ae7a96a9f22651e00ff2d31a0c0f
2020-05-04 09:39:22 -07:00
Raghuraman Krishnamoorthi
904949382e Ensure that histogram observers have zero-point of zero for post ReLU activations (#37107)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37107

Currently histogram observers relax both the min and max values of the activations for performance speedup reasons. This causes an issue for glow where there is a slow down if the zero-point is not zero for post ReLU activations.
ghstack-source-id: 102768017

Test Plan: buck test caffe2/test:quantization -- 'test_histogram_observer_one_sided \(quantization\.test_quantization\.RecordHistogramObserverTest\)' --print-passing-details

Differential Revision: D21187636

fbshipit-source-id: 8d616b9e9caf2979a26a215e99434f71025e3d8b
2020-04-24 20:57:34 -07:00
Haixin Liu
8254a63802 Speed up calculate Qparams for per-channel observers (#30485)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30485

Use vectorization to speed up calculate Qparams for per-channel observers. New implementation is about 1000 times faster.

Task:
https://github.com/pytorch/pytorch/issues/30348#event-2824868602
ghstack-source-id: 102808561

Test Plan:
```
import torch
import time
import numpy as np
from torch.quantization.observer import PerChannelMinMaxObserver

obs = PerChannelMinMaxObserver()
acc_time = 0
X = torch.randn(1000, 10)
obs(X)
for i in range(100):
    start = time.time()
    obs.calculate_qparams()
    acc_time = acc_time + time.time()-start
print(acc_time)
```
Before change:
20.3

After change:
0.017

Differential Revision: D18711905

fbshipit-source-id: 3ed20a6734c9950773350957aaf0fc5d14827640
2020-04-24 07:32:36 -07:00
Ralf Gommers
78d5707041 Fix type annotations and make MyPy run on torch/ (#36584)
Summary:
This PR fixes a couple of syntax errors in `torch/` that prevent MyPy from running, fixes simple type annotation errors (e.g. missing `from typing import List, Tuple, Optional`), and adds granular ignores for errors in particular modules as well as for missing typing in third party packages.

As a result, running `mypy` in the root dir of the repo now runs on:
- `torch/`
- `aten/src/ATen/function_wrapper.py` (the only file already covered in CI)

In CI this runs on GitHub Actions, job Lint, sub-job "quick-checks", task "MyPy typecheck". It should give (right now): `Success: no issues found in 329 source files`.

Here are the details of the original 855 errors when running `mypy torch` on current master (after fixing the couple of syntax errors that prevent `mypy` from running through):

<details>

```
torch/utils/tensorboard/_proto_graph.py:1: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.node_def_pb2'
torch/utils/tensorboard/_proto_graph.py:2: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.attr_value_pb2'
torch/utils/tensorboard/_proto_graph.py:3: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.tensor_shape_pb2'
torch/utils/backcompat/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/for_onnx/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch.for_onnx.onnx'
torch/cuda/nvtx.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/utils/show_pickle.py:59: error: Name 'pickle._Unpickler' is not defined
torch/utils/show_pickle.py:113: error: "Type[PrettyPrinter]" has no attribute "_dispatch"
torch/utils/tensorboard/_onnx_graph.py:1: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.graph_pb2'
torch/utils/tensorboard/_onnx_graph.py:2: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.node_def_pb2'
torch/utils/tensorboard/_onnx_graph.py:3: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.versions_pb2'
torch/utils/tensorboard/_onnx_graph.py:4: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.attr_value_pb2'
torch/utils/tensorboard/_onnx_graph.py:5: error: Cannot find implementation or library stub for module named 'tensorboard.compat.proto.tensor_shape_pb2'
torch/utils/tensorboard/_onnx_graph.py:9: error: Cannot find implementation or library stub for module named 'onnx'
torch/contrib/_tensorboard_vis.py:10: error: Cannot find implementation or library stub for module named 'tensorflow.core.util'
torch/contrib/_tensorboard_vis.py:11: error: Cannot find implementation or library stub for module named 'tensorflow.core.framework'
torch/contrib/_tensorboard_vis.py:12: error: Cannot find implementation or library stub for module named 'tensorflow.python.summary.writer.writer'
torch/utils/hipify/hipify_python.py:43: error: Need type annotation for 'CAFFE2_TEMPLATE_MAP' (hint: "CAFFE2_TEMPLATE_MAP: Dict[<type>, <type>] = ...")
torch/utils/hipify/hipify_python.py:636: error: "object" has no attribute "items"
torch/nn/_reduction.py:27: error: Name 'Optional' is not defined
torch/nn/_reduction.py:27: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/_reduction.py:47: error: Name 'Optional' is not defined
torch/nn/_reduction.py:47: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/utils/tensorboard/_utils.py:17: error: Skipping analyzing 'matplotlib.pyplot': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:17: error: Skipping analyzing 'matplotlib': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:18: error: Skipping analyzing 'matplotlib.backends.backend_agg': found module but no type hints or library stubs
torch/utils/tensorboard/_utils.py:18: error: Skipping analyzing 'matplotlib.backends': found module but no type hints or library stubs
torch/nn/modules/utils.py:27: error: Name 'List' is not defined
torch/nn/modules/utils.py:27: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
caffe2/proto/caffe2_pb2.py:17: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/caffe2_pb2.py:25: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:31: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:35: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:39: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:43: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:47: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:51: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:55: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:59: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:63: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:67: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:71: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:75: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:108: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:112: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:124: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:130: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:134: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:138: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:142: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:146: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:150: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:154: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:158: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:162: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:166: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:170: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:174: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:178: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:182: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:194: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:200: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:204: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:208: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:212: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:224: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/caffe2_pb2.py:230: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:234: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:238: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:242: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:246: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:250: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:254: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/caffe2_pb2.py:267: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:274: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:281: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:288: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:295: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:302: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:327: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:334: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:341: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:364: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:371: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:378: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:385: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:392: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:399: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:406: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:413: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:420: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:427: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:434: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:441: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:448: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:455: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:462: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:488: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:495: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:502: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:509: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:516: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:523: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:530: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:537: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:544: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:551: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:558: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:565: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:572: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:596: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:603: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:627: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:634: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:641: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:648: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:655: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:662: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:686: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:693: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:717: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:724: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:731: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:738: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:763: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:770: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:777: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:784: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:808: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:815: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:822: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:829: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:836: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:843: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:850: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:857: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:864: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:871: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:878: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:885: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:892: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:916: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:923: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:930: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:937: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:944: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:951: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:958: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:982: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:989: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:996: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1003: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1010: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1017: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1024: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1031: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1038: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1045: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1052: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1059: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1066: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1090: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1097: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1104: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1128: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1135: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1142: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1166: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1173: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1180: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1187: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1194: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1218: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1225: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1232: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1239: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1246: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1253: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1260: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1267: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1274: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1281: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1305: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1312: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1319: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1326: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1333: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1340: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1347: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1354: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1361: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1368: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1375: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1382: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1389: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1396: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1420: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1427: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1434: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1441: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1465: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1472: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1479: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1486: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1493: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1500: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1507: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1514: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1538: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/caffe2_pb2.py:1545: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1552: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1559: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1566: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/caffe2_pb2.py:1667: error: "GeneratedProtocolMessageType" has no attribute "Segment"
torch/multiprocessing/queue.py:4: error: No library stub file for standard library module 'multiprocessing.reduction'
caffe2/proto/torch_pb2.py:18: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/torch_pb2.py:27: error: Unexpected keyword argument "serialized_options" for "EnumDescriptor"
caffe2/proto/torch_pb2.py:33: error: Unexpected keyword argument "serialized_options" for "EnumValueDescriptor"
caffe2/proto/torch_pb2.py:50: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:57: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:81: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:88: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:95: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:109: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:116: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:123: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:130: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:137: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:144: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:151: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:175: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:182: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:189: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:196: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:220: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:227: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:234: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:241: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:265: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:272: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:279: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:286: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:293: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:300: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:307: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:314: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:321: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:328: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:335: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:342: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:366: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:373: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:397: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/torch_pb2.py:404: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:411: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:418: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:425: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/torch_pb2.py:432: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:17: error: Unexpected keyword argument "serialized_options" for "FileDescriptor"; did you mean "serialized_pb"?
caffe2/proto/metanet_pb2.py:29: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:36: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:43: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:50: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:57: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:64: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:88: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:95: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:102: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:126: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:133: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:140: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:164: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:171: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:178: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:202: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:209: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:216: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:240: error: Unexpected keyword argument "serialized_options" for "Descriptor"
caffe2/proto/metanet_pb2.py:247: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:254: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:261: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:268: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:275: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:282: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:289: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/metanet_pb2.py:296: error: Unexpected keyword argument "serialized_options" for "FieldDescriptor"
caffe2/proto/__init__.py:13: error: Skipping analyzing 'caffe2.caffe2.fb.session.proto': found module but no type hints or library stubs
torch/multiprocessing/pool.py:3: error: No library stub file for standard library module 'multiprocessing.util'
torch/multiprocessing/pool.py:3: note: (Stub files are from https://github.com/python/typeshed)
caffe2/python/scope.py:10: error: Skipping analyzing 'past.builtins': found module but no type hints or library stubs
caffe2/python/__init__.py:7: error: Module has no attribute "CPU"
caffe2/python/__init__.py:8: error: Module has no attribute "CUDA"
caffe2/python/__init__.py:9: error: Module has no attribute "MKLDNN"
caffe2/python/__init__.py:10: error: Module has no attribute "OPENGL"
caffe2/python/__init__.py:11: error: Module has no attribute "OPENCL"
caffe2/python/__init__.py:12: error: Module has no attribute "IDEEP"
caffe2/python/__init__.py:13: error: Module has no attribute "HIP"
caffe2/python/__init__.py:14: error: Module has no attribute "COMPILE_TIME_MAX_DEVICE_TYPES"; maybe "PROTO_COMPILE_TIME_MAX_DEVICE_TYPES"?
caffe2/python/__init__.py:15: error: Module has no attribute "ONLY_FOR_TEST"; maybe "PROTO_ONLY_FOR_TEST"?
caffe2/python/__init__.py:34: error: Item "_Loader" of "Optional[_Loader]" has no attribute "exec_module"
caffe2/python/__init__.py:34: error: Item "None" of "Optional[_Loader]" has no attribute "exec_module"
caffe2/python/__init__.py:35: error: Module has no attribute "cuda"
caffe2/python/__init__.py:37: error: Module has no attribute "cuda"
caffe2/python/__init__.py:49: error: Module has no attribute "add_dll_directory"
torch/random.py:4: error: Cannot find implementation or library stub for module named 'torch._C'
torch/_classes.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/onnx/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/hub.py:21: error: Skipping analyzing 'tqdm.auto': found module but no type hints or library stubs
torch/hub.py:24: error: Skipping analyzing 'tqdm': found module but no type hints or library stubs
torch/hub.py:27: error: Name 'tqdm' already defined (possibly by an import)
torch/_tensor_str.py:164: error: Not all arguments converted during string formatting
torch/_ops.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/_linalg_utils.py:26: error: Name 'Optional' is not defined
torch/_linalg_utils.py:26: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:26: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:63: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:63: error: Name 'Optional' is not defined
torch/_linalg_utils.py:63: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:70: error: Name 'Optional' is not defined
torch/_linalg_utils.py:70: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:70: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:88: error: Name 'Tensor' is not defined
torch/_linalg_utils.py:88: error: Name 'Optional' is not defined
torch/_linalg_utils.py:88: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_linalg_utils.py:88: error: Name 'Tuple' is not defined
torch/_linalg_utils.py:88: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_jit_internal.py:17: error: Need type annotation for 'boolean_dispatched'
torch/_jit_internal.py:474: error: Need type annotation for '_overloaded_fns' (hint: "_overloaded_fns: Dict[<type>, <type>] = ...")
torch/_jit_internal.py:512: error: Need type annotation for '_overloaded_methods' (hint: "_overloaded_methods: Dict[<type>, <type>] = ...")
torch/_jit_internal.py:648: error: Incompatible types in assignment (expression has type "FinalCls", variable has type "_SpecialForm")
torch/sparse/__init__.py:11: error: Name 'Tensor' is not defined
torch/sparse/__init__.py:71: error: Name 'Tensor' is not defined
torch/sparse/__init__.py:71: error: Name 'Optional' is not defined
torch/sparse/__init__.py:71: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/sparse/__init__.py:71: error: Name 'Tuple' is not defined
torch/sparse/__init__.py:71: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/nn/init.py:109: error: Name 'Tensor' is not defined
torch/nn/init.py:126: error: Name 'Tensor' is not defined
torch/nn/init.py:142: error: Name 'Tensor' is not defined
torch/nn/init.py:165: error: Name 'Tensor' is not defined
torch/nn/init.py:180: error: Name 'Tensor' is not defined
torch/nn/init.py:194: error: Name 'Tensor' is not defined
torch/nn/init.py:287: error: Name 'Tensor' is not defined
torch/nn/init.py:315: error: Name 'Tensor' is not defined
torch/multiprocessing/reductions.py:8: error: No library stub file for standard library module 'multiprocessing.util'
torch/multiprocessing/reductions.py:9: error: No library stub file for standard library module 'multiprocessing.reduction'
torch/multiprocessing/reductions.py:17: error: No library stub file for standard library module 'multiprocessing.resource_sharer'
torch/jit/_builtins.py:72: error: Module has no attribute "_no_grad_embedding_renorm_"
torch/jit/_builtins.py:80: error: Module has no attribute "stft"
torch/jit/_builtins.py:81: error: Module has no attribute "cdist"
torch/jit/_builtins.py:82: error: Module has no attribute "norm"
torch/jit/_builtins.py:83: error: Module has no attribute "nuclear_norm"
torch/jit/_builtins.py:84: error: Module has no attribute "frobenius_norm"
torch/backends/cudnn/__init__.py:8: error: Cannot find implementation or library stub for module named 'torch._C'
torch/backends/cudnn/__init__.py:86: error: Need type annotation for '_handles' (hint: "_handles: Dict[<type>, <type>] = ...")
torch/autograd/profiler.py:13: error: Name 'ContextDecorator' already defined (possibly by an import)
torch/autograd/function.py:2: error: Cannot find implementation or library stub for module named 'torch._C'
torch/autograd/function.py:2: note: See https://mypy.readthedocs.io/en/latest/running_mypy.html#missing-imports
torch/autograd/function.py:109: error: Unsupported dynamic base class "with_metaclass"
torch/serialization.py:609: error: "Callable[[Any], Any]" has no attribute "cache"
torch/_lowrank.py:11: error: Name 'Tensor' is not defined
torch/_lowrank.py:13: error: Name 'Optional' is not defined
torch/_lowrank.py:13: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:14: error: Name 'Optional' is not defined
torch/_lowrank.py:14: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:14: error: Name 'Tensor' is not defined
torch/_lowrank.py:82: error: Name 'Tensor' is not defined
torch/_lowrank.py:82: error: Name 'Optional' is not defined
torch/_lowrank.py:82: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:82: error: Name 'Tuple' is not defined
torch/_lowrank.py:82: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_lowrank.py:130: error: Name 'Tensor' is not defined
torch/_lowrank.py:130: error: Name 'Optional' is not defined
torch/_lowrank.py:130: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:130: error: Name 'Tuple' is not defined
torch/_lowrank.py:130: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/_lowrank.py:167: error: Name 'Tensor' is not defined
torch/_lowrank.py:167: error: Name 'Optional' is not defined
torch/_lowrank.py:167: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/_lowrank.py:167: error: Name 'Tuple' is not defined
torch/_lowrank.py:167: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:45: error: Variable "torch.quantization.observer.ABC" is not valid as a type
torch/quantization/observer.py:45: note: See https://mypy.readthedocs.io/en/latest/common_issues.html#variables-vs-type-aliases
torch/quantization/observer.py:45: error: Invalid base class "ABC"
torch/quantization/observer.py:127: error: Name 'Tensor' is not defined
torch/quantization/observer.py:127: error: Name 'Tuple' is not defined
torch/quantization/observer.py:127: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:172: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:172: error: Module has no attribute "per_channel_symmetric"
torch/quantization/observer.py:192: error: Name 'Tensor' is not defined
torch/quantization/observer.py:192: error: Name 'Tuple' is not defined
torch/quantization/observer.py:192: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:233: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:233: error: Module has no attribute "per_channel_symmetric"
torch/quantization/observer.py:534: error: Name 'Tensor' is not defined
torch/quantization/observer.py:885: error: Name 'Tensor' is not defined
torch/quantization/observer.py:885: error: Name 'Tuple' is not defined
torch/quantization/observer.py:885: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/quantization/observer.py:894: error: Cannot determine type of 'max_val'
torch/quantization/observer.py:894: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:899: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:902: error: Name 'Tensor' is not defined
torch/quantization/observer.py:925: error: Name 'Tensor' is not defined
torch/quantization/observer.py:928: error: Cannot determine type of 'min_val'
torch/quantization/observer.py:929: error: Cannot determine type of 'max_val'
torch/quantization/observer.py:946: error: Argument "min" to "histc" has incompatible type "Tuple[Tensor, Tensor]"; expected "Union[int, float, bool]"
torch/quantization/observer.py:946: error: Argument "max" to "histc" has incompatible type "Tuple[Tensor, Tensor]"; expected "Union[int, float, bool]"
torch/quantization/observer.py:1056: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/observer.py:1058: error: Module has no attribute "per_channel_symmetric"
torch/nn/quantized/functional.py:76: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:76: error: Name 'BroadcastingList2' is not defined
torch/nn/quantized/functional.py:259: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:259: error: Name 'Optional' is not defined
torch/nn/quantized/functional.py:259: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/functional.py:289: error: Module has no attribute "ops"
torch/nn/quantized/functional.py:290: error: Module has no attribute "ops"
torch/nn/quantized/functional.py:308: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:326: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:356: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:371: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:400: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:400: error: Name 'Optional' is not defined
torch/nn/quantized/functional.py:400: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/functional.py:430: error: Name 'Tensor' is not defined
torch/nn/quantized/functional.py:448: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/linear.py:26: error: Module has no attribute "ops"
torch/nn/quantized/modules/linear.py:28: error: Module has no attribute "ops"
torch/nn/quantized/modules/functional_modules.py:40: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:47: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:54: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:61: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:68: error: Name 'List' is not defined
torch/nn/quantized/modules/functional_modules.py:68: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/functional_modules.py:68: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:75: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:140: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:146: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:151: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:157: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:162: error: Name 'List' is not defined
torch/nn/quantized/modules/functional_modules.py:162: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/functional_modules.py:162: error: Name 'Tensor' is not defined
torch/nn/quantized/modules/functional_modules.py:168: error: Name 'Tensor' is not defined
torch/multiprocessing/spawn.py:9: error: Module 'torch.multiprocessing' has no attribute '_prctl_pr_set_pdeathsig'
torch/multiprocessing/__init__.py:28: error: Module has no attribute "__all__"
torch/jit/frontend.py:9: error: Cannot find implementation or library stub for module named 'torch._C._jit_tree_views'
torch/jit/annotations.py:6: error: Module 'torch._jit_internal' has no attribute 'BroadcastingList2'; maybe "BroadcastingList1" or "BroadcastingListCls"?
torch/jit/annotations.py:6: error: Module 'torch._jit_internal' has no attribute 'BroadcastingList3'; maybe "BroadcastingList1" or "BroadcastingListCls"?
torch/jit/annotations.py:9: error: Cannot find implementation or library stub for module named 'torch._C'
torch/distributions/distribution.py:16: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/distribution.py:74: error: Name 'arg_constraints' already defined on line 16
torch/distributions/distribution.py:84: error: Name 'support' already defined on line 15
torch/functional.py:114: error: Name 'Tuple' is not defined
torch/functional.py:114: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:114: error: Name 'Optional' is not defined
torch/functional.py:114: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:189: error: Incompatible types in assignment (expression has type "None", variable has type "Tensor")
torch/functional.py:200: error: Argument 1 to "_indices_product" has incompatible type "Tuple[int, ...]"; expected "List[int]"
torch/functional.py:204: error: No overload variant of "__setitem__" of "list" matches argument types "Tensor", "int"
torch/functional.py:204: note: Possible overload variants:
torch/functional.py:204: note:     def __setitem__(self, int, int) -> None
torch/functional.py:204: note:     def __setitem__(self, slice, Iterable[int]) -> None
torch/functional.py:204: error: No overload variant of "__getitem__" of "list" matches argument type "Tensor"
torch/functional.py:204: note:     def __getitem__(self, int) -> int
torch/functional.py:204: note:     def __getitem__(self, slice) -> List[int]
torch/functional.py:207: error: "Tensor" has no attribute "copy_"
torch/functional.py:212: error: No overload variant of "__setitem__" of "list" matches argument types "Tensor", "int"
torch/functional.py:212: note: Possible overload variants:
torch/functional.py:212: note:     def __setitem__(self, int, int) -> None
torch/functional.py:212: note:     def __setitem__(self, slice, Iterable[int]) -> None
torch/functional.py:212: error: No overload variant of "__getitem__" of "list" matches argument type "Tensor"
torch/functional.py:212: note:     def __getitem__(self, int) -> int
torch/functional.py:212: note:     def __getitem__(self, slice) -> List[int]
torch/functional.py:215: error: Incompatible types in assignment (expression has type "None", variable has type "Tensor")
torch/functional.py:334: error: Name 'Optional' is not defined
torch/functional.py:334: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:429: error: Argument 2 to "pad" has incompatible type "Tuple[int, int]"; expected "List[int]"
torch/functional.py:431: error: Module has no attribute "stft"
torch/functional.py:766: error: Module has no attribute "cdist"
torch/functional.py:768: error: Module has no attribute "cdist"
torch/functional.py:770: error: Module has no attribute "cdist"
torch/functional.py:775: error: Name 'Optional' is not defined
torch/functional.py:775: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:780: error: Name 'Optional' is not defined
torch/functional.py:780: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:780: error: Name 'number' is not defined
torch/functional.py:780: error: Name 'norm' already defined on line 775
torch/functional.py:785: error: Name 'Optional' is not defined
torch/functional.py:785: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:785: error: Name 'number' is not defined
torch/functional.py:785: error: Name 'norm' already defined on line 775
torch/functional.py:790: error: Name 'Optional' is not defined
torch/functional.py:790: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:790: error: Name 'norm' already defined on line 775
torch/functional.py:795: error: Name 'norm' already defined on line 775
torch/functional.py:960: error: Name 'Any' is not defined
torch/functional.py:960: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Any")
torch/functional.py:960: error: Name 'Tuple' is not defined
torch/functional.py:960: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:1036: error: Argument 1 to "len" has incompatible type "int"; expected "Sized"
torch/functional.py:1041: error: Name 'Optional' is not defined
torch/functional.py:1041: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:1041: error: Name 'Tuple' is not defined
torch/functional.py:1041: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/functional.py:1056: error: Name 'Optional' is not defined
torch/functional.py:1056: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/functional.py:1056: error: Name 'Tuple' is not defined
torch/functional.py:1056: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Tuple")
torch/distributions/von_mises.py:87: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/negative_binomial.py:25: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/multivariate_normal.py:116: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/laplace.py:23: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/independent.py:34: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/cauchy.py:28: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/poisson.py:28: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/one_hot_categorical.py:32: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/normal.py:27: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/lowrank_multivariate_normal.py:79: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/gamma.py:30: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/exponential.py:23: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/fishersnedecor.py:25: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/dirichlet.py:44: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/nn/quantized/dynamic/modules/rnn.py:230: error: Incompatible types in assignment (expression has type "int", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:232: error: Incompatible types in assignment (expression has type "int", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:236: error: Incompatible return value type (got "Tuple[Any, Tensor, Any]", expected "Tuple[int, int, int]")
torch/nn/quantized/dynamic/modules/rnn.py:351: error: Incompatible types in assignment (expression has type "Type[LSTM]", base class "RNNBase" defined the type as "Type[RNNBase]")
torch/nn/quantized/dynamic/modules/rnn.py:381: error: Module has no attribute "quantized_lstm"
torch/nn/quantized/dynamic/modules/rnn.py:385: error: Module has no attribute "quantized_lstm"
torch/nn/quantized/dynamic/modules/rnn.py:414: error: Argument 1 to "forward_impl" of "LSTM" has incompatible type "PackedSequence"; expected "Tensor"
torch/nn/quantized/dynamic/modules/rnn.py:416: error: Incompatible types in assignment (expression has type "PackedSequence", variable has type "Tensor")
torch/nn/quantized/dynamic/modules/rnn.py:418: error: Incompatible return value type (got "Tuple[Tensor, Tuple[Tensor, Tensor]]", expected "Tuple[PackedSequence, Tuple[Tensor, Tensor]]")
torch/nn/quantized/dynamic/modules/rnn.py:420: error: Argument 1 of "permute_hidden" is incompatible with supertype "RNNBase"; supertype defines the argument type as "Tensor"
torch/nn/quantized/dynamic/modules/rnn.py:420: error: Return type "Tuple[Tensor, Tensor]" of "permute_hidden" incompatible with return type "Tensor" in supertype "RNNBase"
torch/nn/quantized/dynamic/modules/rnn.py:426: error: Argument 2 of "check_forward_args" is incompatible with supertype "RNNBase"; supertype defines the argument type as "Tensor"
torch/nn/intrinsic/qat/modules/conv_fused.py:232: error: Incompatible types in assignment (expression has type "Type[ConvBnReLU2d]", base class "ConvBn2d" defined the type as "Type[ConvBn2d]")
torch/distributions/beta.py:27: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/geometric.py:31: error: Incompatible types in assignment (expression has type "_IntegerGreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/continuous_bernoulli.py:38: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/bernoulli.py:30: error: Incompatible types in assignment (expression has type "_Boolean", base class "Distribution" defined the type as "None")
torch/quantization/fake_quantize.py:126: error: Module has no attribute "per_tensor_symmetric"
torch/quantization/fake_quantize.py:132: error: Module has no attribute "per_channel_symmetric"
torch/distributions/transformed_distribution.py:41: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/jit/__init__.py:1: error: Cannot find implementation or library stub for module named 'torch._C'
torch/jit/__init__.py:15: error: Module 'torch.utils' has no attribute 'set_module'
torch/jit/__init__.py:70: error: Name 'Attribute' already defined on line 68
torch/jit/__init__.py:213: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/jit/__init__.py:215: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/jit/__init__.py:1524: error: Unsupported dynamic base class "with_metaclass"
torch/jit/__init__.py:1869: error: Name 'ScriptModule' already defined on line 1524
torch/jit/__init__.py:1998: error: Need type annotation for '_jit_caching_layer'
torch/jit/__init__.py:1999: error: Need type annotation for '_jit_function_overload_caching'
torch/distributions/relaxed_categorical.py:34: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_categorical.py:108: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_bernoulli.py:31: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/relaxed_bernoulli.py:114: error: Incompatible types in assignment (expression has type "_Interval", base class "Distribution" defined the type as "None")
torch/distributions/logistic_normal.py:31: error: Incompatible types in assignment (expression has type "_Simplex", base class "Distribution" defined the type as "None")
torch/distributions/log_normal.py:26: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/half_normal.py:27: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/half_cauchy.py:28: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/gumbel.py:28: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/nn/quantized/modules/conv.py:18: error: Module 'torch.nn.utils' has no attribute 'fuse_conv_bn_weights'
torch/nn/quantized/modules/conv.py:209: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:209: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:214: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:321: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:321: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:323: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:447: error: Name 'Optional' is not defined
torch/nn/quantized/modules/conv.py:447: note: Did you forget to import it from "typing"? (Suggestion: "from typing import Optional")
torch/nn/quantized/modules/conv.py:449: error: Module has no attribute "ops"
torch/nn/quantized/modules/conv.py:513: error: Name 'nn.modules.conv._ConvTransposeNd' is not defined
torch/nn/quantized/modules/conv.py:525: error: Name 'List' is not defined
torch/nn/quantized/modules/conv.py:525: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/quantized/modules/conv.py:527: error: Name 'List' is not defined
torch/nn/quantized/modules/conv.py:527: note: Did you forget to import it from "typing"? (Suggestion: "from typing import List")
torch/nn/intrinsic/quantized/modules/conv_relu.py:8: error: Module 'torch.nn.utils' has no attribute 'fuse_conv_bn_weights'
torch/nn/intrinsic/quantized/modules/conv_relu.py:21: error: Incompatible types in assignment (expression has type "Type[ConvReLU2d]", base class "Conv2d" defined the type as "Type[Conv2d]")
torch/nn/intrinsic/quantized/modules/conv_relu.py:62: error: Incompatible types in assignment (expression has type "Type[ConvReLU3d]", base class "Conv3d" defined the type as "Type[Conv3d]")
torch/distributions/weibull.py:25: error: Incompatible types in assignment (expression has type "_GreaterThan", base class "Distribution" defined the type as "None")
torch/distributions/kl.py:35: error: Need type annotation for '_KL_MEMOIZE' (hint: "_KL_MEMOIZE: Dict[<type>, <type>] = ...")
torch/distributions/studentT.py:27: error: Incompatible types in assignment (expression has type "_Real", base class "Distribution" defined the type as "None")
torch/distributions/mixture_same_family.py:48: error: Need type annotation for 'arg_constraints' (hint: "arg_constraints: Dict[<type>, <type>] = ...")
torch/distributions/__init__.py:158: error: Name 'transforms' is not defined
torch/onnx/utils.py:21: error: Cannot find implementation or library stub for module named 'torch._C'
torch/distributed/rendezvous.py:4: error: Cannot find implementation or library stub for module named 'urlparse'
torch/distributed/rendezvous.py:4: error: Name 'urlparse' already defined (possibly by an import)
torch/distributed/rendezvous.py:4: error: Name 'urlunparse' already defined (possibly by an import)
torch/distributed/rendezvous.py:9: error: Module 'torch.distributed' has no attribute 'FileStore'
torch/distributed/rendezvous.py:9: error: Module 'torch.distributed' has no attribute 'TCPStore'
torch/distributed/rendezvous.py:65: error: On Python 3 '{}'.format(b'abc') produces "b'abc'"; use !r if this is a desired behavior
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllreduceOptions'; maybe "ReduceOptions" or "AllreduceCoalescedOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllreduceCoalescedOptions'; maybe "AllreduceOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'AllToAllOptions'
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'BroadcastOptions'
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'GatherOptions'; maybe "ScatterOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ReduceOptions'; maybe "AllreduceOptions", "ReduceScatterOptions", or "ReduceOp"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ReduceScatterOptions'; maybe "ScatterOptions" or "ReduceOptions"?
torch/distributed/distributed_c10d.py:11: error: Module 'torch.distributed' has no attribute 'ScatterOptions'; maybe "ReduceScatterOptions" or
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36584

Reviewed By: seemethere, ailzhang

Differential Revision: D21155985

Pulled By: ezyang

fbshipit-source-id: f628d4293992576207167e7c417998fad15898d1
2020-04-22 14:17:08 -07:00
Supriya Rao
0429d2c9b8 [quant][graphmode] Add new tensorlist observer for LSTM (#35893)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35893

LSTM operator inputs have tensor list for activations and weights.
In graph mode we need a new observer to work with tensor list

Test Plan:
python test/quantization/test_quantization.py ObserverTest

Imported from OSS

Differential Revision: D20830389

fbshipit-source-id: 4790f8932ae3d38446c1d942a2b3780aa91e3022
2020-04-03 10:41:28 -07:00
Supriya Rao
daba68c601 [quant][graph] Add a new observer type for dynamic quantization (#35455)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35455

In graph mode we need to observer the activation tensor for dynamic quantization. This observer should behave the same way as the quantization functions called in the dynamic operator.
Currently for qlinear_dynamic we call quant_utils::ChooseQuantizationParams which has its own logic for calculating scale and zero_point.
We mimic those calculations in the new observer.

Test Plan:
python test/test_quantization.py ObserverTest

Imported from OSS

Differential Revision: D20664586

fbshipit-source-id: e987ea71fff777c21e00c498504e6586e92568a2
2020-03-26 17:38:21 -07:00
Supriya Rao
b4b8b3c0ca Revert D20630988: [quant][graph] Add a new observer type for dynamic quantization
Test Plan: revert-hammer

Differential Revision:
D20630988

Original commit changeset: 7e7aca77590f

fbshipit-source-id: 6bc67ca322c1703004e0053f8eba9b8f6a3a5f67
2020-03-25 18:52:21 -07:00
Supriya Rao
7e24ab8c4a [quant][graph] Add a new observer type for dynamic quantization (#35265)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35265

In graph mode we need to observer the activation tensor for dynamic quantization. This observer should behave the same way as the quantization functions called in the dynamic operator.
Currently for qlinear_dynamic we call quant_utils::ChooseQuantizationParams which has its own logic for calculating scale and zero_point.
We mimic those calculations in the new observer.

Test Plan:
python test/test_quantization.py ObserverTest

Imported from OSS

Differential Revision: D20630988

fbshipit-source-id: 7e7aca77590f965dcb423a705e68d030aaf98550
2020-03-25 16:50:05 -07:00
Supriya Rao
434af5d94a [quant] Speed up per-channel min-max observer (#34118)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34118

Previously calc_per_channel_qparams was using for loops and python primitives, which called `item` many times causing slowdown during training.
    These changes uses torch primitives on the tensor to speed up the operation over 60x

    Perf results on MobileNetV2 during training using autograd profiler

    FP32 forward call -
    Self CPU time total: 47.222ms
    CUDA time total: 124.001ms

    before change
    FakeQuant Model -
    Self CPU time total: 19.107s
    CUDA time total: 27.177s

    after change
    FakeQuant Model -
    Self CPU time total: 404.667ms
    CUDA time total: 446.344ms

Test Plan:
python test/test_quantization.py

Imported from OSS

Differential Revision: D20287841

fbshipit-source-id: 6b706b8206e0d0da3c3c217b014e8da5b71b870d
2020-03-05 18:29:41 -08:00
Supriya Rao
1cf12b7e53 [quant] Fix histogram observer to work with QAT on GPU (#34232)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34232

By default `torch.zeros` creates the tensor on GPU. Need to specify the device argument to get it to work correctly on GPU during QAT.

Test Plan:
1. Tested by running QAT on GPU

2. python test/test_quantization.py

Imported from OSS

Differential Revision: D20286351

fbshipit-source-id: 745723c85d902870c56c1c7492f26cb027ae9dc6
2020-03-05 17:19:12 -08:00
Dmytro Dzhulgakov
a8fc3d8c2a Fix HistogramObserver to not do detach on input (#34114)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/33545, added a unittest
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34114

Differential Revision: D20224719

Pulled By: dzhulgakov

fbshipit-source-id: 053d3b3b0c86340027ba1b95b5f3c247aa151aee
2020-03-03 13:15:22 -08:00
Supriya Rao
996c0adb53 [quant] Regsiter fake_quant and observer attributes as buffers (#33626)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33626

For DDP we require the attributes to be registered as buffers. By doing this the value is broadcast from one device to the rest.

Test Plan:
Tested on actual model on GPU

Imported from OSS

Differential Revision: D20038839

fbshipit-source-id: 82e829fc3baca0b3262c3894a283c375eb08a4a4
2020-02-24 14:16:03 -08:00
Jerry Zhang
8ddd5bb0e9 Don't serialize None values in observer (#32733)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32733

Similar to https://github.com/pytorch/pytorch/pull/32318, we should stop serializing None values since they can't be broadcasted

Test Plan: Imported from OSS

Differential Revision: D19611586

Pulled By: jerryzh168

fbshipit-source-id: 369881de0567ed8eb25bdada892227f49bb5b29d
2020-01-31 13:28:43 -08:00
Raghuraman Krishnamoorthi
eccf42fd15 Bug fix: Handle missing keys in observer state dict during load (#30357)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30357

Fix issue https://github.com/pytorch/pytorch/issues/29032 in loading from state dict for observers and fake quant.
ghstack-source-id: 94468814

Test Plan: Ensures that load/save of fake quant and observers with missing keys works correctly.

Differential Revision: D18668517

fbshipit-source-id: 0eda6f47c39102e55977fc548b9a03664f123ad7
2019-11-26 06:53:45 -08:00
Jerry Zhang
661a6c8ef2 Add get_qparams and revert the changes to calculate_qparams (#30262)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30262

`get_qparams` returns all parameters that's needed to call quantize function

Test Plan:
python test/test_jit.py

Imported from OSS

Differential Revision: D18645047

fbshipit-source-id: e57c11a66dac2d589778d412a996796ad5b6f86a
2019-11-26 06:53:26 -08:00
Raghuraman Krishnamoorthi
67b77afcdf Fast histogram observer
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29790

Test Plan:
import torch
import time
import numpy as np
from torch.quantization.observer import HistogramObserver

X = torch.randn(1,1,224,224)

obs = HistogramObserver(2048)
acc_time = 0
for i in range(100):
   X = torch.randn(10,1,320,320)
   start = time.time()
   obs(X)
   #obs.forward_new(X)
   acc_time = acc_time + time.time()-start
print(acc_time)

Imported from OSS

Differential Revision: D18508562

fbshipit-source-id: 456e82360ce1b3f9d8b6e1832d23f1339655011a
2019-11-20 11:14:41 -08:00
Jerry Zhang
f2b851a9e5 Returning axis from calculate_qparams (#29494)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29494

`calculate_qparams` of per channel quantization should return the axis, this
PR added this and also added corresponding support in graph mode

Test Plan:
python test/test_jit.py

Imported from OSS

Differential Revision: D18580905

fbshipit-source-id: f9691c1f043f8bca39f81716a4d0b10f60a65396
2019-11-20 11:06:48 -08:00
Jerry Zhang
b2291d4600 Make PerChannelMinMaxObserver scriptable using torch.jit.ignore (#29416)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29416

att

Test Plan:
python test/test_quantization.py

Imported from OSS

Differential Revision: D18580906

fbshipit-source-id: 5370300b89e26c2b4662b17e51284e8708cb5843
2019-11-19 19:12:55 -08:00
Vitaly Fedyunin
877c96cddf explicitly provide memory format when calling to *_like operators
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/30008

Test Plan: Imported from OSS

Differential Revision: D18575981

Pulled By: VitalyFedyunin

fbshipit-source-id: ec3418257089ad57913932be1a8608cd20ce054c
2019-11-19 16:19:29 -08:00
Zafar Takhirov
09d359dfd9 Changed default args in quantization observers
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29640

Test Plan: Imported from OSS

Differential Revision: D18447297

Pulled By: z-a-f

fbshipit-source-id: 7c86a5bb467a2fad8fe30c935d9c031c69868296
2019-11-12 23:32:05 -08:00
Jerry Zhang
4bcf4796aa Make HistogramObserver scriptable with @torch.jit.ignore (#27950)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27950

att

Test Plan:
python test/test_quantization.py

Imported from OSS

Differential Revision: D18360139

fbshipit-source-id: 5459ae49c087886e4990de136198773a75b1c572
2019-11-07 18:02:44 -08:00
Zafar Takhirov
783c9c8445 Adding docstring to the observers (#27791)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27791

This is the first part of the change. The next ones will amend more :)

Test Plan: Imported from OSS

Differential Revision: D17889913

Pulled By: z-a-f

fbshipit-source-id: ff74007903dd789d4c68684e83b50c0c86a25149
2019-10-21 19:09:50 -07:00
Zafar Takhirov
dc8785a022 Refactoing names for consistency
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27670

Test Plan: Imported from OSS

Differential Revision: D17846269

Pulled By: z-a-f

fbshipit-source-id: ed3c7441c185bf11b2e62879aa3ecbc654aa2d4e
2019-10-16 12:18:26 -07:00
zou3519
23bffc4f14 Fix most documentation warnings (#27782)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27782

Warnings show up when running `make html` to build documentation. All of
the warnings are very reasonable and point to bugs in our docs. This PR
attempts to fix most of those warnings.

In the future we will add something to the CI that asserts that there
are no warnings in our docs.

Test Plan: - build and view changes locally

Differential Revision: D17887067

Pulled By: zou3519

fbshipit-source-id: 6bf4d08764759133b20983d6cd7f5d27e5ee3166
2019-10-13 10:34:01 -07:00
Chris Gottbrath
a96b003b39 docstring only formatting changes: quantize.py, fake_quantize.py, observer.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/27415

Reviewed By: zafartahirov

Differential Revision: D17783101

Pulled By: gottbrath

fbshipit-source-id: a7acbc55edfaa75fdbd17fd30d530710a401b22f
2019-10-08 09:21:03 -07:00
Raghuraman Krishnamoorthi
ac0f18437f MovingAverage Observer (#27396)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27396

Observer that estimates moving averages of min and max values per batch,  more suited for quantization aware training instead of minmax observers that track extremal values across batches
ghstack-source-id: 91369018

Test Plan:
buck test caffe2/test:quantization -- 'test_per_tensor_observers \(test_quantization\.ObserverTest\)' --print-passing-details

buck test caffe2/test:quantization -- 'test_per_channel_observers \(test_quantization\.ObserverTest\)' --print-passing-details

Differential Revision: D17727213

fbshipit-source-id: 024a890bf3dd0bf269d8bfe61f19871d027326f0
2019-10-04 16:28:59 -07:00
Raghuraman Krishnamoorthi
4abfb5493e Handle uninitialized min/max values in histogram observer (#27151)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27151

We need to be ab le to handle observers with no min/max data correctly as models sometimes have modules that do not get any data.
ghstack-source-id: 91113403

Test Plan:
buck test caffe2/test:quantization -- test_minmax_observer

buck test caffe2/test:quantization -- test_per_channel_minmax_observer

buck test caffe2/test:quantization --test_histogram_observer

Reviewed By: csummersea

Differential Revision: D17690828

fbshipit-source-id: e95709333ea0f66d79ddb8141b7cba5a83347dbd
2019-10-01 14:56:37 -07:00
Raghuraman Krishnamoorthi
7dc7075795 Per channel fake quant (#26623)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26623

Per-channel fake quant cpu and cuda operators,
per-channel support in fake quant module,
tests for per-channel fake-quant and serializability of fake quant modules

ghstack-source-id: 91008299
ghstack-source-id: 91008299

Test Plan:
buck test mode/dev caffe2/test:fake_quant  --
 Started new test run: https://our.intern.facebook.com/intern/testinfra/testrun/1970324848875929
      ✓ caffe2/test:fake_quant - test_backward_per_tensor (test_fake_quant.TestFakeQuantizePerTensor) 0.242 1/10 (passed)
      ✓ caffe2/test:fake_quant - test_numerical_consistency_per_tensor (test_fake_quant.TestFakeQuantizePerTensor) 0.204 2/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_serializable (test_fake_quant.TestFakeQuantizePerTensor) 0.174 3/10 (passed)
      ✓ caffe2/test:fake_quant - test_numerical_consistency_per_channel (test_fake_quant.TestFakeQuantizePerChannel) 0.279 4/10 (passed)
      ✓ caffe2/test:fake_quant - test_forward_per_tensor (test_fake_quant.TestFakeQuantizePerTensor) 0.241 5/10 (passed)
      ✓ caffe2/test:fake_quant - test_forward_per_channel (test_fake_quant.TestFakeQuantizePerChannel) 0.353 6/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_module (test_fake_quant.TestFakeQuantizePerTensor) 0.354 7/10 (passed)
      ✓ caffe2/test:fake_quant - test_backward_per_channel (test_fake_quant.TestFakeQuantizePerChannel) 0.334 8/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_serializable (test_fake_quant.TestFakeQuantizePerChannel) 0.168 9/10 (passed)
      ✓ caffe2/test:fake_quant - test_fq_module (test_fake_quant.TestFakeQuantizePerChannel) 0.429 10/10 (passed)
      ✓ caffe2/test:fake_quant - main 0.000 (passed)

Differential Revision: D17439406

fbshipit-source-id: 64bfff5e4f40bc2ab8af2b432c7bc33805418077
2019-09-30 00:21:25 -07:00
Raghuraman Krishnamoorthi
2ccbdb79c8 Per-channel baseline (#26516)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26516

ghstack-source-id: 90982010

Test Plan:
Integrate per-channel support into conv and linear modules.
The following tests pass:
buck test caffe2/test:quantized -- 'test_linear_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details

buck test caffe2/test:quantized -- 'test_conv_api \(test_quantized_nn_mods\.ModuleAPITest\)' --print-passing-details

buck test caffe2/test:quantized -- 'test_float_quant_compare_per_channel \(test_quantized_models\.ModelNumerics\)' --print-passing-details

Differential Revision: D17342622

fbshipit-source-id: f0d618928e3d9348672c589a6b7a47049c372a2e
2019-09-28 14:05:06 -07:00
Raghuraman Krishnamoorthi
102a148641 Default histogram observer (#26622)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26622

ghstack-source-id: 90897064

Test Plan: buck test caffe2/test:quantization --  --print-passing-details

Differential Revision: D17508787

fbshipit-source-id: ae733ab35ec9b0233264014b8054d4d870fb05e1
2019-09-27 10:39:21 -07:00
Raghuraman Krishnamoorthi
b0a2f6f2f5 Serialization and range reduction support for Fake Quant/Observer (#26519)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26519

ghstack-source-id: 90895631

Test Plan:
buck test caffe2/test:quantization -- 'test_histogram_observer \(test_quantization\.ObserverTest\)' --print-passing-details
and
buck test caffe2/test:fake_quant -- 'test_fq_serializable \(test_fake_quant\.TestFakeQuantizePerTensorAffine\)' --print-passing-details

Differential Revision: D17217408

fbshipit-source-id: 0da7efdcdae0c065dd035c5dd2b6a78231545ece
2019-09-27 10:09:39 -07:00
Dmytro Dzhulgakov
0a8a779abe Add more inplace arguments to quantization top level API (#26782)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26782

At least we should be consistent on top-level APIs and prepare/convert/etc.

Logic is inplace=False by default but top-level APIs take care of doing fewer copies.

Also renames always-inplace methods like add_observer to have underscore in the end.

One fix for MinMaxObserver was triggered by deepcopy surfacing that we were accidentally keeping autograd around

Test Plan: Imported from OSS

Differential Revision: D17595956

Pulled By: dzhulgakov

fbshipit-source-id: 801f9f5536b553f24c7a660064dd6fce685edd65
2019-09-26 00:07:07 -07:00
Dmytro Dzhulgakov
128a65e2e0 Use noop observer to pass dtype for dynamic quantization (#26709)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26709

Polishes implementation from #25975. Primarily, we use NoopObserver to communicate that weights need to be quantized to float16. The very top-level API (quantize_dynamic) stays the same with `dtype` argument but the implementation follows the common flow.

One can argue that dynamic fp16 quantization doesn't really fit into the 'observer' mechanism. It's in fact not ideal, but it's better to have the same flow than branching on both dtype and qconfig.

Test Plan: Imported from OSS

Differential Revision: D17544103

Pulled By: dzhulgakov

fbshipit-source-id: 6af3f18c35929a1a53ea734079c005f656e4925f
2019-09-24 09:24:39 -07:00
Dmytro Dzhulgakov
a79b3685db Simplify observers declaration with functools.partial (#26492)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26492

Previous definition of observers was quite clumsy - with things like `default_observer()()`. This PR strips a way a lot of craft and allows to pass just class names directly. In order to override default arguments either `functools.partial` can be used or convenient wrapper `MyObserver.with_args(x=1)` is provided.

Also rename `QConfig_dynamic` to `QConfigDynamic` because it violates the naming convention.

Test Plan: Imported from OSS

Differential Revision: D17521265

Pulled By: dzhulgakov

fbshipit-source-id: ba9df19b368641acf4093c43df9990796284fd9e
2019-09-23 10:15:59 -07:00
Lingyi Liu
11f9fe2433 Fix the API for record observer (#26413)
Summary:
Mainly want to resolve comments from https://github.com/pytorch/pytorch/pull/25830.

Overall, we want to provide a recording observer for recording the runtime tensor values of activation path in order to debug the numerical accuracy loss offline.

According to the feedback from https://github.com/pytorch/pytorch/issues/25830, it might be better to record all the observers in a dict and query the dict to get corresponding tensor values. hx89 is working on how to insert the recording observers into model under debug.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26413

Differential Revision: D17506502

Pulled By: llyfacebook

fbshipit-source-id: 3ab90dc78920e7ec3fa572c2a07327a9991c530a
2019-09-20 14:27:56 -07:00
Haixin Liu
dcbfc3bdbf Add per channel observer (#25887)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25887

ghstack-source-id: 90383258

Add per channel observer to compute the qparams for each channel.

Test Plan:
buck test mode/dev caffe2/test:quantization -- 'test_per_channel_minmax_observer'

buck test mode/dev caffe2/test:quantization -- 'test_per_channel_minmax_observer_scriptable'

Differential Revision: D17137226

fbshipit-source-id: 0b1c93e3cbcda86f5c4e30f7cd94c670f2665063
2019-09-18 22:16:45 -07:00
Haixin Liu
f2e9622ed8 Add l2 norm minimization (#24022)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24022

In histogram observer add an approximation for L2 error minimization for selecting min/max.
By selecting new min/max, we filter out outliers in input distribution.

This follows the implementation of NormMinimization::NonlinearQuantizationParamsSearch in caffe2/quantization/server/norm_minimization.cc
ghstack-source-id: 90298789

Test Plan: buck test mode/dev caffe2/test:quantization -- 'test_histogram_observer'

Differential Revision: D16713239

fbshipit-source-id: 82631ba47974e25689c9c66bc3088117090e26d4
2019-09-18 00:07:10 -07:00
Sebastian Messmer
9f6b6b8101 Back out "[quant][observer] Add histogram observer" (#26236)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26236

Original diff broke oss CI. Reverting.

Original commit changeset: 0f047d3349cb
ghstack-source-id: 90125990

Test Plan: testinprod

Reviewed By: hx89

Differential Revision: D17385490

fbshipit-source-id: 4258502bbc0e3a6dd6852c8ce01ed05eee618b1a
2019-09-14 12:48:46 -07:00
Haixin Liu
1563fdb591 Add histogram observer (#23959)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23959

Add histogram observer that records the running histogram of tensor values along with min/max values.
ghstack-source-id: 90076996

Test Plan:
Added a test test_histogram_observer
buck test mode/dev caffe2/test:quantization -- 'test_histogram_observer'

buck test mode/dev caffe2/test:quantization -- 'test_observer_scriptable'

Differential Revision: D16692835

fbshipit-source-id: 0f047d3349cb9770fad4a2b6cb346c51d9e99cd4
2019-09-13 19:24:04 -07:00
Lingyi Liu
62767077c3 add the tensor_observer to record the runtime tensor for quantization … (#25830)
Summary:
…accuracy analsyis
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25830

Differential Revision: D17327147

Pulled By: llyfacebook

fbshipit-source-id: 095d5537a31b8d7541081000eaeb8b8474dfb8d0
2019-09-11 13:36:28 -07:00
Raghuraman Krishnamoorthi
17c1b2c715 Relax scale to prevent saturation in conv/linear. Add test to verify precision of numerics of quantized model with updated observer. This test catches errors in (#25667)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25667

Relax scale and zero-point for activations to ensure that fbgemm implementations of conv and linear do not saturate due to 16 bit intermediate accumulation.

Add test to verify precision of numerics of quantized model with updated observer. This test catches errors in
handling layouts for quantized ops in addition to saturation/quantization errors.
ghstack-source-id: 89587942

Test Plan:
buck test caffe2/test:quantized -- 'test_float_quant_compare \(test_quantized_models\.ModelNumerics\)' --print-passing-details

Passes when SQNR > 35 dB

buck test caffe2/test:quantization -- 'test_minmax_observer \(test_quantization\.ObserverTest\)' --print-passing-details
Passes with additional coverage for observer changes

Differential Revision: D17140498

fbshipit-source-id: 42c58e726bb0b0f51890590ee2525428f9a8d24e
2019-09-06 17:18:01 -07:00
Haixin Liu
c59540b7b1 Change exception to warning (#25408)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25408

Change exception to warning so that observer can be called with no data and still provide a scale and zero-point.
ghstack-source-id: 89267768

Test Plan:
buck test mode/dev caffe2/test:quantization -- 'test_minmax_observer'

buck test mode/dev caffe2/test:quantization -- 'test_observer_scriptable'

Differential Revision: D17116524

fbshipit-source-id: db4d76e882b57f23161dced846df3a0760194a41
2019-08-29 20:12:57 -07:00
Haixin Liu
06757acb30 Refactor MinMax observer (#23902)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23902

Copied from Daya's diff in pytorch/pytorch #23191

Refactor MinMax observer and create the base observer class to prepare for future observers such as histogram observer.
ghstack-source-id: 89146014

Test Plan:
Added a test test_minmax_observer

buck test mode/dev caffe2/test:quantization -- 'test_minmax_observer'

```
Running 1 tests
Started new test run: https://our.intern.facebook.com/intern/testinfra/testrun/2533274797931635
      ✓ caffe2/test:quantization - test_minmax_observer (test_quantization.ObserverTest) 0.055 1/1 (passed)
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/2533274797931635
Summary (total time 4.26s):
  PASS: 1
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

buck test mode/dev caffe2/test:quantization -- 'test_observer_scriptable'
```
Running 1 tests
Started new test run: https://our.intern.facebook.com/intern/testinfra/testrun/5348024563344195
      ✓ caffe2/test:quantization - test_observer_scriptable (test_quantization.ObserverTest) 1.762 1/1 (passed)
Finished test run: https://our.intern.facebook.com/intern/testinfra/testrun/5348024563344195
Summary (total time 6.02s):
  PASS: 1
  FAIL: 0
  SKIP: 0
  FATAL: 0
  TIMEOUT: 0
  OMIT: 0
```

Differential Revision: D16663221

fbshipit-source-id: 3d0e1aa9e4d27808e61b10604782606de067a34a
2019-08-28 13:12:38 -07:00
Raghuraman Krishnamoorthi
c142dbf876 Fix scriptability for Observer (#25219)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25219

Ensure that observer code remains scriptable after addition of warnings
ghstack-source-id: 89055664

Test Plan: buck test caffe2/test:quantization -- 'test_observer_scriptable \(test_quantization\.ObserverTest\)' --print-passing-details

Differential Revision: D17065218

fbshipit-source-id: b3599613b4835bf1c5241aff191b40ba5f40d7be
2019-08-27 08:54:40 -07:00
Raghuraman Krishnamoorthi
77ee1f5f3c Revert D16923660: Support observer without any data calibration
Test Plan: revert-hammer

Differential Revision:
D16923660

Original commit changeset: 9927ed4e4ee9

fbshipit-source-id: 31a2b28584aae3808df6508b4caedb54de32156d
2019-08-26 15:36:26 -07:00
Raghuraman Krishnamoorthi
ff30201fff Revert D17059486: Fix scriptability for Observer
Test Plan: revert-hammer

Differential Revision:
D17059486

Original commit changeset: 70ea9ee39f0b

fbshipit-source-id: 6f39057b264e4d4213cf07496929274240bce917
2019-08-26 15:32:21 -07:00
Raghuraman Krishnamoorthi
85d1ebd26e Fix scriptability for Observer (#25197)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25197

Ensure that observer code remains scriptable after addition of warnings
ghstack-source-id: 89022474

Test Plan: buck test caffe2/test:quantization -- 'test_observer_scriptable \(test_quantization\.ObserverTest\)' --print-passing-details

Differential Revision: D17059486

fbshipit-source-id: 70ea9ee39f0b896c7801e168666f88c156dbf15b
2019-08-26 15:27:27 -07:00
Raghuraman Krishnamoorthi
a5710e2303 Support observer without any data calibration (#24923)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24923

Replace exception with warning for un initialized min/max values to support creation of quantized models without observers.
ghstack-source-id: 89003800

Test Plan: Replace error message with warning for observers

Differential Revision: D16923660

fbshipit-source-id: 9927ed4e4ee977c1388595ddef042204f71076a4
2019-08-26 12:16:53 -07:00
James Reed
049284e14d Make observer scriptable
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/24996

Test Plan: Imported from OSS

Differential Revision: D16952938

Pulled By: jamesr66a

fbshipit-source-id: 3d08e0c746603d0fe090fb3dbf13c5fc9dc022f4
2019-08-22 11:28:45 -07:00
James Reed
a0b13b4fa5 extra_repr for quantized modules (#24443)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24443

This gives us useful information about the Module when we print it, like so:

```
FloatModule(
  (quant): Quantize()
  (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1), scale=0.08209919929504395, zero_point=128)
  (conv2): Conv2d(20, 50, kernel_size=(5, 5), stride=(1, 1), scale=0.16885940730571747, zero_point=128)
  (fc1): Linear(in_features=800, out_features=500, bias=True, scale=0.12840059399604797, zero_point=128)
  (fc2): Linear(in_features=500, out_features=10, bias=True, scale=0.260015606880188, zero_point=128)
  (dequant): DeQuantize()
)
```

Test Plan: Imported from OSS

Differential Revision: D16847140

Pulled By: jamesr66a

fbshipit-source-id: 8c995108f17ed1b086d1fb30471a41c532c68080
2019-08-16 22:38:45 -07:00
Raghuraman Krishnamoorthi
696cabae9b Baseline observer module, ensuring that (min,max) range includes zero. (#24297)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24297

ghstack-source-id: 88252409

Differential Revision: D16635637

fbshipit-source-id: fcef20b9c88b2c3bd97e311514e5b2d0339ff28a
2019-08-15 15:25:23 -07:00
Jerry Zhang
754bf383b1 Change return type of observer to two tensors (#24339)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24339

Att

Differential Revision: D16820813

fbshipit-source-id: 3e7301f1700176e19f46e8677a644ba167209254
2019-08-15 10:26:44 -07:00
Raghuraman Krishnamoorthi
1c5e48bbd0 Observer returns original tensor for post training quantization (#24196)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24196

Observer returns output with no changes for post training quant. This unifies observer semantics for QAT and PTQ.
ghstack-source-id: 88140887

Differential Revision: D16768277

fbshipit-source-id: fae7c94e3dc0eeda363e9982b3865a15113e11bd
2019-08-13 14:01:37 -07:00
Jerry Zhang
f7de9be3c0 Add FakeQuantize Module (#21767)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21767

Adding FakeQuantize Module
for quantization aware training

Reviewed By: dzhulgakov

Differential Revision: D15728503

fbshipit-source-id: 2a9a6a362812ede3deac42b93dddca35987bd8e6
2019-07-15 14:08:55 -07:00
Jerry Zhang
5040d52a5a torch.quantization conversion utilities, observers for eager mode quantization (#22010)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22010

torch.quantization module with observers and conversion routines

Reviewed By: zafartahirov

Differential Revision: D15554183

fbshipit-source-id: 05a3fabe28dd701978b8ecebf5bfc3a4c044ba5c
2019-07-09 10:51:38 -07:00