Commit Graph

17 Commits

Author SHA1 Message Date
Aaron Orenstein
2b809e58ad PEP585 update - torch/onnx (#145174)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145174
Approved by: https://github.com/justinchuby
2025-01-20 05:48:52 +00:00
Justin Chu
b319fa3fd9 [ONNX] Opt into ruff fmt (#134120)
Add ONNX directory to use ruff format.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134120
Approved by: https://github.com/XuehaiPan, https://github.com/Skylion007
2024-08-22 22:44:03 +00:00
PyTorch MergeBot
b0171c3920 Revert "[ONNX] Opt into ruff fmt (#134120)"
This reverts commit 0870398fa8.

Reverted https://github.com/pytorch/pytorch/pull/134120 on behalf of https://github.com/albanD due to Breaks main branch lint ([comment](https://github.com/pytorch/pytorch/pull/134120#issuecomment-2305089756))
2024-08-22 15:48:14 +00:00
Justin Chu
0870398fa8 [ONNX] Opt into ruff fmt (#134120)
Add ONNX directory to use ruff format.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134120
Approved by: https://github.com/XuehaiPan, https://github.com/Skylion007
2024-08-21 21:43:55 +00:00
Oguz Ulgen
72d2dba992 Add None return type to init (#132335)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132335
Approved by: https://github.com/albanD
2024-08-01 15:26:45 +00:00
Justin Chu
e880cb2fe0 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-18 22:07:40 +00:00
PyTorch MergeBot
0851de5b16 Revert "[ONNX] Remove beartype usage (#130484)"
This reverts commit 1794c35912.

Reverted https://github.com/pytorch/pytorch/pull/130484 on behalf of https://github.com/clee2000 due to test_sympy_utils failure is real https://github.com/pytorch/pytorch/actions/runs/9961499559/job/27523758780 1794c35912.  Dr CI is matching with commits in current commit? ([comment](https://github.com/pytorch/pytorch/pull/130484#issuecomment-2231575577))
2024-07-16 18:41:51 +00:00
Justin Chu
1794c35912 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-16 17:34:36 +00:00
PyTorch MergeBot
0effcb70ef Revert "[ONNX] Remove beartype usage (#130484)"
This reverts commit f44739cf42.

Reverted https://github.com/pytorch/pytorch/pull/130484 on behalf of https://github.com/huydhn due to Sorry for reverting your change but those failures show up in trunk after the commit landed f44739cf42, I am reverting it to see if it fix trunk ([comment](https://github.com/pytorch/pytorch/pull/130484#issuecomment-2226812311))
2024-07-13 07:52:59 +00:00
Justin Chu
f44739cf42 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-13 00:08:25 +00:00
Aaron Orenstein
27f9d3b0a1 Flip default value for mypy disallow_untyped_defs [8/11] (#127845)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127845
Approved by: https://github.com/oulgen
ghstack dependencies: #127842, #127843, #127844
2024-06-08 18:49:56 +00:00
Aaron Gokaslan
e24a87ed8d [BE][Ez]: Apply PYI059 - Generic always come last (#127685)
Generic baseclass should always be last or unexpected issues can occur, especially in non-stub files (such as with MRO). Applies autofixes from the preview PYI059 rule to fix the issues in the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127685
Approved by: https://github.com/ezyang
2024-06-02 13:38:58 +00:00
Sergii Dymchenko
e54c6c2870 Fix non-existing parameters in docstrings in torch/onnx (#90593)
This is a continuation of https://github.com/pytorch/pytorch/pull/90505

Pull Request resolved: https://github.com/pytorch/pytorch/pull/90593
Approved by: https://github.com/justinchuby
2022-12-14 07:49:14 +00:00
Justin Chu
dc63948dc9 [ONNX] Update behavior for register_custom_op_symbolic (#85636)
Update `register_custom_op_symbolic`'s behavior to _only register the symbolic function at a single version_. This is more aligned with the semantics of the API signature.

As a result of this change, opset 7 and opset 8 implementations are now seen as fallback when the opset_version >= 9. Previously any ops internally registered to opset < 9 are not discoverable by an export version target >= 9. Updated the test to reflect this change.

The implication of this change is that users will need to register a symbolic function to the exact version when they want to override an existing symbolic. They are not impacted if (1) an implementation does not existing for the op, or (2) they are already registering to the exact version for export.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85636
Approved by: https://github.com/BowenBao
2022-09-29 04:24:06 +00:00
Justin Chu
76d60778eb [ONNX] Use decorators for symbolic function registration (#84448)
This is the 4th PR in the series of #83787. It enables the use of `@onnx_symbolic` across `torch.onnx`.

- **Backward breaking**: Removed some symbolic functions from `__all__` because of the use of  `@onnx_symbolic` for registering the same function on multiple aten names.
- Decorate all symbolic functions with `@onnx_symbolic`
- Move Quantized and Prim ops out from classes to functions defined in the modules. Eliminate the need for `isfunction` checking, speeding up the registration process by 60%.
    - Remove the outdated unit test `test_symbolic_opset9.py`
- Symbolic function registration moved from the first call to `_run_symbolic_function` to init time.
- Registration is fast:
  ![image](https://user-images.githubusercontent.com/11205048/189164959-f3fca173-19bc-4682-b150-f13a586387bf.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84448
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-22 06:25:24 +00:00
Justin Chu
9d1155235b [ONNX] Create decorators for symbolic function registration (#84709)
This PR creates and tests the decorators proposed in #83787

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84709
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-17 01:01:04 +00:00
Justin Chu
cd7e6d4ad1 [ONNX] New symbolic function registry (#84382)
## Summary

The change brings the new registry for symbolic functions in ONNX. The `SymbolicRegistry` class in `torch.onnx._internal.registration` replaces the dictionary and various functions defined in `torch.onnx.symbolic_registry`.

The new registry

- Has faster lookup by storing only functions in the opset version they are defined in
- Is easier to manage and interact with due to its class design
- Builds the foundation for the more flexible registration process detailed in #83787

Implementation changes

- **Breaking**: Remove `torch.onnx.symbolic_registry`
- `register_custom_op_symbolic` and `unregister_custom_op_symbolic` in utils maintain their api for compatibility
- Update _onnx_supported_ops.py for doc generation to include quantized ops.
- Update code to register python ops in `torch/csrc/jit/passes/onnx.cpp`

## Profiling results

-0.1 seconds in execution time. -34% time spent in `_run_symbolic_function`. Tested on the alexnet example in public doc.

### After
```
   └─ 1.641 export  <@beartype(torch.onnx.utils.export) at 0x7f19be17f790>:1
      └─ 1.641 export  torch/onnx/utils.py:185
         └─ 1.640 _export  torch/onnx/utils.py:1331
            ├─ 0.889 _model_to_graph  torch/onnx/utils.py:1005
            │  ├─ 0.478 _optimize_graph  torch/onnx/utils.py:535
            │  │  ├─ 0.214 PyCapsule._jit_pass_onnx_graph_shape_type_inference  <built-in>:0
            │  │  │     [2 frames hidden]  <built-in>
            │  │  ├─ 0.190 _run_symbolic_function  torch/onnx/utils.py:1670
            │  │  │  └─ 0.145 Constant  torch/onnx/symbolic_opset9.py:5782
            │  │  │     └─ 0.139 _graph_op  torch/onnx/_patch_torch.py:18
            │  │  │        └─ 0.134 PyCapsule._jit_pass_onnx_node_shape_type_inference  <built-in>:0
            │  │  │              [2 frames hidden]  <built-in>
            │  │  └─ 0.033 [self]
```

### Before
![image](https://user-images.githubusercontent.com/11205048/188032302-688d881e-860d-4046-bdba-90da54233576.png)

### Start up time

The startup process takes 0.03 seconds. Calls to `inspect` will be eliminated when we switch to using decorators for registration in #84448

![image](https://user-images.githubusercontent.com/11205048/188208910-250f0434-475d-4872-9abc-781535519305.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/84382
Approved by: https://github.com/AllenTiTaiWang, https://github.com/BowenBao
2022-09-16 21:45:16 +00:00