Commit Graph

227 Commits

Author SHA1 Message Date
soulitzer
53fff56ab8 Graph break cleanly for test_nestedtensor (#112662)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112662
Approved by: https://github.com/jbschlosser
2023-11-03 07:20:43 +00:00
Yuqing Jiang
24f217ee64 [Nested tensor] Add more ops in Python subclass nested tensor (#112302)
Summary: Add dropout, split_with_sizes, and silu operations in python subclass nested tensor

Test Plan: unit tests

Differential Revision: D50676812

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112302
Approved by: https://github.com/soulitzer, https://github.com/jbschlosser
2023-10-31 20:57:05 +00:00
Joel Schlosser
2225e6361d Support for as_nested_tensor() with jagged layout + fixed nested_tensor() semantics (#112304)
This PR:
* Adds support for the `layout` kwarg to `torch.nested.as_nested_tensor()`
* Fixes `torch.nested.nested_tensor()`
    * It should accept a list of lists of scalars
    * It should not preserve autograd history
* Adds extensive testing for these two functions

Semantics for the two functions follow those of the strided layout:
* `torch.nested.nested_tensor(tensor_list, layout=torch.jagged)`: Creates a new jagged layout NT **with no autograd history**
    * `tensor_list` can be a list of Tensors or list of lists of scalars
* `torch.nested.as_nested_tensor(tensor_list, layout=torch.jagged)`: Creates a new jagged layout NT **preserving autograd history of `tensor_list`**
    * `tensor_list` must be a list of Tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112304
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2023-10-28 02:34:27 +00:00
Antoni Viros
668c3b3f3b Add embedding op to jagged NT (#112288)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112288
Approved by: https://github.com/cpuhrsch
2023-10-28 01:29:17 +00:00
soulitzer
73170b23d4 Add compile support for NT unbind (#111531)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111531
Approved by: https://github.com/ezyang
2023-10-23 21:16:20 +00:00
Joel Schlosser
ba2ba9621c More NT subclass op support for SAM (#111253)
With this PR, we have full op support for SAM without needing to unwrap subclass into jagged buffer -> run ops -> rewrap manually. Specifically, this was previously happening in the MaskDecoder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111253
Approved by: https://github.com/soulitzer, https://github.com/cpuhrsch
2023-10-18 21:21:28 +00:00
soulitzer
2dc1726ab7 Compile NestedTensor with AOTAutograd (#110529)
This PR has a number of changes that improve subclass support for AOTAutograd/Inductor in general:
-  previously if a subclass does extra aliasing between graph outputs/inputs in a way, the partitioner would complain because grad_outputs are the outputs reused as-is. Now we do a view_as(self) to workaround this.
- Use dense -> dense metadata when working with fwd_output_strides during backward. This is important since the stride information comes from inductor which sees the dense to dense graph.
- Inductor requires that the inputs to the compiled backward to match some expected strides computed during compilation. We make sure to make the inner tensors of the subclass contiguous (previously, we only made the subclass itself contiguous)

Changes specific to NestedTensor relevant to compilation:
- Properly handle the case where `__tensor_unflatten__` is passed non-symbolic dense tensors and with meta extracted from fake subclasses.
- Skip var_to_range logic for singleton int
- Skip size hint logic in inductor for singleton int

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110529
Approved by: https://github.com/bdhirsh
2023-10-17 21:17:10 +00:00
Jesse Cai
4c01686027 Public API for constructing NT with jagged layout from tensor list (#111078)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111078
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
ghstack dependencies: #109123
2023-10-13 03:27:41 +00:00
Joel Schlosser
8f90be4478 Expand NT subclass to support SAM (#109123)
This PR contains the changes needed to support using the NT jagged subclass within SAM. Note that a NT with multiple ragged dims is still required at the extremes for inputs / outputs, but the internal computation generally involves a single ragged dim, making the jagged layout usable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109123
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
2023-10-12 20:33:22 +00:00
soulitzer
110382bacf Make NestedTensor compilable with eager backend (#109171)
In this PR:
- Adds support for strides for jagged tensor (design doc for this coming soon)
- NestedTensor skips automatic dynamic
- Make use of @bdhirsh's subclass fakification logic by adding the __tensor_{un,}flatten__ functions.
- Additional logic for fakification: since existing subclass fakification logic does not handle the case where the outer tensor has an additional dimension. We insert one-off logic to (1) insert an extra SingletonSymInt onto the fakified NestedTensor. (2) make sure we call track_symint on both the sizes on the inner and outer tensor during guard creation.

Remaining things that are weird:
- Still need to skip some logic in meta utils for some reason (I was going to write this up more, but decided not to since we're not able to do this anyway for a immediate reason: we cannot arbitrarily compare singleton ints. For now I'm just following Brian's advise from [here](https://github.com/pytorch/pytorch/pull/109171#discussion_r1328137070) )

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109171
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2023-10-11 04:47:10 +00:00
soulitzer
fda0a965c7 [reland] Support SingletonSymNode mul with coefficient (#110673)
reland of https://github.com/pytorch/pytorch/pull/110369
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110673
Approved by: https://github.com/ezyang
2023-10-10 19:37:17 +00:00
PyTorch MergeBot
1c3fae46ee Revert "Support SingletonSymNode mul with coefficient (#110369)"
This reverts commit eb8feb8ff8.

Reverted https://github.com/pytorch/pytorch/pull/110369 on behalf of https://github.com/PaliC due to bottom diff is causing a plethora of internal failures ([comment](https://github.com/pytorch/pytorch/pull/110369#issuecomment-1749802899))
2023-10-05 23:51:28 +00:00
soulitzer
eb8feb8ff8 Support SingletonSymNode mul with coefficient (#110369)
We want to be able to use SingletonSymNode to represent strides for Jagged layout tensor. The following is for 3D, but easily generalizable to higher dimensions.

Constraints:
- [B, x, D] (where x represents the "variably lengthed dim") can be strided in two ways [x, 1, sum(x)] and [dx, d, 1]. We need two different placeholder values depending on how the jagged tensor is strided.
- When doing operations we need the strides of output tensors to be expressable in terms of the strides and sizes of the inner tensors. Given [B, x, D] @ [D, D'], the output strides is [x * D', D', 1] rather than some opaque [x2, D', 1]. This constraint exists because if I'm tracing, I need a symint to represent the output stride. This symint needs to come from somewhere; I get it in several ways: (1) create a constant, (2) unbacked symint, (3) create a new input using a source, (4) output of an operation on an existing symint. It is clear that (4) is what we want here, which brings us to the design below.

Design:

Given the two constraints, the most straightforward way to implement this is actually to update SingletonSymNode to include some scalar factor, i.e. Morally, SingletonSymNode represents `factor * [s_0, s_1, …, s_n]` This enables us to symbolically compute strides from sizes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110369
Approved by: https://github.com/ezyang
ghstack dependencies: #110044
2023-10-04 22:56:15 +00:00
soulitzer
2bcff92540 Add NestedTensor python subclass (#108314)
Description coming soon

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108314
Approved by: https://github.com/jbschlosser
ghstack dependencies: #108808
2023-09-11 18:29:20 +00:00
Aaron Gokaslan
e2a3817dfd [BE] Enable C419 rule for any all shortcircuiting (#99890)
Apparently https://github.com/pytorch/pytorch/pull/78142 made torch.JIT allow for simple generator expressions which allows us to enable rules that replace unnecessary list comprehensions with generators in any/all. This was originally part of #99280 but I split it off into this PR so that it can be easily reverted should anything break.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99890
Approved by: https://github.com/justinchuby, https://github.com/kit1980, https://github.com/malfet
2023-04-25 15:02:13 +00:00
rusty1s
19706356b5 Fix TorchScript support in as_nested_tensor (#97960)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97960
Approved by: https://github.com/cpuhrsch
2023-03-30 18:55:26 +00:00
Mikayla Gawarecki
ec61951f07 Fix inaccuracy in nt constructor documentation + broken rendering (#89152)
Rendering was broken and docstring seemed to be inaccurate

![Screen Shot 2022-11-16 at 2 16 28 PM](https://user-images.githubusercontent.com/35276741/202273588-a2da5b7b-1a6d-46bb-a74e-c0de9a0fd064.png)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89152
Approved by: https://github.com/cpuhrsch
2022-11-16 22:32:46 +00:00
Antoni Viros i Martin
c77368d416 Implement a constructor for nested_tensor that is similar to torch.tensor() (#88213)
Summary: This diff merges both previous implementations of constructors for nested tensors, the one from lists of tensors and the one with arbitrary python lists, adn implements it in pytorch core so no extensions are needed to construct NT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88213
Approved by: https://github.com/cpuhrsch
2022-11-08 00:03:18 +00:00
Frankie Robertson
afc9963865 Fix path to nested_tensor in example (#86891)
This appears to be a typo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86891
Approved by: https://github.com/H-Huang
2022-10-13 17:42:32 +00:00
Mikayla Gawarecki
a77f2a95a7 Improve NestedTensor documentation (#85186)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85186
Approved by: https://github.com/cpuhrsch
2022-10-12 22:03:04 +00:00
Mikayla Gawarecki
afaee00fec Add python nested_tensor and as_nested_tensor constructors in torch.nested (#85593)
Remove `torch.nested_tensor` which has erroneous behavior wrt gradients (could be either leaf or not leaf). Introduce `torch.nested.nested_tensor` and `torch.nested.as_nested_tensor` in the vein of `torch.tensor` and `torch.as_tensor`. Done in nested `__init__.py` for now but can move to pybind in future (when we want to load from numpy/nested lists ).

Discussed offline with @cpuhrsch and pybind constructor (https://github.com/pytorch/pytorch/pull/85536) was more gnarly than expected, so we can move to that when we do need loading from numpy etc.

Differential Revision: [D39806622](https://our.internmc.facebook.com/intern/diff/D39806622)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85593
Approved by: https://github.com/drisspg, https://github.com/cpuhrsch
2022-09-28 20:15:02 +00:00
Mikayla Gawarecki
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00
Scott Wolchok
f9d0bc5338 [PyTorch] Delete NestedTensor Python wrapper (#74691)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74691

The wrapper just called through to methods on the underlying Tensor.
ghstack-source-id: 152433754

Test Plan: existing tests

Reviewed By: ezyang

Differential Revision: D34689789

fbshipit-source-id: cf53476780cf3ed00a3aa4add441300bfe8e27ce
(cherry picked from commit 5a9e5eb6bc13eb30be6e3c3bc4ac954c92704198)
2022-03-29 19:13:40 +00:00
Scott Wolchok
f7fe75c766 [PyTorch] Call self._impl.unbind directly in _nestedtensor wrapper (#74001)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74001

Incremental step toward removing this wrapper.
ghstack-source-id: 151540965

Test Plan: existing test_nestedtensor

Reviewed By: ezyang

Differential Revision: D34689382

fbshipit-source-id: 46eb203d4fc9ccc30008c7dc3ada24cab47b57d4
(cherry picked from commit 30e204362ca6a3da05e6d99726489879c9253a0e)
2022-03-17 18:04:50 +00:00
Scott Wolchok
79c3bbceb2 [PyTorch] Move NestedTensor printing to _tensor_str.py (#74000)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74000

Now that we're in-core, we can just customize this.
ghstack-source-id: 151540966

Test Plan: Existing test_nestedtensor seems to pass

Reviewed By: ezyang

Differential Revision: D34665270

fbshipit-source-id: 5097944a4dc4fe80cea2b8576f0123466dbeab43
(cherry picked from commit d0315f46f9906c904639f43f218e439407f5b2a7)
2022-03-17 18:04:50 +00:00
Scott Wolchok
88b19da49a [PyTorch] Make NestedTensor::dim() work (#73679)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73679

We can update the TensorImpl state used to track dim() just fine.

I'm not sure if this is sustainable; do we *want* callers to be able to muck with nested_size_tensor_ directly?
ghstack-source-id: 150349610

Test Plan: Updated test_nestedtensor.

Reviewed By: cpuhrsch

Differential Revision: D34570523

fbshipit-source-id: 739555d63226f925d6a502c9c742ce5f431cb6cc
(cherry picked from commit 1bb188162f3639f26a6204ad5d40f73e4c664a6d)
2022-03-04 19:35:41 +00:00
Christian Puhrsch
484c0de670 Minimal NestedTensor (#72881)
Summary:
This PR adds a minimal version of a NestedTensor. It introduces the general harness future development can be built around.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72881

Reviewed By: albanD

Differential Revision: D34259177

Pulled By: cpuhrsch

fbshipit-source-id: 0245c36f603424e20f3b09651043c207f526d760
(cherry picked from commit 10764e8d427f29b364567e4cbc86ed73c3933158)
2022-03-02 16:31:51 +00:00