Commit Graph

223 Commits

Author SHA1 Message Date
Tianyu Liu
d2ad9aa2f2 [dtensor][tp] add a ParallelStyle PrepareModuleInputOutput (#150372)
Needed this class for because `parallelize_module` takes a dict, which doesn't allow `PrepareModuleInput` and `PrepareModuleOutput` to be applied at the same time.

The `PrepareModuleInputOutput` in this PR initializes two variables `prepare_module_input` and `prepare_module_output` and uses them to process module / inputs / outputs.

I had another implementation which put all code in `PrepareModuleInputOutput` and let `PrepareModuleInput` and `PrepareModuleOutput` inherit the monolithic `PrepareModuleInputOutput`. But it is
1. less cleaner
2. conceptually abusing inheritance because `PrepareModuleInput` shouldn't be able to access class methods of `PrepareModuleOutput` and vice versa

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150372
Approved by: https://github.com/wanchaol
2025-04-01 19:15:43 +00:00
Tianyu Liu
5d6ac2dced [dtensor] add op support for select_backward and slice_backward (#150357)
Inheriting and rebasing @awgu 's PR https://github.com/pytorch/pytorch/pull/149071
- fixed an issue for `select_backward` and an issue for `slice_backward`
- removed `_experimental_ops.py` as it becomes empty

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150357
Approved by: https://github.com/awgu, https://github.com/XilunWu
2025-04-01 19:15:25 +00:00
Keke Zhai
68414512e6 Implement aten.select.int sharding strategy (#149842)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149842
Approved by: https://github.com/XilunWu
2025-03-27 20:49:00 +00:00
_githubsgi
f0e1a0838c Enabling xpu in OffsetBasedRNGTracker . (#148360)
Else torch.distributed breaks on xpu devices.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148360
Approved by: https://github.com/zhangxiaoli73, https://github.com/guangyey, https://github.com/gujinghui, https://github.com/XilunWu, https://github.com/kwen2501

Co-authored-by: Yu, Guangye <106960996+guangyey@users.noreply.github.com>
2025-03-27 10:55:05 +00:00
Francisco Massa
0a60a0cad4 Let pointwise sharding take arg with largest number of dims in case of ties (#149721)
Before, we would take the first argument with the largest number of shards, regardless if it had fewer dims than another arg with the same number of shards but more dimensions. This would lead to potentially fewer sharding options

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149721
Approved by: https://github.com/tianyu-l
2025-03-24 15:39:39 +00:00
Brian Hirsh
1c6b517e19 DTensor: more generically support CompositeImplicitAutograd ops under inference mode (#149514)
Today, if you run DTensor (or any tensor subclass) under __torch_dispatch__, you will start seeing `CompositeImplicitAutograd` ops show up in the torch_dispatch.

"handling" these ops is trivial: you can just tell them to decompose into their constituent ops. Normally this decomposing happens in autograd, above DTensor, but inference_mode turns autograd off, forcing the subclass to handle the op directly.

It looks like previously we manually added a few CompositeImplicitAutograd entries to DTensor (e.g. linear), but this PR tries to support these ops a bit more generically.

The main difference is that DTensor now needs to check if a given op is `CompositeImplicitAutograd` before attempting to run sharding prop. I ran a quick microbenchmark for the below code with `timeit`, which gave me overhead on the order of ~1us, which is hopefully not too bad for eager mode:

```
        def fast_function():
            return torch._C._dispatch_has_kernel_for_dispatch_key(op_call.name(), torch._C.DispatchKey.CompositeImplicitAutograd)
        import timeit
        time_taken = timeit.timeit(fast_function, number=1000)
        # printed 0.12..., aka 1.2us
        print(f'func={str(op_call)}, time={str(time_taken)}')
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149514
Approved by: https://github.com/kwen2501, https://github.com/albanD, https://github.com/wanchaol
2025-03-21 22:09:19 +00:00
Yuanhao Ji
bf6621d08f [Distributed] Add repr methods for ParallelStyles (#149478)
Fixes #149470

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149478
Approved by: https://github.com/wanchaol
2025-03-21 03:59:25 +00:00
Francisco Massa
9b92828d4b Add batch dim sharding rule to sdpa (#149253)
This is a trivial rule that for most cases isn't needed, but if we want to consider that the input data is actually `Shard(0)` (instead of `Replicated()` as it is currently assumed), then we need this rule.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149253
Approved by: https://github.com/XilunWu
2025-03-18 07:54:02 +00:00
Aaron Gokaslan
a0ac63cbd9 [BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149257
Approved by: https://github.com/jansel
2025-03-18 00:46:07 +00:00
PyTorch MergeBot
24cfeec2c7 Revert "[BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)"
This reverts commit bfee141666.

Reverted https://github.com/pytorch/pytorch/pull/149257 on behalf of https://github.com/malfet due to Let's see if it helps restore compiler benchmark sanity, see 8bc7bd94a5/1 ([comment](https://github.com/pytorch/pytorch/pull/149257#issuecomment-2731133812))
2025-03-17 22:57:00 +00:00
Aaron Gokaslan
bfee141666 [BE]: Apply ruff PERF403 to use dict comprehensions more often (#149257)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149257
Approved by: https://github.com/jansel
2025-03-16 23:52:58 +00:00
Tugsbayasgalan Manlaibaatar
6b1b95ad2a Support subclass constructor capturing in export (#147014)
Notable TODOs:
1. Need to implement AutogradHOP to get rid of subclasses before serializing
2. Need to implement mechanism to figure out what subclasses will be used in export when they are not expressed in the inputs

Differential Revision: [D69640673](https://our.internmc.facebook.com/intern/diff/D69640673)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147014
Approved by: https://github.com/bdhirsh
2025-03-16 18:19:19 +00:00
Wenjie Yang
115fc98cc0 Migrate aten.split.Tensor from using Sharding Rule to Sharding Strategy (#149106)
Summary:
Use Sharding Strategy for aten.split.Tensor instead of sharding rule

Test Plan:
pytest test/distributed/tensor/test_dtensor_ops.py -s -k split

Reviewers:
xilunwu

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149106
Approved by: https://github.com/XilunWu, https://github.com/tianyu-l
2025-03-15 04:03:40 +00:00
Andrew Gu
a8b1767ae5 [DTensor] Fix local_map with multi-threading (#149070)
Using `nonlocal device_mesh` is not safe with multi-threading

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149070
Approved by: https://github.com/wanchaol
2025-03-13 10:58:59 +00:00
Francisco Massa
ea86b8d315 Fix redistribution cost for all-reduce (#148761)
This issue seems to have been introduced in https://github.com/pytorch/pytorch/pull/119897. With the current implementation, it might be more favorable to perform a reduce_scatter followed by an all-gather than simply an all-reduce.

Thanks @lw for the helpful discussions on getting this PR out!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148761
Approved by: https://github.com/Skylion007, https://github.com/lw, https://github.com/tianyu-l, https://github.com/fegin
2025-03-10 12:13:11 +00:00
Xilun Wu
e2a0296e80 [dtensor] add CuDNN SDPA op support to DTensor (#148537)
### Summary
This PR adds `_scaled_dot_product_cudnn_attention` and `_scaled_dot_product_cudnn_attention_backward` to DTensor ops

### Test
`pytest test/distributed/tensor/test_attention.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148537
Approved by: https://github.com/drisspg, https://github.com/fegin
2025-03-06 23:44:40 +00:00
PyTorch MergeBot
c9edd37ffb Revert "[dtensor] add aten._scaled_dot_product_cudnn_attention.default op support (#148377)"
This reverts commit 9eef457c02.

Reverted https://github.com/pytorch/pytorch/pull/148377 on behalf of https://github.com/clee2000 due to broke lint [GH job link](https://github.com/pytorch/pytorch/actions/runs/13683650448/job/38261818684) [HUD commit link](9eef457c02) probably landrace ([comment](https://github.com/pytorch/pytorch/pull/148377#issuecomment-2701903810))
2025-03-05 19:45:16 +00:00
Xilun Wu
9eef457c02 [dtensor] add aten._scaled_dot_product_cudnn_attention.default op support (#148377)
### Summary
This PR adds `_scaled_dot_product_cudnn_attention` to DTensor ops and tests it with unit test. This should allow Context Parallel and Tensor Parallel to use cudnn SDPA.

### Test
`pytest test/distributed/tensor/test_attention.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148377
Approved by: https://github.com/drisspg
2025-03-05 19:09:52 +00:00
Wanchao Liang
f859722f70 [dtensor] refactor sharding prop to handle cross mesh computation (#147869)
as titled, this PR moves the same mesh check from the sharding propagation level to each individual operator level.

This is to allow more flexibility for each individual operator to check the operator can be run on the same mesh or not. For example, before this PR if user have two DTensor params that lives on different DeviceMesh, and want to run `for_each` operator on them individually, it would error out with cross mesh error. But for foreach computation there could be DTensors that live on different meshes, as long as the the mesh are the same in a "zipped way".

This should also fix https://github.com/pytorch/pytorch/issues/134212

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147869
Approved by: https://github.com/tianyu-l
2025-03-04 18:30:44 +00:00
Xilun Wu
4106aa33eb [dtensor][fix] fix _scaled_dot_product_flash_attention sharding (#148125)
### Summary
https://github.com/pytorch/pytorch/pull/146372/ changed the op signature of `_scaled_dot_product_flash_attention` and as a consequence DTensor needs to change its sharding defined at 40ad5e01df/torch/distributed/tensor/_ops/_matrix_ops.py (L232)

### Test
`pytest test/distributed/tensor/test_attention.py`

### Follow-up
It's still unclear why the CP unit tests were not run over the original PR which is BC-breaking.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148125
Approved by: https://github.com/tianyu-l, https://github.com/fegin
2025-02-28 09:26:43 +00:00
Xuehai Pan
995df34b19 [BE][PYFMT] migrate PYFMT for torch.{distributed,distributions} to ruff format (#144547)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144547
Approved by: https://github.com/kwen2501
2025-02-28 07:35:56 +00:00
Aaron Gokaslan
3b4b23ab0b [BE][Ez]: Remove extra copy in dtensor parallel loss (#148096)
Remove an extra copy of the input to `_log_softmax` when there is a dtype and memory format change. Fuse the copies instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148096
Approved by: https://github.com/jansel, https://github.com/wconstab
2025-02-28 05:42:32 +00:00
Xilun Wu
ef61c290e1 [DTensor][random] defer DTensor RNG state sync until first random op call or manual_seed call; support more flexible OffsetBasedRNGTracker init (#147025)
Resolves https://github.com/pytorch/pytorch/issues/146767.

May also resolve https://github.com/pytorch/pytorch/issues/147584.

### Summary
This PR removes the RNG tracker init from the `distribute_tensor` call for the following reasons:

1. if the user does not use random ops on DTensor, there's no need to init DTensor RNG which currently requires CUDA device to be present.
2. this complies with the 0-communication semantic of `src_data_rank=None` shard distribution.

Besides, `OffsetBasedRNGTracker` only accepts `DeviceMesh` argument to its constructor method.

### Consequence

DTensor RNG initialization is delayed till the first DTensor random ops call or `torch.distributed.tensor.random.manual_seed`.

### Test
`pytest test/distributed/tensor/test_random_ops.py`
`pytest test/distributed/tensor/parallel/test_tp_random_state.py`
`pytest test/distributed/tensor/parallel/test_tp_style.py`

Differential Revision: [D70201856](https://our.internmc.facebook.com/intern/diff/D70201856)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147025
Approved by: https://github.com/kwen2501
2025-02-26 17:33:22 +00:00
Ke Wen
4879f8f919 [TP] Add warning when module is distributed twice (#147006)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147006
Approved by: https://github.com/XilunWu
2025-02-13 06:49:17 +00:00
Tianyu Liu
ac0f206f3c [dtensor] fix side-effect on dtype for _like ops (#146869)
fixes https://github.com/pytorch/pytorch/issues/146749

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146869
Approved by: https://github.com/yifuwang, https://github.com/janeyx99, https://github.com/ngimel
2025-02-12 08:42:14 +00:00
Xilun Wu
c4d835fbab [DTensor][conv] add DTensor convolution_backward op support for case where the input Tensor has requires_grad=False (#142278)
Fixes #142058

## Summary
DTensor `convolution_backward` op throws exception when the input Tensor has `requires_grad=False` which happens if the conv layer is the first layer in the model.

ATEN convolution_backward op Usually returns 3 Tensors (grad_input, grad_weight, grad_bias) and the `grad_input` is actually an Optional[Tensor] which can be `None` in the case mentioned above.

However, the DTensor sharding propagation rule and corresponding TP conv backward implementation both assume that the `grad_input` would be existent.

## Fix
allow the `grad_input` to be `None` for `convolution_backward` op.

## Test
`pytest test/distributed/tensor/test_convolution_ops.py`

## Follow-up
The current implementation of DTensor conv op also ignores `output_mask` and this may need further care.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142278
Approved by: https://github.com/bdhirsh
2025-02-10 07:06:40 +00:00
Xilun Wu
5cc1b54a91 [2/N][cp][example] flex attention in context parallel (backward pass) (#146397)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146397
Approved by: https://github.com/fegin
ghstack dependencies: #145896
2025-02-06 19:50:02 +00:00
Xilun Wu
6220c64aea [1/N][cp][example] flex attention in context parallel (forward pass) (#145896)
**Description**
This is an example of how FlexAttention can be used in a context parallel fashion. Right now it's only a flex_attention call with collectives added and has no load balancer, but we're about to add the missing parts step by step:
1. backward pass
2. static load balancing for causal masking
3. dynamic load balancing for other general maskings
4. automatic collective insertion solution
5. non-intrusive context parallel APIs

**Test**
`torchrun --standalone --nnodes=1 --nproc-per-node=4 torch/distributed/tensor/examples/flex_attention_cp.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145896
Approved by: https://github.com/fegin, https://github.com/Skylion007
2025-02-06 19:50:02 +00:00
Aaron Gokaslan
292af3cc89 [BE][Ez]: ISC001 Auto concatenate implicit one line strings (#146408)
Apply ruff rule about implicit string concatenation, this autofixes strings that are all the same type and on the same line. These lines are broken up likely as the result of autoformatters in the past. All fixes are automated using the autofixes in ISC001.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146408
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2025-02-04 19:07:04 +00:00
Stas Bekman
3aeccf2a28 DeepSpeed github repo move sync (#146320)
DeepSpeed has moved to a new repo on github https://github.com/deepspeedai/DeepSpeed

This PR updates this repo to use the new URL.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146320
Approved by: https://github.com/awgu
2025-02-03 23:20:49 +00:00
wz337
6f5c8fb128 [DTensor] Add pointwise ops strategy for aten.minimum (#145816)
Need it for Shampoo optimizer.
9c5700ad5e/matrix_functions.py (L240-L242)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145816
Approved by: https://github.com/XilunWu
2025-01-29 01:19:01 +00:00
Xilun Wu
2ce70da96c [cp] override compute_log_sumexp to True for aten._scaled_dot_product_efficient_attention.default if False (#145421)
## Description
Our current CP doesn't support efficient attention when `compute_log_sumexp=False`. `compute_log_sumexp=False` only if that `requires_grad=False` and since PP's [shape inference](d95a6babcc/torch/distributed/pipelining/stage.py (L1387)) happens under `torch.no_grad()` context , we need to override `compute_log_sumexp` to `True` in our CP attention implementation.

## Test
- Test PP+FSDP+CP w/ `mixed_precision = "float32"` in torchtitan

- `pytest test/distributed/tensor/test_attention.py -s -k test_ring_attention_sdpa`

Before:
<img width="1880" alt="image" src="https://github.com/user-attachments/assets/872ff583-295e-4751-a280-cf7f2d41c61a" />

After:
<img width="2988" alt="image" src="https://github.com/user-attachments/assets/4bdcc2e5-22a5-427a-91a5-82206d5bd78f" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145421
Approved by: https://github.com/H-Huang, https://github.com/tianyu-l
2025-01-24 06:17:54 +00:00
Aaron Orenstein
c95efc37ba PEP585 update - torch/distributed/tensor (#145141)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145141
Approved by: https://github.com/bobrenjc93
2025-01-18 20:01:59 +00:00
bobrenjc93
08be9ec312 Migrate from Tuple -> tuple in torch/distributed (#144258)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144258
Approved by: https://github.com/aorenste
2025-01-10 08:34:54 +00:00
Wanchao Liang
b1c2c3967a [dtensor] deprecate _shard_tensor to use src_data_rank=None (#144171)
as titled, we can achieve no comm sharding for the inference case with
src_data_rank=None, so deprecate the private APi

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144171
Approved by: https://github.com/awgu
2025-01-09 22:26:45 +00:00
Andrew Gu
8ac005ddb8 [DTensor] Add aten.view.dtype op support (#144404)
Fixes https://github.com/pytorch/pytorch/issues/144286

Viewing a tensor to a different dtype does not require any redistribution and can use the default strategy.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144404
Approved by: https://github.com/wanchaol
2025-01-08 23:11:22 +00:00
Xuehai Pan
dcc3cf7066 [BE] fix ruff rule E226: add missing whitespace around operator in f-strings (#144415)
The fixes are generated by:

```bash
ruff check --fix --preview --unsafe-fixes --select=E226 .
lintrunner -a --take "RUFF,PYFMT" --all-files
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144415
Approved by: https://github.com/huydhn, https://github.com/Skylion007
2025-01-08 21:55:00 +00:00
Luca Wehrstedt
defbf0d339 [DTensor] Add strategy for _scaled_mm (#143760)
This is done by copying the one for a regular mm, and enforcing that the scales have the same sharding scheme as their respective operands. This works because scales are 2-d tensors that must "broadcast" to the operands. This broadcasting is trivial when scales have dimensions of 1 or N, which is the only options we currently support.

Note, however, that after this PR scales will be allowed to have the mesh's world size as a dimension (in certain cases). This works because, when mapped to the local shard, it becomes a dimension of 1, which can be handled by the operator. Note that when using row-wise _scaled_mm for tensor (sequence) parallelism, this situation arises naturally!

Because of these specificities, the test is rather complex, as it specifically tests all these behaviors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143760
Approved by: https://github.com/tianyu-l
2025-01-06 16:35:47 +00:00
Aaron Orenstein
45ef3309e3 [BE] typing for decorators (#144161)
Summary:
Untyped decorators strip annotations from the decorated items.

- _compile
- _inductor/fx_passes/post_grad
- _inductor/lowering
- _library/custom_ops
- _meta_registrations
- _ops
- _refs/nn/functional
- ao/quantization/quantizer/xnnpack_quantizer_utils
- distributed/_composable/contract
- fx/experimental/graph_gradual_typechecker
- fx/experimental/migrate_gradual_types/constraint_generator
- optim/optimizer
- signal/windows/windows
- testing/_internal/common_device_type
- torch/_inductor/decomposition
- utils/flop_counter

Test Plan: unit tests

Differential Revision: D62302684

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144161
Approved by: https://github.com/Skylion007, https://github.com/albanD
2025-01-04 16:40:09 +00:00
Wanchao Liang
eb7a303d21 [dtensor] expose the __create_chunk_list__ in the doc (#144100)
as titled, this PR expose this dunder method as a public API in the doc,
so that different checkpoint implementations can leverage this protocol,
instead of exposing a separate API

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144100
Approved by: https://github.com/awgu
ghstack dependencies: #144099
2025-01-03 20:06:23 +00:00
Wanchao Liang
48a05ee773 [dtensor] improve doc of the DTensor class (#144099)
as titled: explicitly list all public members to make sure the public
API stays consistent, also use groupwise as the member order to make doc
look better

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144099
Approved by: https://github.com/awgu
2025-01-03 05:35:44 +00:00
Wanchao Liang
0431d47eaa [tp] propagate src_data_rank kwarg in TP API (#144005)
as titled, this PR propagates the src_data_rank in the TP API, so that
module level APIs could leverage the flexibility to choose
src_data_rank, and avoid the communication if it does not need to

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144005
Approved by: https://github.com/tianyu-l
ghstack dependencies: #143883
2025-01-02 05:35:52 +00:00
Wanchao Liang
f242dbb76f [dtensor] add src_data_rank to distribute_tensor API (#143883)
As titled, this PR add a kwarg src_data_rank to the distribute_tensor
API, to allow user specify a specific rank as the full tensor source
data. Previously we by default specify group_rank=0 as the source of
truth for single device semantic, this new option:

* gives advanced user flexiblity to choose the source data rank
* allow user to specify None explicity, which means we will skip the
  communications needed (scatter/broadcast) for the cases that does not
care about single device semantic (i.e. loading from a checkpoint)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143883
Approved by: https://github.com/XilunWu, https://github.com/tianyu-l
2025-01-02 05:35:52 +00:00
Luca Wehrstedt
aec3b46274 [DTensor] Add aten.amin/amax to linear_reduction_strategy (#143747)
In the same vein as https://github.com/pytorch/pytorch/pull/134206, these two ops still seemed missing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143747
Approved by: https://github.com/kwen2501
2024-12-24 13:36:40 +00:00
Xuehai Pan
b77406a9ec [BE][CI] bump ruff to 0.8.4 (#143753)
Changes:

1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
2024-12-24 12:24:10 +00:00
Tom Ritchford
f1cbf4b1b5 Enable ruff's unused variable checking everywhere in pytorch (#136965)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136965
Approved by: https://github.com/cyyever, https://github.com/albanD
2024-12-22 02:33:11 +00:00
bobrenjc93
8e78345d69 remove allow-untyped-defs from distributed/tensor/experimental/__init__.py (#143583)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143583
Approved by: https://github.com/awgu
2024-12-19 20:25:28 +00:00
Aaron Orenstein
401b1498d2 [BE] typing for decorators - distributed/_tensor/ops/utils (#142139)
Test Plan: unit tests

Differential Revision: D62302679

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142139
Approved by: https://github.com/Skylion007, https://github.com/kwen2501
2024-12-16 21:19:33 +00:00
lzhang2
b7ad52abb0 Use new group instead of split group on non-CUDA device (#141469)
Motivation:

Currently, `split_group` only works for NCCL backend. https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py#L4745. Then we need to use `use_group` on other non-CUDA device.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141469
Approved by: https://github.com/kwen2501, https://github.com/gujinghui, https://github.com/albanD
2024-12-13 05:11:33 +00:00
Jane Xu
fd65bd755d [BE] replace incorrect .. note:: invocations (#142868)
Something I've noticed is that a lot of the distributed sites don't render on our docs at all, but if they ever do, the notes will render properly now 😛

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142868
Approved by: https://github.com/albanD
2024-12-11 19:58:18 +00:00