Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
Summary: Make it possible to `torch.jit.load(model, device)` to a device when `model` contains weights that are on device `meta`. Just leave the `meta` weights on `meta`, and load the weights that can be loaded to the target device.
Reviewed By: singlaiiit, RoshanPAN, sayitmemory
Differential Revision: D45099145
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100495
Approved by: https://github.com/houseroad
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
Hi!
I've been fuzzing different pytorch modules, and found a crash inside one of them.
Specifically, I'm talking about a module for unpickling and a function called `Unpickler::readInstruction()`. Running this function with provided crash file results in a crash, which occurs while calling `auto dict = stack_.at(dict_pos).toGenericDict();` [unpickler.cpp:561](0e94fbc0c8/torch/csrc/jit/serialization/unpickler.cpp (L561)). The crash occurs, because the index `dict_pos` is out of bounds (which itself happens because the stack size is 0).
Besides this pull-request, there is another one related to unpickler hardening: https://github.com/pytorch/pytorch/pull/84343
All tests were performed on this pytorch version: [abc54f9314](abc54f9314)
### How to reproduce
1. To reproduce the crash, use provided docker: [Dockerfile](https://github.com/ispras/oss-sydr-fuzz/tree/master/projects/pytorch)
2. Build the container: `docker build -t oss-sydr-fuzz-pytorch-reproduce .`
3. Copy crash file to the current directory:
- [crash-042dff5e121580425d9d34d0f293918f3c9fbf1e.zip](https://github.com/pytorch/pytorch/files/10674361/crash-042dff5e121580425d9d34d0f293918f3c9fbf1e.zip)
4. Run the container: ``docker run --privileged --network host -v `pwd`:/homedir --rm -it oss-sydr-fuzz-pytorch-reproduce /bin/bash``
5. And execute the binary: `/message_deserialize_sydr /homedir/crash-042dff5e121580425d9d34d0f293918f3c9fbf1e`
After execution completes you will see this error message:
```txt
terminate called after throwing an instance of 'std::out_of_range'
what(): vector::_M_range_check: __n (which is 18446744073709551613) >= this->size() (which is 0)
```
And this stacktrace:
```asan
erminate called after throwing an instance of 'std::out_of_range'
what(): vector::_M_range_check: __n (which is 18446744073709551613) >= this->size() (which is 0)
==39== ERROR: libFuzzer: deadly signal
#0 0x5d0df1 in __sanitizer_print_stack_trace /llvm-project/compiler-rt/lib/asan/asan_stack.cpp:87:3
#1 0x545727 in fuzzer::PrintStackTrace() /llvm-project/compiler-rt/lib/fuzzer/FuzzerUtil.cpp:210:5
#2 0x52b933 in fuzzer::Fuzzer::CrashCallback() /llvm-project/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:233:3
#3 0x7f9118e0341f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1441f)
#4 0x7f9118c2300a in raise (/lib/x86_64-linux-gnu/libc.so.6+0x4300a)
#5 0x7f9118c02858 in abort (/lib/x86_64-linux-gnu/libc.so.6+0x22858)
#6 0x7f9119040910 (/lib/x86_64-linux-gnu/libstdc++.so.6+0x9e910)
#7 0x7f911904c38b (/lib/x86_64-linux-gnu/libstdc++.so.6+0xaa38b)
#8 0x7f911904c3f6 in std::terminate() (/lib/x86_64-linux-gnu/libstdc++.so.6+0xaa3f6)
#9 0x7f911904c6a8 in __cxa_throw (/lib/x86_64-linux-gnu/libstdc++.so.6+0xaa6a8)
#10 0x7f91190433aa (/lib/x86_64-linux-gnu/libstdc++.so.6+0xa13aa)
#11 0x63acdf in std::vector<c10::IValue, std::allocator<c10::IValue> >::_M_range_check(unsigned long) const /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/stl_vector.h:1073:4
#12 0xce8f93e in std::vector<c10::IValue, std::allocator<c10::IValue> >::at(unsigned long) /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/stl_vector.h:1094:2
#13 0xce8f93e in torch::jit::Unpickler::readInstruction() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:546:26
#14 0xce8d527 in torch::jit::Unpickler::run() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:235:27
#15 0xce8d1c2 in torch::jit::Unpickler::parse_ivalue() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:192:3
#16 0xcdf0792 in torch::jit::unpickle(std::function<unsigned long (char*, unsigned long)>, std::function<c10::StrongTypePtr (c10::QualifiedName const&)>, c10::ArrayRef<at::Tensor>, c10::Type::SingletonOrSharedTypePtr<c10::Type> (*)(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)) /pytorch_fuzz/torch/csrc/jit/serialization/pickle.cpp:127:20
#17 0xcdf104d in torch::jit::unpickle(char const*, unsigned long, std::function<c10::StrongTypePtr (c10::QualifiedName const&)>, c10::ArrayRef<at::Tensor>, c10::Type::SingletonOrSharedTypePtr<c10::Type> (*)(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)) /pytorch_fuzz/torch/csrc/jit/serialization/pickle.cpp:137:10
#18 0xe0532db in torch::distributed::rpc::ScriptRemoteCall::fromMessage(torch::distributed::rpc::Message const&) /pytorch_fuzz/torch/csrc/distributed/rpc/script_remote_call.cpp:74:16
#19 0xe0ffa10 in torch::distributed::rpc::deserializeRequest(torch::distributed::rpc::Message const&) /pytorch_fuzz/torch/csrc/distributed/rpc/utils.cpp:108:14
#20 0x602a41 in LLVMFuzzerTestOneInput /message_deserialize_fuzz.cc:192:27
#21 0x52ce61 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) /llvm-project/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:611:15
#22 0x516d7c in fuzzer::RunOneTest(fuzzer::Fuzzer*, char const*, unsigned long) /llvm-project/compiler-rt/lib/fuzzer/FuzzerDriver.cpp:324:6
#23 0x51cacb in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) /llvm-project/compiler-rt/lib/fuzzer/FuzzerDriver.cpp:860:9
#24 0x546062 in main /llvm-project/compiler-rt/lib/fuzzer/FuzzerMain.cpp:20:10
#25 0x7f9118c04082 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x24082)
#26 0x51169d in _start (/message_deserialize_fuzz+0x51169d)
NOTE: libFuzzer has rudimentary signal handlers.
Combine libFuzzer with AddressSanitizer or similar for better crash reports.
SUMMARY: libFuzzer: deadly signal
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94300
Approved by: https://github.com/malfet, https://github.com/apach301
Fixes #ISSUE_NUMBER
1、torch.jit.load for custom device
```
# custom device named `foo`
ts_model = torch.jit.script(mode.to(device="foo"))
ts_model.save("./ts.pt") # it is a script model on device `foo`
# and then we want to load it and run it
torch.jit.load("./ts.pt")
```
2、 add some extra key for custom device with `privateuse1`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99535
Approved by: https://github.com/albanD
The strategy is that we will heap allocate a LargeNegativeIntSymNodeImpl whenever we have a large negative int, so that we can keep the old `is_symbolic` test (now called `is_heap_allocated`) on SymInt. Whenever we need to do something with these ints, though, we convert them back into a plain `int64_t` (and then, e.g., wrap it in whatever user specificed SymNodeImpl they need.) We cannot wrap directly in the user specified SymNodeImpl as we generally do not know what the "tracing context" is from C++. We expect large negative ints to be rare, so we don't apply optimizations like singleton-ifying INT_MIN. Here's the order to review:
* c10/core/SymInt.h and cpp
* `is_symbolic` renamed to `is_heap_allocated` as I needed to audit all use sites: the old `is_symbolic` test would return true for large negative int, but it would be wrong to then try to dispatch on the LargeNegativeIntSymNodeImpl which supports very few operations. In this file, I had to update expect_int,
* If you pass in a large negative integer, we instead heap allocate it in `promote_to_negative`. The function is written in a funny way to keep compact constructor code for SymInt (the heap allocation happens out of line)
* clone is now moved out-of-line
* New method maybe_as_int which will give you a constant int if it is possible, either because it's stored inline or in LargeNegativeIntSymNodeImpl. This is the preferred replacement for previous use of is_symbolic() and then as_int_unchecked().
* Rename toSymNodeImpl to toSymNode, which is more correct (since it returns a SymNode)
* Complete rewrite of `normalize_symints.cpp` to use new `maybe_as_int`. Cannot easily use the old code structure, so it's now done doing a macro and typing out each case manually (it's actually not that bad.)
* Reimplementations of all the unary operators by hand to use `maybe_as_int`, relatively simple.
* c10/core/LargeNegativeIntSymNodeImpl.h - Just stores a int64_t value, but it has to be big and negative. Most methods are not implemented, since we will rewrap the large negative int in the real SymNodeImpl subclass before doing operations with it
* The rest of the files are just rewriting code to use `maybe_as_int`. There is a nontrivial comment in c10/core/SymIntArrayRef.h
Very minor test adjustment in c10/test/core/SymInt_test.cpp . Plan to exercise this properly in next PR.
Companion XLA PR: https://github.com/pytorch/xla/pull/4882
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99157
Approved by: https://github.com/albanD
Summary: The support of BINUNICODE8 is missing. So adding it. So we can support attributes > 4GB. For example, for very large model, we save the lowered model in the EngineHolder using a string attribute.
Test Plan: buck2 test mode/opt //caffe2/test:jit -- --exact 'caffe2/test:jit - test_save_load_large_string_attribute (jit.test_save_load.TestSaveLoad)'
Differential Revision: D44905770
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99104
Approved by: https://github.com/qihqi
Number of OSS PR were reverted, because new signed-unsigned comparison warnings, which are treated as errors in some internal builds.
Not sure how those selective rules are applied, but this PR removes `-Wno-sign-compare` from PyTorch codebase.
The only tricky part in this PR, as making sure that non-ASCII character detection works for both signed and unsigned chars here:
6e3d51b08a/torch/csrc/jit/serialization/python_print.cpp (L926)
Exclude several files from sign-compare if flash attention is used, due to the violation in cutlass, to be fixed by https://github.com/NVIDIA/cutlass/pull/869
Do not try to fix sign compare violations in caffe2 codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96723
Approved by: https://github.com/albanD
Hi!
I've been fuzzing different pytorch modules, and found a few crashes.
Proposed checks fixes multiple segmentation faults and heap buffer overflows that was found during fuzzing pytorch with [sydr-fuzz](https://github.com/ispras/oss-sydr-fuzz/tree/master/projects/pytorch).
### Crash files ###
1) Heap buffer overflow that leads to crash
[crash-842314913bf1820ec19cddfbb7400ffdbb756920.zip](https://github.com/pytorch/pytorch/files/9461316/crash-842314913bf1820ec19cddfbb7400ffdbb756920.zip)
```
"AsanReport": [
"==3751==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x619000033478 at pc 0x0000005f9bc3 bp 0x7fffffff1eb0 sp 0x7fffffff1ea8\n",
"READ of size 4 at 0x619000033478 thread T0\n",
"[Detaching after fork from child process 3762]\n",
" #0 0x5f9bc2 in c10::IValue::IValue(c10::IValue&&) /pytorch_fuzz/aten/src/ATen/core/ivalue.h:192:43\n",
" #1 0x9ecd0a7 in torch::jit::pop(std::vector<c10::IValue, std::allocator<c10::IValue> >&) /pytorch_fuzz/aten/src/ATen/core/stack.h:102:12\n",
" #2 0x9ecd0a7 in torch::jit::Unpickler::readInstruction() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:380:17\n",
" #3 0x9ecafc7 in torch::jit::Unpickler::run() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:226:27\n",
" #4 0x9ecac62 in torch::jit::Unpickler::parse_ivalue() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:183:3\n",
" #5 0x9e45996 in torch::jit::unpickle(std::function<unsigned long (char*, unsigned long)>, std::function<c10::StrongTypePtr (c10::QualifiedName const&)>, c10::ArrayRef<at::Tensor>, c10::Type::SingletonOrSharedTypePtr<c10::Type> (*)(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)) /pytorch_fuzz/torch/csrc/jit/serialization/pickle.cpp:127:20\n",
" #6 0x9e4626d in torch::jit::unpickle(char const*, unsigned long, std::function<c10::StrongTypePtr (c10::QualifiedName const&)>, c10::ArrayRef<at::Tensor>, c10::Type::SingletonOrSharedTypePtr<c10::Type> (*)(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)) /pytorch_fuzz/torch/csrc/jit/serialization/pickle.cpp:137:10\n",
```
2) Segmentation fault
[crash-e690c58718e88921350562f0b4d9180938145d77.zip](https://github.com/pytorch/pytorch/files/9461331/crash-e690c58718e88921350562f0b4d9180938145d77.zip)
```
"AsanReport": [
"==3744==ERROR: AddressSanitizer: SEGV on unknown address (pc 0x000009122754 bp 0x7fffffff5290 sp 0x7fffffff5270 T0)\n",
"==3744==The signal is caused by a READ memory access.\n",
"==3744==Hint: this fault was caused by a dereference of a high value address (see register values below). Disassemble the provided pc to learn which register was used.\n",
"[Detaching after fork from child process 3763]\n",
" #0 0x9122754 in c10::intrusive_ptr<torch::jit::Tree, c10::detail::intrusive_target_default_null_type<torch::jit::Tree> >::retain_() /pytorch_fuzz/c10/util/intrusive_ptr.h:269:54\n",
" #1 0x9127929 in c10::intrusive_ptr<torch::jit::Tree, c10::detail::intrusive_target_default_null_type<torch::jit::Tree> >::intrusive_ptr(c10::intrusive_ptr<torch::jit::Tree, c10::detail::intrusive_target_default_null_type<torch::jit::Tree> > const&) /pytorch_fuzz/c10/util/intrusive_ptr.h:352:5\n",
" #2 0x9127929 in torch::jit::Expr::Expr(c10::intrusive_ptr<torch::jit::Tree, c10::detail::intrusive_target_default_null_type<torch::jit::Tree> > const&) /pytorch_fuzz/torch/csrc/jit/frontend/tree_views.h:269:49\n",
" #3 0x91b1bbb in torch::jit::Maybe<torch::jit::Expr>::get() const /pytorch_fuzz/torch/csrc/jit/frontend/tree_views.h:211:12\n",
" #4 0x92a8f74 in torch::jit::ScriptTypeParser::parseClassConstant(torch::jit::Assign const&) /pytorch_fuzz/torch/csrc/jit/frontend/script_type_parser.cpp:461:41\n",
" #5 0x9e1c09b in torch::jit::SourceImporterImpl::importClass(c10::QualifiedName const&, torch::jit::ClassDef const&, bool) /pytorch_fuzz/torch/csrc/jit/serialization/import_source.cpp:549:34\n",
" #6 0x9e13f00 in torch::jit::SourceImporterImpl::importNamedType(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, torch::jit::ClassDef const&) /pytorch_fuzz/torch/csrc/jit/serialization/import_source.cpp:288:5\n",
" #7 0x9e11fbc in torch::jit::SourceImporterImpl::findNamedType(c10::QualifiedName const&) /pytorch_fuzz/torch/csrc/jit/serialization/import_source.cpp:140:5\n",
```
3) Unhandled out of bounds access in a vector
[crash-ccd524e7ba19a37982dd91e0d6fc06bb26dd0b10.zip](https://github.com/pytorch/pytorch/files/9461367/crash-ccd524e7ba19a37982dd91e0d6fc06bb26dd0b10.zip)
```
"AsanReport": [
"==3792== ERROR: libFuzzer: deadly signal\n",
"[Detaching after fork from child process 3809]\n",
" #0 0x59cc11 in __sanitizer_print_stack_trace /llvm-project/compiler-rt/lib/asan/asan_stack.cpp:87:3\n",
" #1 0x511547 in fuzzer::PrintStackTrace() /llvm-project/compiler-rt/lib/fuzzer/FuzzerUtil.cpp:210:5\n",
" #2 0x4f7753 in fuzzer::Fuzzer::CrashCallback() /llvm-project/compiler-rt/lib/fuzzer/FuzzerLoop.cpp:233:3\n",
" #3 0x7ffff7c6741f (/lib/x86_64-linux-gnu/libpthread.so.0+0x1441f)\n",
" #4 0x7ffff7a8700a in __libc_signal_restore_set /build/glibc-SzIz7B/glibc-2.31/signal/../sysdeps/unix/sysv/linux/internal-signals.h:86:3\n",
" #5 0x7ffff7a8700a in raise /build/glibc-SzIz7B/glibc-2.31/signal/../sysdeps/unix/sysv/linux/raise.c:48:3\n",
" #6 0x7ffff7a66858 in abort /build/glibc-SzIz7B/glibc-2.31/stdlib/abort.c:79:7\n",
" #7 0x7ffff7e73910 (/lib/x86_64-linux-gnu/libstdc++.so.6+0x9e910)\n",
" #8 0x7ffff7e7f38b (/lib/x86_64-linux-gnu/libstdc++.so.6+0xaa38b)\n",
" #9 0x7ffff7e7f3f6 in std::terminate() (/lib/x86_64-linux-gnu/libstdc++.so.6+0xaa3f6)\n",
" #10 0x7ffff7e7f6a8 in __cxa_throw (/lib/x86_64-linux-gnu/libstdc++.so.6+0xaa6a8)\n",
" #11 0x7ffff7e763aa (/lib/x86_64-linux-gnu/libstdc++.so.6+0xa13aa)\n",
" #12 0x6aeedf in std::vector<c10::IValue, std::allocator<c10::IValue> >::_M_range_check(unsigned long) const /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/stl_vector.h:1073:4\n",
" #13 0x9ecd66c in torch::jit::Unpickler::readInstruction() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp\n",
" #14 0x9ecafc7 in torch::jit::Unpickler::run() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:226:27\n",
" #15 0x9ecac62 in torch::jit::Unpickler::parse_ivalue() /pytorch_fuzz/torch/csrc/jit/serialization/unpickler.cpp:183:3\n",
```
Some other crashes found by fuzzer:
[crash-0cab888cbd1e9fea92ab6ddeadf40b958b87d62b.zip](https://github.com/pytorch/pytorch/files/9461406/crash-0cab888cbd1e9fea92ab6ddeadf40b958b87d62b.zip)
[crash-04c9ba8e3b0f15028fd0fb0ed014fd352e182a1d.zip](https://github.com/pytorch/pytorch/files/9461407/crash-04c9ba8e3b0f15028fd0fb0ed014fd352e182a1d.zip)
[crash-422ad8c3a3472980ba751f4c7f79cf2b53e49927.zip](https://github.com/pytorch/pytorch/files/9461408/crash-422ad8c3a3472980ba751f4c7f79cf2b53e49927.zip)
### How to reproduce ###
1. To reproduce the crashes, use provided docker: [Dockerfile](https://github.com/ispras/oss-sydr-fuzz/blob/master/projects/pytorch/Dockerfile)
2. Build the container: `docker build -t oss-sydr-fuzz-pytorch-reproduce .`
3. Copy crash file to the current directory
4. Run the container: `` docker run --privileged --network host -v `pwd`:/homedir --rm -it oss-sydr-fuzz-pytorch-reproduce /bin/bash ``
5. And execute fuzz-targets with provided crash-files.
After execution completes you will see ASAN reports.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94815
Approved by: https://github.com/davidberard98
Fix#82589
Why:
1. **full_check** works in `onnx::checker::check_model` function as it turns on **strict_mode** in `onnx::shape_inference::InferShapes()` which I think that was the intention of this part of code.
2. **strict_mode** catches failed shape type inference (invalid ONNX model from onnx perspective) and ONNXRUNTIME can't run these invalid models, as ONNXRUNTIME actually rely on ONNX shape type inference to optimize ONNX graph. Why we don't set it True for default? >>> some of existing users use other platform, such as caffe2 to run ONNX model which doesn't need valid ONNX model to run.
3. This PR doesn't change the original behavior of `check_onnx_proto`, but add a warning message for those models which can't pass strict shape type inference, saying the models would fail on onnxruntime.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83186
Approved by: https://github.com/justinchuby, https://github.com/thiagocrepaldi, https://github.com/jcwchen, https://github.com/BowenBao
We want to make TorchRec sharded models TorchScriptable.
TorchRec sharded models uses generic types Awaitable[W] and LazyAwaitable[W] (https://github.com/pytorch/torchrec/blob/main/torchrec/distributed/types.py#L212).
In sharded model those types are used instead of contained type W, having the initialization function that produces object of type W.
At the moment when the first attribute of W is requested - `LazyAwaitable[W]` will call its initialization function (on the same stack), cache the result inside and work transparently as an object of W. So we can think about it as a delayed object initialization.
To support this behavior in TorchScript - we propose a new type to TorchScript - `Await`.
In eager mode it works the same as `LazyAwaitable[W]` in TorchRec, being dynamically typed - acting as a type `W` while it is `Await[W]`.
Within torchscript it is `Await[W]` and can be only explicitly converted to W, using special function `torch.jit.awaitable_wait(aw)`.
Creation of this `Await[W]` is done via another special function `torch.jit.awaitable(func, *args)`.
The semantic is close to `torch.jit.Future`, fork, wait and uses the same jit mechanics (inline fork Closures) with the difference that it does not start this function in parallel on fork. It only stores as a lambda inside IValue that will be called on the same thread when `torch.jit.awaitable_wait` is called.
For example (more examples in this PR `test/jit/test_await.py`)
```
def delayed(z: Tensor) -> Tensor:
return Tensor * 3
@torch.jit.script
def fn(x: Tensor):
aw: Await[int] = torch.jit._awaitable(delayed, 99)
a = torch.eye(2)
b = torch.jit._awaitable_wait(aw)
return a + b + x
```
Functions semantics:
`_awaitable(func -> Callable[Tuple[...], W], *args, **kwargs) -> Await[W]`
Creates Await object, owns args and kwargs. Once _awaitable_wait calls, executes function func and owns the result of the function. Following _awaitable_wait calls will return this result from the first function call.
`_awaitable_wait(Await[W]) -> W`
Returns either cached result of W if it is not the first _awaitable_wait call to this Await object or calls specified function if the first.
`_awaitable_nowait(W) -> Await[W]`
Creates trivial Await[W] wrapper on specified object To be type complaint for the corner cases.
Differential Revision: [D42502706](https://our.internmc.facebook.com/intern/diff/D42502706)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90863
Approved by: https://github.com/davidberard98
Not only is this change usually shorter and more readable, it also can yield better performance. size() is not always a constant time operation (such as on LinkedLists), but empty() always is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93236
Approved by: https://github.com/malfet
Replace cpp string comparisons with more efficient equality operators. These string comparisons are not just more readable, but they also allow for short-circuiting for faster string equality checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92765
Approved by: https://github.com/ezyang
Apply clang-tidy readability-data-pointer fixits. This essentially uses the data() method when possible instead of the less readable `&vec[0]` to get the address of the underlying backing implementation. Not only is this more readable, it is safer as it allows you to retrieve the pointer even when the std::vector or std::string is empty without throwing an index error.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92755
Approved by: https://github.com/ezyang
As we live in C++17 world
This is a functional no-op, just
- `s/namespace at { namespace native {/namespace at::native {/`
- `s/namespace torch { namespace jit {/namespace torch::jit {/`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92100
Approved by: https://github.com/izaitsevfb
Apply clang-tidy check modernize-use-emplace. This is slightly more efficient by using an inplace constructor and is the recommended style in parts of the codebase covered by clang-tidy. This just manually applies the check to rest of the codebase. Pinging @ezyang as this is related to my other PRs he reviewed like #89000
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91077
Approved by: https://github.com/ezyang
Fixes#81690
TODO:
* [x] C++ Unpickler Fix (locally tested pickled in Python and unpickled in C++)
* [x] C++ Pickler Fix (locally tested pickled in C++ and unpickled in Python)
* [x] Do quant_tensor, sparse_tensor, etc require similar changes? (Sparse and Quant don't need this)
* [x] Add Comments
* [x] How to make sure C++ and Python are in sync? (Functions in `pickler.h` help in getting and setting Tensor Metadata (math-bits for now) on a tensor. They are the only place which should handle this.)
Notes:
Quant Tensor don't support complex dtypes and for float they segfault with `_neg_view` : https://github.com/pytorch/pytorch/issues/88484
Sparse Tensor:
```python
>>> a = torch.tensor([[0, 2.], [3j, 0]]).to_sparse()
>>> a.conj().is_conj()
False
>>> a._neg_view()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError: Cannot access storage of SparseTensorImpl
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88182
Approved by: https://github.com/ezyang, https://github.com/anjali411
Summary:
reland after fixing windows build failure for OVR.
Notable change:
```
#if defined(FBCODE_CAFFE2) or defined(FB_XPLAT_BUILD)
```
changed to
```#if defined(FBCODE_CAFFE2) || defined(FB_XPLAT_BUILD)
```
Appearently `-DFB_XPLAT_BUILD` wasn't getting picked up in windows if using `or `to connect
Original commit changeset: 7a31fc4b455f
Original Phabricator Diff: D40198461
Test Plan: waitforsandcastle
Reviewed By: davidberard98, cccclai
Differential Revision: D40290932
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87124
Approved by: https://github.com/gmagogsfm
Sometimes the driving process want to save memory snapshots but isn't Python.
Add a simple API to turn it on without python stack traces. It still
saves to the same format for the vizualization and summary scripts, using
the C++ Pickler.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86190
Approved by: https://github.com/ezyang
Summary: `IValue::toString()` creates a `new c10::intrusive_ptr` (like `std::shared_ptr`) and `->string()` immediately accesses it, creating an atomic reference increment/decrement. We can skip both of these operations by calling `IValue::toStringRef()`.
Test Plan: CI
Reviewed By: jaybean-dev
Differential Revision: D39605242
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85437
Approved by: https://github.com/jfix71
- Support storing SymFloat in IValue
- Add SymFloat to JIT type system (erases to float)
- Printing support for SymFloat
- add/sub/mul/truediv operator support for SymFloat
- Support truediv on integers, it returns a SymFloat
- Support parsing SymFloat from Python object
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85411
Approved by: https://github.com/albanD
Introduce `_jit_pass_onnx_assign_node_and_value_names` to parse and assign
scoped name for nodes and values in exported onnx graph.
Module layer information is obtained from `ONNXScopeName` captured in `scope`
attribute in nodes. For nodes, the processed onnx node name are stored in
attribute `onnx_name`. For values, the processed onnx output name are stored
as `debugName`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82040
Approved by: https://github.com/AllenTiTaiWang, https://github.com/justinchuby, https://github.com/abock
Introduce `_jit_pass_onnx_assign_node_and_value_names` to parse and assign
scoped name for nodes and values in exported onnx graph.
Module layer information is obtained from `ONNXScopeName` captured in `scope`
attribute in nodes. For nodes, the processed onnx node name are stored in
attribute `onnx_name`. For values, the processed onnx output name are stored
as `debugName`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82040
Approved by: https://github.com/AllenTiTaiWang, https://github.com/justinchuby, https://github.com/abock
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Context: In order to avoid the cluttering of the `torch.nn` namespace
the quantized modules namespace is moved to `torch.ao.nn`.
The list of the `nn.quantized` files that are being migrated:
- [ ] `torch.nn.quantized` → `torch.ao.nn.quantized`
- [X] `torch.nn.quantized.functional` → `torch.ao.nn.quantized.functional`
- [X] `torch.nn.quantized.modules` → `torch.ao.nn.quantized.modules`
- [X] [Current PR] `torch.nn.quantized.dynamic` → `torch.ao.nn.quantized.dynamic`
- [ ] `torch.nn.quantized._reference` → `torch.ao.nn.quantized._reference`
- [ ] `torch.nn.quantizable` → `torch.ao.nn.quantizable`
- [ ] `torch.nn.qat` → `torch.ao.nn.qat`
- [ ] `torch.nn.qat.modules` → `torch.ao.nn.qat.modules`
- [ ] `torch.nn.qat.dynamic` → `torch.ao.nn.qat.dynamic`
- [ ] `torch.nn.intrinsic` → `torch.ao.nn.intrinsic`
- [ ] `torch.nn.intrinsic.modules` → `torch.ao.nn.intrinsic.modules`
- [ ] `torch.nn.intrinsic.qat` → `torch.ao.nn.intrinsic.qat`
- [ ] `torch.nn.intrinsic.quantized` → `torch.ao.nn.intrinsic.quantized`
- [ ] `torch.nn.intrinsic.quantized.modules` → `torch.ao.nn.intrinsic.quantized.modules`
- [ ] `torch.nn.intrinsic.quantized.dynamic` → `torch.ao.nn.intrinsic.quantized.dynamic`
Majority of the files are just moved to the new location.
However, specific files need to be double checked:
- [Documentation](docs/source/quantization-support.rst) @vkuzo
- [Public API test list](test/allowlist_for_publicAPI.json) @peterbell10
- [BC test](test/quantization/bc/test_backward_compatibility.py) @vkuzo
- [IR emitter](torch/csrc/jit/frontend/ir_emitter.cpp) @jamesr66a
- [JIT serialization](torch/csrc/jit/serialization/import_source.cpp) @IvanKobzarev @jamesr66a
Differential Revision: [D36860660](https://our.internmc.facebook.com/intern/diff/D36860660/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D36860660/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78714
Approved by: https://github.com/jerryzh168
Summary:
Say we have a list as dynamic type, we'd have something like:
D<1>[D<2>] (numbers are made up). Before this change, it will emit as List[D<2>]. I.e. making the first dynamic type legible. But leaves the nested type unchanged.
After this change it would show up as List[str]. (also changing D<2> to whatever it corresponds to).
Fixes backport issue in task.
Test Plan:
thrift fiddle
{F759935604}
Reviewed By: zhxchen17
Differential Revision: D38561471
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83218
Approved by: https://github.com/zhxchen17
Hide the flatbuffers types and headers from the serialize APIs, and stop using the DEPRECATED functions from flatbuffer_loader.h.
This required creating the new `DetachedBuffer` type to replace/hide `flatbuffers::DetachedBuffer`, a class that owns a span of custom-allocated memory.
This is another step towards hiding the flatbuffers types and headers from the load/serialize APIs.
Differential Revision: [D38292798](https://our.internmc.facebook.com/intern/diff/D38292798/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D38292798/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82619
Approved by: https://github.com/qihqi
As per torch.jit.load documentation, all previously saved modules,
irrespective of their device, are first loaded onto CPU, and then
are moved to the devices they were saved from. So far, supported
devices included CPU and CUDA only. To enable torch.jit.load for
HPU, additional check for HPU is introduced.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81759
Approved by: https://github.com/eellison
Summary:
Remove code dup in import.cpp / export_modules.cpp such that
1. Only one copy of switching logic (detect flatbuffer / is_flatbuffer);
2. Move detection of includeness of flatbuffer to runtime (so no more macros)
This also reverts the dependency of import.cpp -> flatbuffer_loader.cpp to flatbuffer_loader.cpp -> import.cpp.
Differential Revision: D36926217
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79184
Approved by: https://github.com/zhxchen17
Summary: Move storage saving to last step, because otherwise tensors saved after storage are already saved will not have storage.
Test Plan: Tested by loading the file in `clowder get GLDGLQnKrIsQFg8DAPxq9vg59ZwZbmQwAAAA orig.pt` and converting to flatbuffer and load again
Differential Revision: D36552645
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78024
Approved by: https://github.com/Jack-Khuu
This makes prims look as if they were defined in native_functions.yaml
but they're still all written in Python. You now need to give a full
schema string for your prims. The returned prim object is now
torch.ops.prim overload (prims are not allowed to be overloaded,
so we return the overload, not the overload packet, for speed.)
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77117
Approved by: https://github.com/mruberry, https://github.com/albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73284
Some important ops won't support optional type until opset 16,
so we can't fully test things end-to-end, but I believe this should
be all that's needed. Once ONNX Runtime supports opset 16,
we can do more testing and fix any remaining bugs.
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D34625646
Pulled By: malfet
fbshipit-source-id: 537fcbc1e9d87686cc61f5bd66a997e99cec287b
Co-authored-by: BowenBao <bowbao@microsoft.com>
Co-authored-by: neginraoof <neginmr@utexas.edu>
Co-authored-by: Nikita Shulga <nshulga@fb.com>
(cherry picked from commit 822e79f31ae54d73407f34f166b654f4ba115ea5)
Summary:
This enables previous change made at D35196883 (b34b192d6b)
Previous change is landed for 2 weeks to make sure that the format change introduced here will be handed in code.
Test Plan: existing tests
Differential Revision: D36074453
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76688
Approved by: https://github.com/gmagogsfm
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76197
some class only have setstate but not getstate. Those should be able to serialize correctly.
Test Plan:
by hand
`buck run fbcode/mode/dbg xplat/caffe2/fb/lite_predictor:convert_model -- --model=$HOME/models/pytorchmodel_from_manifold.pt --output_name=$HOME/models/pytorchmodel.ff --use_original_bytecode=1`
the model above is a .pt file created using version 4 of bytecode. In particular, __setstate__ is serialized there but __getstate__ is not.
Reviewed By: pavithranrao
Differential Revision: D35827479
fbshipit-source-id: 3d3fdb63d20d41170eac46d076b162d213169f96
(cherry picked from commit 13e966e5c62ce3faf85e8f8fe20e50ad9bb240e5)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76164
For the case `Dict[int, Tuple[Tensor, Tensor]]`, the value type is a `Tuple`, and their qualified name should be `(Tensor, Tensor)`. Their definition won't be in compilation unit, but type parse can parse it easily. We can just use the default string `(Tensor, Tensor)` directly.
ghstack-source-id: 154517975
Test Plan:
```
[chenlai@1833.od /data/sandcastle/boxes/fbsource/fbcode (aba59247a|remote/fbcode/warm)]$ buck test //smart/pytorch_mobile/backport_service:handler_test
Starting new Buck daemon...
Buck daemon started.
DEBUG: /data/sandcastle/boxes/fbsource/tools/build_defs/fbcode_macros/build_defs/lib/cpp_common.bzl:287:14: Using disallowed linker flag 'ANativeActivity_onCreate' in library rule 'fbsource//third-party/toolchains/android-ndk:r18b_native_app_glue'
DEBUG: /data/sandcastle/boxes/fbsource/tools/build_defs/fbcode_macros/build_defs/lib/cpp_common.bzl:287:14: Using disallowed linker flag 'arvr/third-party/toolchains/platform009/build/mesa/lib/libGL.so' in library rule 'fbsource//third-party/toolchains:opengl'
DEBUG: /data/sandcastle/boxes/fbsource/tools/build_defs/fbcode_macros/build_defs/lib/cpp_common.bzl:287:14: Using disallowed linker flag 'arvr/third-party/freeglut/3.0.0/libs/x64-linux/libglut.a' in library rule 'fbsource//third-party/toolchains:GLUT'
Parsing buck files: finished in 26.8 sec
Creating action graph: finished in 59.3 sec
[RE] Metadata: Session ID=[https://fburl.com/b/reSessionID-2ba31fa4-af8e-4de8-abba-76f0f1f91e45]
[RE] Waiting on 0 remote actions. Completed 45 actions remotely, action cache hit rate: 0.00%.
Downloaded 12580/12786 artifacts, 985.44 Mbytes, 0.8% cache miss (for updated rules)
Building: finished in 01:53.8 min (100%) 30935/30935 jobs, 12722/30935 updated
Total time: 03:20.0 min
More details at https://www.internalfb.com/intern/buck/build/c3bdc062-413e-4646-9ac4-79cef0af8297
BUILD SUCCEEDED
Tpx test run coordinator for Facebook. See https://fburl.com/tpx for details.
Running with tpx session id: a7cd4116-3ee3-4db2-9018-9a7c719a4d7b
Trace available for this run at /tmp/tpx-20220420-213554.773515-a7cd4116-3ee3-4db2-9018-9a7c719a4d7b/trace.log
RemoteExecution session id: reSessionID-a7cd4116-3ee3-4db2-9018-9a7c719a4d7b-tpx
Started reporting to test run: https://www.internalfb.com/intern/testinfra/testrun/3940649774928947
✓ ListingSuccess: smart/pytorch_mobile/backport_service:handler_test : 2 tests discovered (45.162)
✓ Pass: smart/pytorch_mobile/backport_service:handler_test - test_illegal_version_exception (smart.pytorch_mobile.backport_service.handler_test.BackportServiceTest) (0.398)
✓ Pass: smart/pytorch_mobile/backport_service:handler_test - test_backport (smart.pytorch_mobile.backport_service.handler_test.BackportServiceTest) (21.871)
Summary
Pass: 2
ListingSuccess: 1
```
Reviewed By: malfet, pavithranrao, guangy10
Differential Revision: D35805700
fbshipit-source-id: d40288715ec336c06dc8a91244dd5576b0af287c
(cherry picked from commit e908737fc37901ff2cb153936e3a57074146ba3a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76187
The file `torch/csrc/jit/serialization/mobile_bytecode_generated.h` should be a generated file not edited by hand anymore. for internal usage please use `caffe2:mobile_byecode`. For OSS, until it is generated on thee fly, this checked in file will be used.
ghstack-source-id: 154485024
(Note: this ignores all push blocking failures!)
Test Plan: CI
Reviewed By: qihqi
Differential Revision: D35822915
fbshipit-source-id: d64e2a270f58c82cccafdd9139e080af923b314d
(cherry picked from commit 80ee9f4bdd6cf371abcb1551889c5c2068942942)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75996
Nested NamedTuple is supported when loading the model. However one case is missing when exporting the model. if it's the first layer, we haven't covered the `Dict` type yet.
Before:
```
// ty is a generic type pointer and can be any type
for (const TypePtr& ty : mobile_code.types_) {
std::string type_str = get_type_str(t);
if (t is TupleType) do B
}
```
After:
```
for (const TypePtr& ty : mobile_code.types_) {
std::string type_str = get_type_str(t);
if (t is DictType) do A
else if (t is TupleType) do B
}
```
ghstack-source-id: 154292348
Test Plan:
Use the uploaded model from Everstore: `GBE5xgh6J6T0ZfsAAAhQ7n_pxB90br0LAAAP`. Get it by `clowder get GBE5xgh6J6T0ZfsAAAhQ7n_pxB90br0LAAAP namedtuple.ptl`.
```
TEST(LiteInterpreterTest, DebugDper) {
std::string path =
"/data/sandcastle/boxes/fbsource/fbcode/caffe2/test/cpp/jit/namedtuple.ptl";
// mobile::Module bc = _load_for_mobile(path);
Module jit_m = load(path);
std::string resave_path =
"/data/sandcastle/boxes/fbsource/fbcode/caffe2/test/cpp/jit/namedtuple_reave.ptl";
jit_m._save_for_mobile(resave_path);
mobile::Module bc = _load_for_mobile(resave_path);
}
```
```
buck test //caffe2/test/cpp/jit:jit -- --exact 'caffe2/test/cpp/jit:jit - LiteInterpreterTest.DebugDper'
buck test mode/opt-split-dwarf //dper3/dper3/modules/tests:id_score_list_to_id_list_test
```
Reviewed By: iseeyuan
Differential Revision: D35705480
fbshipit-source-id: b8da2e720b8ca247bb40f13b67b75b5a04709f7a
(cherry picked from commit 73bb6f9ddbefcd7e55e8660a9b55ae6b9eb9759c)
Summary:
## Original commit message:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73368
debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.
Test Plan:
## Original Test plan
unit test
Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K archive/xl_model_weights
3.7M archive/extra
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K archive/code/__torch__/caffe2/torch/fb
8.0K archive/code/__torch__/caffe2/torch
8.0K archive/code/__torch__/caffe2
20M archive/code/__torch__/torch/fx/graph_module
20M archive/code/__torch__/torch/fx
8.0K archive/code/__torch__/torch/classes
20M archive/code/__torch__/torch
20M archive/code/__torch__
20M archive/code
2.7M archive/constants
35M archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K resaved/extra
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K resaved/code/__torch__/caffe2/torch/fb
8.0K resaved/code/__torch__/caffe2/torch
8.0K resaved/code/__torch__/caffe2
1.3M resaved/code/__torch__/torch/fx/graph_module
1.3M resaved/code/__torch__/torch/fx
8.0K resaved/code/__torch__/torch/classes
1.4M resaved/code/__torch__/torch
1.4M resaved/code/__torch__
1.4M resaved/code
2.7M resaved/constants
13M resaved
[qihan@devvm5585.vll0 ~]$
```
## Additional test:
`buck test mode/dev-tsan //caffe2/benchmarks/static_runtime:static_runtime_cpptest -- --exact 'caffe2/benchmarks/static_runtime:static_runtime_cpptest - StaticRuntime.to'` passes
test jest.fbios.startup_cold_start.local.simulator f333356873 -
Differential Revision: D35196883
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74869
Approved by: https://github.com/gmagogsfm
This PR introduces 3 BC changes:
First, this PR propagates `BUILD_CAFFE2` flag to `libtorch` and `libtorch_python`, which is necessary for non-caffe2 ONNX runtimes when using `ONNX_ATEN_FALLBACK` operator export type.
Second, as a complement of https://github.com/pytorch/pytorch/pull/68490, this PR refactors Caffe2's Aten ops symbolics to consider not only the `operator_export_type` (aka `ONNX_ATEN_FALLBACK`) to emit Caffe2 Aten ops, but also whether `BUILD_CAFFE2` (which is called `torch.onnx._CAFFE2_ATEN_FALLBACK` in python binding) is set.
Lastly, it renames `onnx::ATen` to `aten::ATen` for ONNX spec consistency in a BC fashion.
ONNX doesn't have `ATen` op on its spec, but PyTorch ONNX converter emits them. Non-Caffe2 backend engines would be mislead by such operator's name/domain. A non-ideal workaround would be to have Aten ops handled based on its name and ignore the (non-complaint) domain. Moreover, users could incorrectly file bugs to either ONNX or ONNX Runtime when they inspect the model and notice the presence of an unspecified ONNX operator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73954
Approved by: https://github.com/BowenBao, https://github.com/malfet, https://github.com/garymm, https://github.com/jiafatom
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75201
In this diff:
1. Bump supported version to 9, which will serve as a placeholder for upcoming version bump to v9 for flatbuffer format migration.
2. Implements backport from v9 flatbuffer file to v8 pickle file.
ghstack-source-id: 153225189
(Note: this ignores all push blocking failures!)
Test Plan:
fb:
```
cd ~/fbsource/fbcode/ && buck test -c fbcode.caffe2_enable_flatbuffer=1 caffe2/test/cpp/jit:jit -- LiteInterpreterTest.BackPortByteCodeModelAllVersions
Parsing buck files: finished in 0.7 sec
Downloaded 0/25 artifacts, 0.00 bytes, 100.0% cache miss (for updated rules)
Building: finished in 20.7 sec (100%) 21783/21783 jobs, 5/21783 updated
cd ~/fbsource/fbcode/ && buck test caffe2/test/cpp/jit:jit -- FlatbufferTest.FlatbufferBackPortTest
Parsing buck files: finished in 0.7 sec
Building: finished in 4.5 sec (100%) 12972/53298 jobs, 0/53298 updated
Total time: 5.3 sec
More details at https://www.internalfb.com/intern/buck/build/b658d597-d358-4293-97cb-28e7612b96e8
BUILD SUCCEEDED
Tpx test run coordinator for Facebook. See https://fburl.com/tpx for details.
Running with tpx session id: 35d5542d-6ee3-4c28-be10-1d822c7a6fef
Trace available for this run at /tmp/tpx-20220308-090347.891303-35d5542d-6ee3-4c28-be10-1d822c7a6fef/trace.log
RemoteExecution session id: reSessionID-35d5542d-6ee3-4c28-be10-1d822c7a6fef-tpx
Started reporting to test run: https://www.internalfb.com/intern/testinfra/testrun/8444249379196000
✓ ListingSuccess: caffe2/test/cpp/jit:jit : 490 tests discovered (22.838)
✓ Pass: caffe2/test/cpp/jit:jit - FlatbufferTest.FlatbufferBackPortTest (0.289)
Summary
Pass: 1
ListingSuccess: 1
If you need help understanding your runs, please follow the wiki: https://fburl.com/posting_in_tpx_users
Finished test run: https://www.internalfb.com/intern/testinfra/testrun/8444249379196000
```
Reviewed By: iseeyuan
Differential Revision: D34702597
fbshipit-source-id: 5c203c29d13360d7934ce6e57557739e7038c05e
(cherry picked from commit 6189e08a2bd968fdab636f77cb6bd73d6c36beb2)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57775
The minimum supported bytecode version is updated from 3 to 4. We no longer support version 3 bytecode models.
Why?
* There are hacky codes in operator loading, that performs differently on one operator on the global bytecode version 3. Instead operator related metadata should be passed (for example, in #56845). To allow future development, we remove the hacky way first.
* The bytecode version was bumped from 3 to 4 more than half a year ago. Since all the production models are all bumped to version 4, it's not practical to keep and maintain version 3. The risk to deprecate version 3 is low.
Test Plan: Imported from OSS
Reviewed By: raziel
Differential Revision: D28270791
Pulled By: cccclai
fbshipit-source-id: 70b1bd6352fdaae5f8d2173b81578d77018c8e44
(cherry picked from commit 3e930fa381cd01f3705116795c6426df992372fc)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75244
Original commit changeset: d653a5af662a
Original Phabricator Diff: D35060736 (d9d34922a0)
Test Plan: Model loading test, verified that D35060736 (d9d34922a0) will cause the torch::save => torch::load failure.
Reviewed By: yinghai, jianyuh
Differential Revision: D35387009
fbshipit-source-id: 9d176992d402d57779e2af3d905b3c1538335298
(cherry picked from commit 6c8cc0d3b8a88b15e35702d70e18bbae8aa4628a)
Summary:
This PR introduces `SymInt` type to Pytorch which will be used by LTC and AOTAutograd for tracing size arithmetic and tests.
`SymInt` is a C++ union structure [int64_t, SymbolicIntNode*] that wraps around an int64_t field where the value of the field could be an index into a list of `shared_ptr<SymbolicIntNode>` or a real int.
This PR doesn't add any support for actually tracing symbolic ints. i.e. data_ for now can only contain real ints.
```
Goal 1: just to show we can add a type to PyTorch core. (wraps int) LANDEABLE
Finalize the naming - symint
Want the name to be short
Does invoke “size” - NO
SInt/SymInt/SymbolicInt
SInt could mean signed int
sym_int or symint or SymInt (originally it was “int”; capitalized implies object semantics, whereas lowercase implies value semantics)
JIT schema - symint
C++ - symint
```
See more details here: https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8 (d843f63f2a)YLw-jxEw
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74861
Reviewed By: qihqi, ngimel
Differential Revision: D35226230
Pulled By: Krovatkin
fbshipit-source-id: 34acf342bd50fcaa4d8d5dd49c2fd6a98823a5b3
(cherry picked from commit 218643f63ef181cabb92d13a6e837eb64f2dda3c)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74989
Adding bytecode and operator version to be serialized in flatbuffer files
ghstack-source-id: 152720235
(Note: this ignores all push blocking failures!)
Test Plan: CI
Reviewed By: iseeyuan
Differential Revision: D35265693
fbshipit-source-id: f47a21036e82c0df3e787e3f330a8140f9c922fc
(cherry picked from commit fc1d9b8dadaf454109a5c9ae583f283b2550ee4e)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74387
Make temporary python bindings for flatbuffer to test ScriptModule save / load.
(Note: this ignores all push blocking failures!)
Test Plan: unittest
Reviewed By: iseeyuan
Differential Revision: D34968080
fbshipit-source-id: d23b16abda6e4b7ecf6b1198ed6e00908a3db903
(cherry picked from commit 5cbbc390c5f54146a1c469106ab4a6286c754325)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74594
Extending `_save_for_mobile` and `_load_for_mobile` to support faltbuffer format with additional optional argument which is set to pick pickle by default.
Adding new binary target with suffix `_pickle_and_flatbuffer` to help migration.
Size test in D34909502 shows the size has regressed by ~40K but after removing pickle and comparing lite_predictors we have ~120K size measure that we will achieve when deprecating pickle and moving to flatbuffer
**BEFORE:**
```lang=mermaid
graph TD;
torch_core-->torch_mobile_deserialize;
torch_mobile_core-->torch_mobile_deserialize;
jit_module_saving-->torch_core;
jit_module_saving-->torch_mobile_core;
torch_mobile_deserialize-->caffe2_serialize;
torch_mobile_deserialize-->torch_mobile_module;
caffe2_serialize-->miniz;
flatbuffer_loader-->mobile_bytecode;
flatbuffer_serializer-->mobile_bytecode;
mobile_bytecode-->flatbuffer_2.0;
flatbuffer_loader-->torch_mobile_module;
flatbuffer_serializer-->torch_mobile_module;
```
**AFTER:**
```lang=mermaid
graph TD;
torch_core-->torch_mobile_deserialize;
torch_mobile_core-->torch_mobile_deserialize;
jit_module_saving-->torch_core;
jit_module_saving-->torch_mobile_core;
torch_mobile_deserialize-->caffe2_serialize;
torch_mobile_deserialize-->torch_mobile_module;
caffe2_serialize-->miniz;
flatbuffer_loader-->mobile_bytecode;
flatbuffer_serializer-->mobile_bytecode;
mobile_bytecode-->flatbuffer_2.0;
torch_mobile_deserialize_pickle_and_flatbuffer-->|new| flatbuffer_loader;
torch_mobile_deserialize_pickle_and_flatbuffer-->|new| torch_mobile_deserialize;
torch_mobile_core_pickle_and_flatbuffer-->|new| torch_mobile_deserialize_pickle_and_flatbuffer;
torch_core_pickle_and_flatbuffer-->|new| torch_mobile_deserialize_pickle_and_flatbuffer;
jit_module_saving_pickle_and_flatbuffer-->|new| torch_core_pickle_and_flatbuffer;
jit_module_saving_pickle_and_flatbuffer-->|new| torch_mobile_core_pickle_and_flatbuffer;
flatbuffer_serializer-->torch_mobile_module;
jit_module_saving_pickle_and_flatbuffer-->|new|jit_module_saving;
jit_module_saving_pickle_and_flatbuffer-->|new|flatbuffer_serializer;
flatbuffer_loader-->torch_mobile_module;
```
Original commit changeset: 780dfb6fd6ba
Original Phabricator Diff: D34805092 (284b2b7135)
ghstack-source-id: 152044801
(Note: this ignores all push blocking failures!)
Test Plan:
CI
```
~/fbsource/fbcode] cd ~/fbsource/fbcode/ && buck test -c fbcode.caffe2_enable_flatbuffer=1 //caffe2/test/cpp/jit:jit -- FlatbufferTest.ExtraFiles
Parsing buck files: finished in 0.9 sec
Building: finished in 5.3 sec (100%) 12992/54304 jobs, 0/54304 updated
Total time: 6.2 sec
More details at https://www.internalfb.com/intern/buck/build/2b387fff-f813-4cfa-b53f-eb2378630d4e
BUILD SUCCEEDED
Tpx test run coordinator for Facebook. See https://fburl.com/tpx for details.
Running with tpx session id: f93a84d6-e7ce-41a0-a97f-0ef3fa6d199d
Trace available for this run at /tmp/tpx-20220323-134108.766518-f93a84d6-e7ce-41a0-a97f-0ef3fa6d199d/trace.log
RemoteExecution session id: reSessionID-f93a84d6-e7ce-41a0-a97f-0ef3fa6d199d-tpx
Started reporting to test run: https://www.internalfb.com/intern/testinfra/testrun/4503599723101693
✓ ListingSuccess: caffe2/test/cpp/jit:jit : 486 tests discovered (19.122)
✓ Pass: caffe2/test/cpp/jit:jit - FlatbufferTest.ExtraFiles (0.187)
Summary
Pass: 1
ListingSuccess: 1
If you need help understanding your runs, please follow the wiki: https://fburl.com/posting_in_tpx_users
Finished test run: https://www.internalfb.com/intern/testinfra/testrun/4503599723101693
```
Similar Build Deps Dags
```
[pavithran@devvm5216.vll0 /data/users/pavithran/fbsource] buck query 'allpaths(//xplat/caffe2:torch_mobile_all_ops_pickle_and_flatbuffer, //xplat/caffe2:torch_mobile_deserialize_pickle_and_flatbuffer)' --output-format dot-compact | pastry
P486770901: https://www.internalfb.com/intern/paste/P486770901/
[pavithran@devvm5216.vll0 /data/users/pavithran/fbsource] buck query 'allpaths(//xplat/caffe2:torch_mobile_all_ops, //xplat/caffe2:torch_mobile_deserialize)' --output-format dot-compact | pastry
P486771278: https://www.internalfb.com/intern/paste/P486771278/
```
pickle_and_flatbuffer: https://www.internalfb.com/intern/dgw/graph/?build_id=P486770901
pickle: https://www.internalfb.com/intern/dgw/graph/?build_id=P486771278
Reviewed By: iseeyuan
Differential Revision: D35067157
fbshipit-source-id: 9044259c17a2e0da79bd6aedb28efbdfd57e23e0
(cherry picked from commit f738069ec3a72e79da56172741d027de514e9e5f)
Summary:
Add ONNX exporter logging facility. Supporting both C++/Python logging api. Logging can be turned on/off. Logging output stream can be either set to `stdout` or `stderr`.
A few other changes:
* When exception is raised in passes, the current IR graph being processed will be logged.
* When exception is raised from `_jit_pass_onnx` (the pass that converts nodes from namespace `ATen` to `ONNX`), both ATen IR graph and ONNX IR graph under construction will be logged.
* Exception message for ConstantFolding is truncated to avoid being too verbose.
* Update the final printed IR graph with node name in ONNX ModelProto as node attribute. Torch IR Node does not have name. Adding this to printed IR graph helps debugging.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71342
Reviewed By: msaroufim
Differential Revision: D34433473
Pulled By: malfet
fbshipit-source-id: 4b137dfd6a33eb681a5f2612f19aadf5dfe3d84a
(cherry picked from commit 67a8ebed5192c266f604bdcca931df6fe589699f)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74119
implemented function to generate source as ExtraFilesMap and constants
wrote function to construct jit module given (ivalue, source,
constant) tripple.
Test Plan: unittest
Reviewed By: pavithranrao
Differential Revision: D34803945
fbshipit-source-id: 2edc798407fe68294cb4c3c7516f5bd143df88c3
(cherry picked from commit 35e54e166b8f0f5cfe8f08c07866b59ae61ee79d)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74084
Now that the schema includes a magic file header string, write it to the flatbuffer data generated by `flatbuffer_serializer`.
ghstack-source-id: 151109277
Test Plan: A later diff in this stack (D34408538) tests that the output data contains the magic header.
Reviewed By: pavithranrao
Differential Revision: D34809318
fbshipit-source-id: edb45d57e56fa4b30675eb9ce6e4e258abfd5417
(cherry picked from commit f5e8a3ff70eba186ac9e7b91739010e55cd6c5a6)
Summary:
Update flatbuffer generated header and add it to ignore for clang format
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73810
Test Plan: CI
Reviewed By: iseeyuan
Differential Revision: D34652217
Pulled By: qihqi
fbshipit-source-id: fe281afd25d618d2e4852d6b76b813e2fbee0ddc
(cherry picked from commit 095ee360b573506ac946de142bd266b8d3bac58e)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73435
Add support for torch.jit.save and load for meta tensors to use in meta tensor based xl weights.
Test Plan:
```
buck test //caffe2/test:jit && -- -r .*save_load_meta_tensors.*
```
Reviewed By: houseroad
Differential Revision: D34479511
fbshipit-source-id: 117ccb12e9e427290a17297204508ec85495e3be
(cherry picked from commit ee9aaaf8208d6c9530c828a4b9f28cf2cca05630)
Summary:
This diff is reverting D34455360 (61d6c43864)
D34455360 (61d6c43864) is making the following tests to fail and this revert diff is either the revert of the blame diff or the revert of the stack of diffs that need to be reverted to revert the blame diff
Tests affected:
- https://www.internalfb.com/intern/test/562950004334605/
Multisect link:
https://www.internalfb.com/intern/testinfra/multisect/756170
Test Plan: NA
Reviewed By: zhxchen17
Differential Revision: D34596156
fbshipit-source-id: a465bca0094db3caf6130c80f1ed49eea981359b
(cherry picked from commit ef5e5578c64ce9827570757fb016aafa9c782c6a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73368
debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.
Test Plan:
unit test
Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K archive/xl_model_weights
3.7M archive/extra
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K archive/code/__torch__/caffe2/torch/fb
8.0K archive/code/__torch__/caffe2/torch
8.0K archive/code/__torch__/caffe2
20M archive/code/__torch__/torch/fx/graph_module
20M archive/code/__torch__/torch/fx
8.0K archive/code/__torch__/torch/classes
20M archive/code/__torch__/torch
20M archive/code/__torch__
20M archive/code
2.7M archive/constants
35M archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K resaved/extra
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K resaved/code/__torch__/caffe2/torch/fb
8.0K resaved/code/__torch__/caffe2/torch
8.0K resaved/code/__torch__/caffe2
1.3M resaved/code/__torch__/torch/fx/graph_module
1.3M resaved/code/__torch__/torch/fx
8.0K resaved/code/__torch__/torch/classes
1.4M resaved/code/__torch__/torch
1.4M resaved/code/__torch__
1.4M resaved/code
2.7M resaved/constants
13M resaved
[qihan@devvm5585.vll0 ~]$
```
Reviewed By: gmagogsfm
Differential Revision: D34455360
fbshipit-source-id: 8cc716f9bba7183746b1b4ecc33a2de34ac503b9
(cherry picked from commit f1a04730fc9ac8fdab6c8e4c44cb5529e42090e4)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72951
Extend flatbuffer to support extra files map
Flatbuffer schema has extra files. The users can write extra files by providing a `map<string, string>` which will be part of the flatbuffer model asset and and can be loaded back similar to pickle.
ghstack-source-id: 149622799
Test Plan:
fb:
```[pavithran@devvm5216.vll0 ~/fbsource/fbcode] cd ~/fbsource/fbcode/ && buck test caffe2/test/cpp/jit:jit -- FlatbufferTest.ExtraFiles
Parsing buck files: finished in 0.7 sec
Downloaded 0/8 artifacts, 0.00 bytes, 100.0% cache miss (for updated rules)
Building: finished in 20.0 sec (100%) 22343/22343 jobs, 4/22343 updated
Total time: 20.7 sec
More details at https://www.internalfb.com/intern/buck/build/7dba5034-d623-4a1e-afa1-b0e809df7066
BUILD SUCCEEDED
Tpx test run coordinator for Facebook. See https://fburl.com/tpx for details.
Running with tpx session id: 9c1ac1e0-a8c0-4a62-95df-8f49695aa7d1
Trace available for this run at /tmp/tpx-20220216-144630.207992/trace.log
RemoteExecution session id: reSessionID-9c1ac1e0-a8c0-4a62-95df-8f49695aa7d1-tpx
Started reporting to test run: https://www.internalfb.com/intern/testinfra/testrun/7318349470518809
✓ ListingSuccess: caffe2/test/cpp/jit:jit : 468 tests discovered (17.211)
✓ Pass: caffe2/test/cpp/jit:jit - FlatbufferTest.ExtraFiles (0.169)
Summary
Pass: 1
ListingSuccess: 1
If you need help understanding your runs, please follow the wiki: https://fburl.com/posting_in_tpx_users
Finished test run: https://www.internalfb.com/intern/testinfra/testrun/7318349470518809````
Reviewed By: iseeyuan
Differential Revision: D34286346
fbshipit-source-id: 4e09ab25b8ed6af6f8923db3aab046c255f13bb8
(cherry picked from commit ce8d88e22a360b25253d8a75f428d523fa88a79a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72596
debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.
Test Plan:
unit test
Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K archive/xl_model_weights
3.7M archive/extra
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K archive/code/__torch__/caffe2/torch/fb
8.0K archive/code/__torch__/caffe2/torch
8.0K archive/code/__torch__/caffe2
20M archive/code/__torch__/torch/fx/graph_module
20M archive/code/__torch__/torch/fx
8.0K archive/code/__torch__/torch/classes
20M archive/code/__torch__/torch
20M archive/code/__torch__
20M archive/code
2.7M archive/constants
35M archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K resaved/extra
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K resaved/code/__torch__/caffe2/torch/fb
8.0K resaved/code/__torch__/caffe2/torch
8.0K resaved/code/__torch__/caffe2
1.3M resaved/code/__torch__/torch/fx/graph_module
1.3M resaved/code/__torch__/torch/fx
8.0K resaved/code/__torch__/torch/classes
1.4M resaved/code/__torch__/torch
1.4M resaved/code/__torch__
1.4M resaved/code
2.7M resaved/constants
13M resaved
[qihan@devvm5585.vll0 ~]$
```
Reviewed By: JasonHanwen
Differential Revision: D33994011
fbshipit-source-id: 8e6224c6e942e91c3403f686c8f0937d1002ed41
(cherry picked from commit a7014dd4029308c95007f362a57c31796d686647)
Do not assign dim_param for sequence tensor type.
Sequence of tensors could differ in dimension size.
Use a dimension with neither dim_value nor dim_param set
to denote an unknown dimension.
Create and assign dim_param for normal tensor type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70651