Implements https://github.com/pytorch/pytorch/issues/93753 - move frame local guard accessors to C++.
Before, we used dict accessors on a Python dict representing the frame's fastlocals that we manually build. We move this accessor to C++ and additionally use the fastlocal index whenever possible.
Some implementation notes:
- `FrameLocalsMapping` is now initialized as a C++ vector of `PyObject`s. We do not just use the frame's localsplus/fastlocals buffer because we also unbox cells.
- `FrameLocalsMapping` can still be converted into a Python dict representing the frame's fastlocals, but it is done lazily.
- We update `LeafGuard`, `GuardAccessor`, and `GuardManager`'s `check_nopybind` methods to accept `FrameLocalsMapping`. By default, we convert the `FrameLocalsMapping` to a Python dict and run the original `check_nopybind` on it, but in some cases, conversion is not needed.
- We add a new guard accessor `FrameLocalsGuardAccessor`, which is similar to `DictGetItemGuardAccessor` but has special handling for `FrameLocalsMapping`. We create a separate class to emphasize different use cases, but we could probably combine these two (can do in a follow up)
dynamo_guard_eval.py microbenchmark update:
- 713.2us -> 630.0us (3.10)
- 598.8us -> 530.7us (3.12)
Other followups:
- Add `FrameLocalsMapping` version for `check_verbose_nopybind` in order to match behavior between `check_nopybind` and `check_verbose_nopybind`. This can prevent difficult debugging situations where guards fail (`check_nopybind` returns false) but no guard error message is generated (`check_verbose_nopybind` succeeds).
- Rewrite the `SHAPE_ENV` guard into C++ - it is a fairly common guard that results in `FrameLocalsMapping` needing to convert to a dict
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140063
Approved by: https://github.com/jansel
ghstack dependencies: #142117, #142430
Summary: In D60803317, we added CompileContext (trace_id) information to Kineto traces using caching when a CompileContext exits. As pointed out by some users, this gives innaccurate IDs because we are not getting the context that we is being looked up within the eval_frame. For this reason, we decided to revert that change, and go with an approach that involves getting the trace_id associated with a given CacheEntry. To do this, we add a trace_id to the GuardedCode so that it can be passed onto a CacheEntry. Then, we change the lookup function to return said trace_id alongside the code so that we can pass both into our eval function. Once we get to a Torch-Compiled Region, we can just append the context information to the name of the annotation thus bypassing any need for kwargs.
Test Plan: Added more comprehensive unit test. Saw that all the trace_ids appeared within the graph.
Differential Revision: D63138786
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136460
Approved by: https://github.com/ezyang
Construct frame localsplus in 3.12+ using our own simplified way rather than copypasting from CPython.
This is necessary for 3.13 since we can no longer generate frame `f_locals` before executing the interpreter frame.
We also enable this for 3.12 since the `f_locals` construction between 3.12 and 3.13 is the same, so we can test for correctness with 3.12.
This is also one of the first steps to completing https://github.com/pytorch/pytorch/issues/93753 - we will implement simplified f_locals generation of previous Python versions in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129185
Approved by: https://github.com/jansel
Construct frame localsplus in 3.12+ using our own simplified way rather than copypasting from CPython.
This is necessary for 3.13 since we can no longer generate frame `f_locals` before executing the interpreter frame.
We also enable this for 3.12 since the `f_locals` construction between 3.12 and 3.13 is the same, so we can test for correctness with 3.12.
This is also one of the first steps to completing https://github.com/pytorch/pytorch/issues/93753 - we will implement simplified f_locals generation of previous Python versions in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129185
Approved by: https://github.com/jansel
Attempt #2 for https://github.com/pytorch/pytorch/pull/117875 to fix https://github.com/pytorch/pytorch/issues/112090.
Summary of changes:
- ~Changed CacheEntry linked list into a doubly-linked list structure to support deletion.~ (done by C++ refactor)
- Added CacheEntry and ExtraState borrowed references to GuardFn so that GuardFn can tell ExtraState to delete CacheEntry when the GuardFn is invalidated.
- ~Added ExtraState raw reference to CacheEntry so that we can get ExtraState to correctly point to the first CacheEntry if it gets deleted.~ (done by C++ refactor)
- CacheEntry destructor needs to reset GuardFn refs to ExtraState/CacheEntry in order to prevent use-after-free.
- code_context values that are nn.GraphModules need to be weakrefs in order to prevent circular references.
- Added tests that check for memory leaks and cache deletion operations.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119107
Approved by: https://github.com/jansel